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Preface
This document describes the RISC-V unprivileged architecture.

The ISA modules marked Ratified have been ratified at this time. The modules marked Frozen are not
expected to change significantly before being put up for ratification. The modules marked Draft are
expected to change before ratification.

The document contains the following versions of the RISC-V ISA modules:

Base Version Status
RV321 2.1 Ratified
RV32E 2.0 Ratified
RV64E 2.0 Ratified
RV641 2.1 Ratified
RV1281 L7 Draft

Extension Version Status
Zifencei 2.0 Ratified

Zicsr 2.0 Ratified

Zicntr 2.0 Ratified

Zihintntl 1.0 Ratified
Zihintpause 2.0 Ratified
Zimop 1.0 Ratified
Zicond 1.0 Ratified
M 2.0 Ratified
Zmmul 1.0 Ratified
A 2.1 Ratified
Zawrs 1.01 Ratified
Zacas 1.0 Ratifed
RVWMO 2.0 Ratified
Ztso 1.0 Ratified
CMO 1.0 Ratified
2.2 Ratified

2.2 Ratified

2.2 Ratified

Zth 1.0 Ratified
Zfhmin 1.0 Ratified
Zfa 1.0 Ratified

Zfinx 1.0 Ratified
Zdinx 1.0 Ratified
Zhinx 1.0 Ratified

Zhinxmin 1.0 Ratified
C 2.0 Ratified
*Zce 1.0 Ratified

B 1.0 Ratified
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Base Version Status
P 0.2 Draft

\Y 1.0 Ratified
*Zbkb 1.0 Ratified
*Zbke 1.0 Ratified
*Zbkx 1.0 Ratified
*Zk 1.0 Ratified
*Zks 1.0 Ratified
*Zvbb 1.0 Ratified
*Zvbc 1.0 Ratified
*Zvkg 1.0 Ratified
*Zvkned 1.0 Ratified
*Zvknhb 1.0 Ratified
*Zvksed 1.0 Ratified
*Zvksh 1.0 Ratified
*Zvkt 1.0 Ratified

The changes in this version of the document include:

- The inclusion of all ratified extensions through March 2024.

- The draft Zam extension has been removed, in favor of the definition of a misaligned atomicity
granule PMA.

Preface to Document Version 20191213-Base-Ratified

This document describes the RISC-V unprivileged architecture.

The ISA modules marked Ratified have been ratified at this time. The modules marked Frozen are not
expected to change significantly before being put up for ratification. The modules marked Draft are
expected to change before ratification.

The document contains the following versions of the RISC-V ISA modules:

Base Version Status
RVWMO 2.0 Ratified
RV32I 2.1 Ratified
RV64I 2.1 Ratified
RV32E 1.9 Draft
RVI28I 17 Draft
Extension Version Status
M 2.0 Ratified
A 2.1 Ratified
F 2.2 Ratified
D 2.2 Ratified
Q 2.2 Ratified
C 2.0 Ratified
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Base
Counters

L

T8 = W

v
Zicsr
Zifencei
Zam

Ztso

Version

2.0
0.0
0.0
0.0
0.0
0.2
0.7
2.0
2.0
0.1

0.1

The changes in this version of the document include:

Status
Draft
Draft
Draft
Draft
Draft
Draft
Draft

Ratified
Ratified
Draft

Frozen

- The A extension, now version 2.1, was ratified by the board in December 2019.

- Defined big-endian ISA variant.

- Moved N extension for user-mode interrupts into Volume II.

- Defined PAUSE hint instruction.

Preface to Document Version 20190608-Base-Ratified

This document describes the RISC-V unprivileged architecture.

The RVWMO memory model has been ratified at this time. The ISA modules marked Ratified, have
been ratified at this time. The modules marked Frozen are not expected to change significantly before
being put up for ratification. The modules marked Draft are expected to change before ratification.

The document contains the following versions of the RISC-V ISA modules:

Base
RVWMO
RV32I
RV64I
RV32E
RV128I
Extension
Zifencei
Zicsr

M

o o = >

Ztso

Version
2.0

2.1

21

1.9

17
Version
2.0

2.0

2.0

2.0

2.2

2.2

2.2

2.0

0.1
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Ratified
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Draft
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Ratified
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Ratified
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Ratified
Ratified
Ratified
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Base Version Status
Counters 2.0 Draft
L 0.0 Draft

B 0.0 Draft

J 0.0 Draft

T 0.0 Draft

p 0.2 Draft

v 0.7 Draft

N 11 Draft
Zam 0.1 Draft

The changes in this version of the document include:

- Moved description to Ratified for the ISA modules ratified by the board in early 2019.
- Removed the A extension from ratification.
- Changed document version scheme to avoid confusion with versions of the ISA modules.

- Incremented the version numbers of the base integer ISA to 2.1, reflecting the presence of the
ratified RVWMO memory model and exclusion of FENCE.I, counters, and CSR instructions that
were in previous base ISA.

- Incremented the version numbers of the F and D extensions to 2.2, reflecting that version 2.1
changed the canonical NaN, and version 2.2 defined the NaN-boxing scheme and changed the
definition of the FMIN and FMAX instructions.

- Changed name of document to refer to "unprivileged" instructions as part of move to separate ISA
specifications from platform profile mandates.

- Added clearer and more precise definitions of execution environments, harts, traps, and memory
accesses.

- Defined instruction-set categories: standard, reserved, custom, non-standard, and non-conforming.

- Removed text implying operation under alternate endianness, as alternate-endianness operation
has not yet been defined for RISC-V.

- Changed description of misaligned load and store behavior. The specification now allows visible
misaligned address traps in execution environment interfaces, rather than just mandating
invisible handling of misaligned loads and stores in user mode. Also, now allows access-fault
exceptions to be reported for misaligned accesses (including atomics) that should not be emulated.

- Moved FENCE.I out of the mandatory base and into a separate extension, with Zifencei ISA name.
FENCE.I was removed from the Linux user ABI and is problematic in implementations with large
incoherent instruction and data caches. However, it remains the only standard instruction-fetch
coherence mechanism.

- Removed prohibitions on using RV32E with other extensions.

- Removed platform-specific mandates that certain encodings produce illegal-instruction
exceptions in RV32E and RV64I chapters.

- Counter/timer instructions are now not considered part of the mandatory base ISA, and so CSR
instructions were moved into separate chapter and marked as version 2.0, with the unprivileged
counters moved into another separate chapter. The counters are not ready for ratification as there
are outstanding issues, including counter inaccuracies.
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- A CSR-access ordering model has been added.

- Explicitly defined the 16-bit half-precision floating-point format for floating-point instructions in
the 2-bit fmt field.

- Defined the signed-zero behavior of FMIN.fmt and FMAX.fmt, and changed their behavior on
signaling-NaN inputs to conform to the minimumNumber and maximumNumber operations in
the proposed IEEE 754-201x specification.

- The memory consistency model, RVWMO, has been defined.

- The "Zam" extension, which permits misaligne%autowidth,float="center’,align="center".d AMOs
and specifies their semantics, has been defined.

- The "Ztso" extension, which enforces a stricter memory consistency model than RVWMO, has been
defined.

- Improvements to the description and commentary.

- Defined the term IALIGN as shorthand to describe the instruction-address alignment constraint.

- Removed text of P extension chapter as now superseded by active task group documents.

- Removed text of V extension chapter as now superseded by separate vector extension draft
document.

Preface to Document Version 2.2

This is version 2.2 of the document describing the RISC-V user-level architecture. The document
contains the following versions of the RISC-V ISA modules:

Base Version Draft Frozen?
RV32I 2.0 Y
RV32E 19 N
RV641 2.0 Y
RV1281 1.7 N

Extension Version Frozen?
M 2.0 Y
A 2.0 Y
F 2.0 Y
D 2.0 Y
Q 2.0 Y
L 0.0 N
C 2.0 Y
B 0.0 N
] 0.0 N
T 0.0 N
P 0.1 N
\ 0.7 N
N 11 N

To date, no parts of the standard have been officially ratified by the RISC-V Foundation, but the
components labeled "frozen" above are not expected to change during the ratification process beyond
resolving ambiguities and holes in the specification.
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The major changes in this version of the document include:

- The previous version of this document was released under a Creative Commons Attribution 4.0
International License by the original authors, and this and future versions of this document will be
released under the same license.

- Rearranged chapters to put all extensions first in canonical order.
- Improvements to the description and commentary.

- Modified implicit hinting suggestion on JALR to support more efficient macro-op fusion of
LUI/JALR and AUIPC/JALR pairs.

- Clarification of constraints on load-reserved/store-conditional sequences.
- A new table of control and status register (CSR) mappings.
- Clarified purpose and behavior of high-order bits of fesr.

- Corrected the description of the FNMADD.fmt and FNMSUB.fmt instructions, which had suggested the
incorrect sign of a zero result.

- Instructions FMV.S.X and FMV.X.S were renamed to FMV.W.X and FMV.X.W respectively to be more
consistent with their semantics, which did not change. The old names will continue to be
supported in the tools.

- Specified behavior of narrower (<FLEN) floating-point values held in wider f registers using NaN-
boxing model.

- Defined the exception behavior of FMA(~, O, qNaN).

- Added note indicating that the P extension might be reworked into an integer packed-SIMD
proposal for fixed-point operations using the integer registers.

- A draft proposal of the V vector instruction-set extension.
- An early draft proposal of the N user-level traps extension.
- An expanded pseudoinstruction listing.

- Removal of the calling convention chapter, which has been superseded by the RISC-V ELF psABI
Specification (RISC-V ELF PsABI Specification, n.d.).

- The C extension has been frozen and renumbered version 2.0.
Preface to Document Version 2.1

This is version 2.1 of the document describing the RISC-V user-level architecture. Note the frozen
user-level ISA base and extensions IMAFDQ version 2.0 have not changed from the previous version of
this document (Waterman et al, 2014), but some specification holes have been fixed and the
documentation has been improved. Some changes have been made to the software conventions.

- Numerous additions and improvements to the commentary sections.

- Separate version numbers for each chapter.

- Modification to long instruction encodings >64 bits to avoid moving the rd specifier in very long
instruction formats.

- CSR instructions are now described in the base integer format where the counter registers are
introduced, as opposed to only being introduced later in the floating-point section (and the
companion privileged architecture manual).

- The SCALL and SBREAK instructions have been renamed to ECALL and EBREAK, respectively. Their
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encoding and functionality are unchanged.
- Clarification of floating-point NaN handling, and a new canonical NaN value.
- Clarification of values returned by floating-point to integer conversions that overflow.

- Clarification of LR/SC allowed successes and required failures, including use of compressed
instructions in the sequence.

- A new RV32E base ISA proposal for reduced integer register counts, supports MAC extensions.
- A revised calling convention.

- Relaxed stack alignment for soft-float calling convention, and description of the RV32E calling
convention.

- A revised proposal for the C compressed extension, version 1.9 .
Preface to Version 2.0

This is the second release of the user ISA specification, and we intend the specification of the base user
ISA plus general extensions (i.e., IMAFD) to remain fixed for future development. The following
changes have been made since Version 1.0 (Waterman et al., 2011) of this ISA specification.

- The ISA has been divided into an integer base with several standard extensions.
- The instruction formats have been rearranged to make immediate encoding more efficient.

- The base ISA has been defined to have a little-endian memory system, with big-endian or bi-
endian as non-standard variants.

- Load-Reserved/Store-Conditional (LR/SC) instructions have been added in the atomic instruction
extension.

- AMOs and LR/SC can support the release consistency model.
- The FENCE instruction provides finer-grain memory and I/O orderings.

- An AMO for fetch-and-XOR (AMOXOR) has been added, and the encoding for AMOSWAP has been
changed to make room.

- The AUIPC instruction, which adds a 20-bit upper immediate to the PC, replaces the RDNPC
instruction, which only read the current PC value. This results in significant savings for position-
independent code.

- The JAL instruction has now moved to the U-Type format with an explicit destination register, and
the J instruction has been dropped being replaced by JAL with rd=x@. This removes the only
instruction with an implicit destination register and removes the J-Type instruction format from
the base ISA. There is an accompanying reduction in JAL reach, but a significant reduction in base
ISA complexity.

- The static hints on the JALR instruction have been dropped. The hints are redundant with the rd
and rsl register specifiers for code compliant with the standard calling convention.

- The JALR instruction now clears the lowest bit of the calculated target address, to simplify
hardware and to allow auxiliary information to be stored in function pointers.

- The MFTX.S and MFTX.D instructions have been renamed to FMV.X.S and FMV.X.D, respectively.

Similarly, MXTF.S and MXTF.D instructions have been renamed to FMV.S.X and FMV.D.X
respectively.

- The MFFSR and MTFSR instructions have been renamed to FRCSR and FSCSR, respectively. FRRM, FSRM,
FRFLAGS, and FSFLAGS instructions have been added to individually access the rounding mode and
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exception flags subfields of the fesr.

- The FMV.X.S and FMV.X.D instructions now source their operands from rsl, instead of rs2. This
change simplifies datapath design.

- FCLASS.S and FCLASS.D floating-point classify instructions have been added.
- A simpler NaN generation and propagation scheme has been adopted.

- For RV32I, the system performance counters have been extended to 64-bits wide, with separate
read access to the upper and lower 32 bits.

- Canonical NOP and MV encodings have been defined.

- Standard instruction-length encodings have been defined for 48-bit, 64-bit, and >64-bit
instructions.

- Description of a 128-bit address space variant, RV128, has been added.

- Major opcodes in the 32-bit base instruction format have been allocated for user-defined custom
extensions.

- A typographical error that suggested that stores source their data from rd has been corrected to
refer to rs2.
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Chapter 1. Introduction

RISC-V (pronounced "risk-five") is a new instruction-set architecture (ISA) that was originally designed
to support computer architecture research and education, but which we now hope will also become a
standard free and open architecture for industry implementations. Our goals in defining RISC-V
include:

- A completely open ISA that is freely available to academia and industry.

- A real ISA suitable for direct native hardware implementation, not just simulation or binary
translation.

- An ISA that avoids "over-architecting” for a particular microarchitecture style (e.g., microcoded, in-
order, decoupled, out-of-order) or implementation technology (e.g., full-custom, ASIC, FPGA), but
which allows efficient implementation in any of these.

- An ISA separated into a small base integer ISA, usable by itself as a base for customized
accelerators or for educational purposes, and optional standard extensions, to support general-
purpose software development.

- Support for the revised 2008 IEEE-754 floating-point standard. (ANSI/IEEE Std 754-2008, IEEE
Standard for Floating-Point Arithmetic, 2008)

- An ISA supporting extensive ISA extensions and specialized variants.

- Both 32-bit and 64-bit address space variants for applications, operating system kernels, and
hardware implementations.

- An ISA with support for highly parallel multicore or manycore implementations, including
heterogeneous multiprocessors.

- Optional variable-length instructions to both expand available instruction encoding space and to
support an optional dense instruction encoding for improved performance, static code size, and
energy efficiency.

- A fully virtualizable ISA to ease hypervisor development.

- An ISA that simplifies experiments with new privileged architecture designs.

Q Commentary on our design decisions is formatted as in this paragraph. This non-
normative text can be skipped if the reader is only interested in the specification itself.

The name RISC-V was chosen to represent the fifth major RISC ISA design from UC
Berkeley (RISC-I (Patterson & Séquin, 1981), RISC-II (Katevenis et al, 1983), SOAR (Ungar
y et al, 1984), and SPUR (Lee et al,, 1989) were the first four). We also pun on the use of the
EI Roman numeral "V" to signify 'variations" and 'vectors', as support for a range of
architecture research, including various data-parallel accelerators, is an explicit goal of

the ISA design.

The RISC-V ISA is defined avoiding implementation details as much as possible (although
commentary is included on implementation-driven decisions) and should be read as the software-
visible interface to a wide variety of implementations rather than as the design of a particular
hardware artifact. The RISC-V manual is structured in two volumes. This volume covers the design of
the base unprivileged instructions, including optional unprivileged ISA extensions. Unprivileged
instructions are those that are generally usable in all privilege modes in all privileged architectures,
though behavior might vary depending on privilege mode and privilege architecture. The second
volume provides the design of the first (‘classic") privileged architecture. The manuals use 1EC
80000-13:2008 conventions, with a byte of 8 bits.
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In the unprivileged ISA design, we tried to remove any dependence on particular
microarchitectural features, such as cache line size, or on privileged architecture details,

Q such as page translation. This is both for simplicity and to allow maximum flexibility for
alternative microarchitectures or alternative privileged architectures.

1.1. RISC-V Hardware Platform Terminology

A RISC-V hardware platform can contain one or more RISC-V-compatible processing cores together
with other non-RISC-V-compatible cores, fixed-function accelerators, various physical memory
structures, I/O devices, and an interconnect structure to allow the components to communicate.

A component is termed a core if it contains an independent instruction fetch unit. A RISC-V-
compatible core might support multiple RISC-V-compatible hardware threads, or harts, through
multithreading.

A RISC-V core might have additional specialized instruction-set extensions or an added coprocessor.
We use the term coprocessor to refer to a unit that is attached to a RISC-V core and is mostly
sequenced by a RISC-V instruction stream, but which contains additional architectural state and
instruction-set extensions, and possibly some limited autonomy relative to the primary RISC-V
instruction stream.

We use the term accelerator to refer to either a non-programmable fixed-function unit or a core that
can operate autonomously but is specialized for certain tasks. In RISC-V systems, we expect many
programmable accelerators will be RISC-V-based cores with specialized instruction-set extensions
and/or customized coprocessors. An important class of RISC-V accelerators are 1/O accelerators,
which offload I/O processing tasks from the main application cores.

The system-level organization of a RISC-V hardware platform can range from a single-core
microcontroller to a many-thousand-node cluster of shared-memory manycore server nodes. Even
small systems-on-a-chip might be structured as a hierarchy of multicomputers and/or
multiprocessors to modularize development effort or to provide secure isolation between subsystems.

1.2. RISC-V Software Execution Environments and Harts

The behavior of a RISC-V program depends on the execution environment in which it runs. A RISC-V
execution environment interface (EEI) defines the initial state of the program, the number and type of
harts in the environment including the privilege modes supported by the harts, the accessibility and
attributes of memory and 1/O regions, the behavior of all legal instructions executed on each hart (i.e.,
the ISA is one component of the EEI), and the handling of any interrupts or exceptions raised during
execution including environment calls. Examples of EEIs include the Linux application binary
interface (ABI), or the RISC-V supervisor binary interface (SBI). The implementation of a RISC-V
execution environment can be pure hardware, pure software, or a combination of hardware and
software. For example, opcode traps and software emulation can be used to implement functionality
not provided in hardware. Examples of execution environment implementations include:

- "Bare metal" hardware platforms where harts are directly implemented by physical processor
threads and instructions have full access to the physical address space. The hardware platform
defines an execution environment that begins at power-on reset.

- RISC-V operating systems that provide multiple user-level execution environments by
multiplexing user-level harts onto available physical processor threads and by controlling access to
memory via virtual memory.
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+ RISC-V hypervisors that provide multiple supervisor-level execution environments for guest
operating systems.

- RISC-V emulators, such as Spike, QEMU or rv8, which emulate RISC-V harts on an underlying x86
system, and which can provide either a user-level or a supervisor-level execution environment.

A bare hardware platform can be considered to define an EEI, where the accessible harts,
memory, and other devices populate the environment, and the initial state is that at
power-on reset. Generally, most software is designed to use a more abstract interface to

Q the hardware, as more abstract EEIs provide greater portability across different hardware
platforms. Often EEIs are layered on top of one another, where one higher-level EEI uses
another lower-level EEIL

From the perspective of software running in a given execution environment, a hart is a resource that
autonomously fetches and executes RISC-V instructions within that execution environment. In this
respect, a hart behaves like a hardware thread resource even if time-multiplexed onto real hardware by
the execution environment. Some EEIs support the creation and destruction of additional harts, for
example, via environment calls to fork new harts.

The execution environment is responsible for ensuring the eventual forward progress of each of its
harts. For a given hart, that responsibility is suspended while the hart is exercising a mechanism that
explicitly waits for an event, such as the wait-for-interrupt instruction defined in Volume II of this
specification; and that responsibility ends if the hart is terminated. The following events constitute
forward progress:

- The retirement of an instruction.
- Atrap, as defined in Section 1.6.

- Any other event defined by an extension to constitute forward progress.

The term hart was introduced in the work on Lithe (Pan et al, 2009) and (Pan et al., 2010)
to provide a term to represent an abstract execution resource as opposed to a software
thread programming abstraction.

The important distinction between a hardware thread (hart) and a software thread context

is that the software running inside an execution environment is not responsible for

causing progress of each of its harts; that is the responsibility of the outer execution

environment. So the environment’s harts operate like hardware threads from the
Q perspective of the software inside the execution environment.

An execution environment implementation might time-multiplex a set of guest harts onto
fewer host harts provided by its own execution environment but must do so in a way that
guest harts operate like independent hardware threads. In particular, if there are more
guest harts than host harts then the execution environment must be able to preempt the
guest harts and must not wait indefinitely for guest software on a guest hart to "yield"
control of the guest hart.

1.3. RISC-V ISA Overview

A RISC-V ISA is defined as a base integer ISA, which must be present in any implementation, plus
optional extensions to the base ISA. The base integer ISAs are very similar to that of the early RISC
processors except with no branch delay slots and with support for optional variable-length instruction
encodings. A base is carefully restricted to a minimal set of instructions sufficient to provide a
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reasonable target for compilers, assemblers, linkers, and operating systems (with additional privileged
operations), and so provides a convenient ISA and software toolchain "skeleton" around which more
customized processor ISAs can be built.

Although it is convenient to speak of the RISC-V ISA, RISC-V is actually a family of related ISAs, of
which there are currently four base ISAs. Each base integer instruction set is characterized by the
width of the integer registers and the corresponding size of the address space and by the number of
integer registers. There are two primary base integer variants, RV32I and RV64l, described in Chapter
2 and Chapter 4, which provide 32-bit or 64-bit address spaces respectively. We use the term XLEN to
refer to the width of an integer register in bits (either 32 or 64). Chapter 6 describes the RV32E and
RV64E subset variants of the RV32I or RV64I base instruction sets respectively, which have been
added to support small microcontrollers, and which have half the number of integer registers. Chapter
8 sketches a future RV128I variant of the base integer instruction set supporting a flat 128-bit address
space (XLEN=128). The base integer instruction sets use a two’s-complement representation for signed
integer values.

Although 64-bit address spaces are a requirement for larger systems, we believe 32-bit
address spaces will remain adequate for many embedded and client devices for decades to
come and will be desirable to lower memory traffic and energy consumption. In addition,

Q 32-bit address spaces are sufficient for educational purposes. A larger flat 128-bit address
space might eventually be required, so we ensured this could be accommodated within the
RISC-V ISA framework.

The four base ISAs in RISC-V are treated as distinct base ISAs. A common question is why
is there not a single ISA, and in particular, why is RV32I not a strict subset of RV64I?
Some earlier ISA designs (SPARC, MIPS) adopted a strict superset policy when increasing
address space size to support running existing 32-bit binaries on new 64-bit hardware.

The main advantage of explicitly separating base ISAs is that each base ISA can be
optimized for its needs without requiring to support all the operations needed for other
base ISAs. For example, RV64I can omit instructions and CSRs that are only needed to
cope with the narrower registers in RV32I. The RV32I variants can use encoding space
otherwise reserved for instructions only required by wider address-space variants.

The main disadvantage of not treating the design as a single ISA is that it complicates the
hardware needed to emulate one base ISA on another (e.g., RV32I on RV64I). However,
differences in addressing and illegal-instruction traps generally mean some mode switch
y would be required in hardware in any case even with full superset instruction encodings,
EI and the different RISC-V base ISAs are similar enough that supporting multiple versions
is relatively low cost. Although some have proposed that the strict superset design would
allow legacy 32-bit libraries to be linked with 64-bit code, this is impractical in practice,
even with compatible encodings, due to the differences in software calling conventions and
system-call interfaces.

The RISC-V privileged architecture provides fields in misa to control the unprivileged ISA
at each level to support emulating different base ISAs on the same hardware. We note that
newer SPARC and MIPS ISA revisions have deprecated support for running 32-bit code
unchanged on 64-bit systems.

A related question is why there is a different encoding for 32-bit adds in RV32I (ADD) and
RV641 (ADDW)? The ADDW opcode could be used for 32-bit adds in RV32I and ADDD for
64-bit adds in RV64I, instead of the existing design which uses the same opcode ADD for
32-bit adds in RV32I and 64-bit adds in RV64I with a different opcode ADDW for 32-bit
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adds in RV641. This would also be more consistent with the use of the same LW opcode for
32-bit load in both RV32I and RV64I. The very first versions of RISC-V ISA did have a
variant of this alternate design, but the RISC-V design was changed to the current choice
in January 2011. Our focus was on supporting 32-bit integers in the 64-bit ISA not on
providing compatibility with the 32-bit ISA, and the motivation was to remove the
asymmetry that arose from having not all opcodes in RV32I have a *W suffix (e.g.,, ADDW,
but AND not ANDW). In hindsight, this was perhaps not well-justified and a consequence
of designing both ISAs at the same time as opposed to adding one later to sit on top of
another, and also from a belief we had to fold platform requirements into the ISA spec
which would imply that all the RV32I instructions would have been required in RV64I. It is
too late to change the encoding now, but this is also of little practical consequence for the
reasons stated above.

It has been noted we could enable the *W variants as an extension to RV32I systems to
provide a common encoding across RV64I and a future RV32 variant.

RISC-V has been designed to support extensive customization and specialization. Each base integer
ISA can be extended with one or more optional instruction-set extensions. An extension may be
categorized as either standard, custom, or non-conforming. For this purpose, we divide each RISC-V
instruction-set encoding space (and related encoding spaces such as the CSRs) into three disjoint
categories: standard, reserved, and custom. Standard extensions and encodings are defined by RISC-V
International; any extensions not defined by RISC-V International are non-standard. Each base ISA
and its standard extensions use only standard encodings, and shall not conflict with each other in
their uses of these encodings. Reserved encodings are currently not defined but are saved for future
standard extensions; once thus used, they become standard encodings. Custom encodings shall never
be used for standard extensions and are made available for vendor-specific non-standard extensions.
Non-standard extensions are either custom extensions, that use only custom encodings, or non-
conforming extensions, that use any standard or reserved encoding. Instruction-set extensions are
generally shared but may provide slightly different functionality depending on the base ISA. Chapter
35 describes various ways of extending the RISC-V ISA. We have also developed a naming convention
for RISC-V base instructions and instruction-set extensions, described in detail in Chapter 36.

To support more general software development, a set of standard extensions are defined to provide
integer multiply/divide, atomic operations, and single and double-precision floating-point arithmetic.
The base integer ISA is named "I" (prefixed by RV32 or RV64 depending on integer register width), and
contains integer computational instructions, integer loads, integer stores, and control-flow
instructions. The standard integer multiplication and division extension is named "M", and adds
instructions to multiply and divide values held in the integer registers. The standard atomic
instruction extension, denoted by "A", adds instructions that atomically read, modify, and write
memory for inter-processor synchronization. The standard single-precision floating-point extension,
denoted by "F', adds floating-point registers, single-precision computational instructions, and single-
precision loads and stores. The standard double-precision floating-point extension, denoted by "D",
expands the floating-point registers, and adds double-precision computational instructions, loads, and
stores. The standard "C" compressed instruction extension provides narrower 16-bit forms of common
instructions.

Beyond the base integer ISA and these standard extensions, we believe it is rare that a new instruction
will provide a significant benefit for all applications, although it may be very beneficial for a certain
domain. As energy efficiency concerns are forcing greater specialization, we believe it is important to
simplify the required portion of an ISA specification. Whereas other architectures usually treat their
ISA as a single entity, which changes to a new version as instructions are added over time, RISC-V will
endeavor to keep the base and each standard extension constant over time, and instead layer new
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instructions as further optional extensions. For example, the base integer ISAs will continue as fully
supported standalone ISAs, regardless of any subsequent extensions.

1.4. Memory

A RISC-V hart has a single byte-addressable address space of 2X!N bytes for all memory accesses. A
word of memory is defined as 32 bits (4 bytes). Correspondingly, a halfword is 16 bits (2 bytes), a
doubleword is 64 bits (8 bytes), and a quadword is 128 bits (16 bytes). The memory address space is
circular, so that the byte at address 2XN . 1 is adjacent to the byte at address zero. Accordingly, memory
address computations done by the hardware ignore overflow and instead wrap around modulo 2XtN.

The execution environment determines the mapping of hardware resources into a hart’s address
space. Different address ranges of a hart’s address space may (1) be vacant, or (2) contain main memory,
or (3) contain one or more I/0 devices. Reads and writes of /O devices may have visible side effects,
but accesses to main memory cannot. Although it is possible for the execution environment to call
everything in a hart’s address space an I/O device, it is usually expected that some portion will be
specified as main memory.

When a RISC-V platform has multiple harts, the address spaces of any two harts may be entirely the
same, or entirely different, or may be partly different but sharing some subset of resources, mapped
into the same or different address ranges.

For a purely "bare metal" environment, all harts may see an identical address space,
accessed entirely by physical addresses. However, when the execution environment

Q includes an operating system employing address translation, it is common for each hart to
be given a virtual address space that is largely or entirely its own.

Executing each RISC-V machine instruction entails one or more memory accesses, subdivided into
implicit and explicit accesses. For each instruction executed, an implicit memory read (instruction
fetch) is done to obtain the encoded instruction to execute. Many RISC-V instructions perform no
further memory accesses beyond instruction fetch. Specific load and store instructions perform an
explicit read or write of memory at an address determined by the instruction. The execution
environment may dictate that instruction execution performs other implicit memory accesses (such as
to implement address translation) beyond those documented for the unprivileged ISA.

The execution environment determines what portions of the non-vacant address space are accessible
for each kind of memory access. For example, the set of locations that can be implicitly read for
instruction fetch may or may not have any overlap with the set of locations that can be explicitly read
by a load instruction; and the set of locations that can be explicitly written by a store instruction may
be only a subset of locations that can be read. Ordinarily, if an instruction attempts to access memory
at an inaccessible address, an exception is raised for the instruction. Vacant locations in the address
space are never accessible.

Except when specified otherwise, implicit reads that do not raise an exception and that have no side
effects may occur arbitrarily early and speculatively, even before the machine could possibly prove
that the read will be needed. For instance, a valid implementation could attempt to read all of main
memory at the earliest opportunity, cache as many fetchable (executable) bytes as possible for later
instruction fetches, and avoid reading main memory for instruction fetches ever again. To ensure that
certain implicit reads are ordered only after writes to the same memory locations, software must
execute specific fence or cache-control instructions defined for this purpose (such as the FENCE.I
instruction defined in Chapter 6).
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The memory accesses (implicit or explicit) made by a hart may appear to occur in a different order as
perceived by another hart or by any other agent that can access the same memory. This perceived
reordering of memory accesses is always constrained, however, by the applicable memory consistency
model. The default memory consistency model for RISC-V is the RISC-V Weak Memory Ordering
(RVWMO), defined in Chapter 17 and in appendices. Optionally, an implementation may adopt the
stronger model of Total Store Ordering, as defined in Chapter 18. The execution environment may also
add constraints that further limit the perceived reordering of memory accesses. Since the RVWMO
model is the weakest model allowed for any RISC-V implementation, software written for this model is
compatible with the actual memory consistency rules of all RISC-V implementations. As with implicit
reads, software must execute fence or cache-control instructions to ensure specific ordering of
memory accesses beyond the requirements of the assumed memory consistency model and execution
environment.

1.5. Base Instruction-Length Encoding

The base RISC-V ISA has fixed-length 32-bit instructions that must be naturally aligned on 32-bit
boundaries. However, the standard RISC-V encoding scheme is designed to support ISA extensions
with variable-length instructions, where each instruction can be any number of 16-bit instruction
parcels in length and parcels are naturally aligned on 16-bit boundaries. The standard compressed ISA
extension described in Chapter 26 reduces code size by providing compressed 16-bit instructions and
relaxes the alignment constraints to allow all instructions (16 bit and 32 bit) to be aligned on any 16-
bit boundary to improve code density.

We use the term IALIGN (measured in bits) to refer to the instruction-address alignment constraint
the implementation enforces. IALIGN is 32 bits in the base ISA, but some ISA extensions, including
the compressed ISA extension, relax IALIGN to 16 bits. IALIGN may not take on any value other than
16 or 32.

We use the term ILEN (measured in bits) to refer to the maximum instruction length supported by an
implementation, and which is always a multiple of IALIGN. For implementations supporting only a
base instruction set, ILEN is 32 bits. Implementations supporting longer instructions have larger
values of ILEN.

Table 1 illustrates the standard RISC-V instruction-length encoding convention. All the 32-bit
instructions in the base ISA have their lowest two bits set to "11". The optional compressed 16-bit
instruction-set extensions have their lowest two bits equal to 00, 01, or 10.

1.5.1. Expanded Instruction-Length Encoding

A portion of the 32-bit instruction-encoding space has been tentatively allocated for instructions
longer than 32 bits. The entirety of this space is reserved at this time, and the following proposal for
encoding instructions longer than 32 bits is not considered frozen.

Standard instruction-set extensions encoded with more than 32 bits have additional low-order bits set
to 1, with the conventions for 48-bit and 64-bit lengths shown in Table 1. Instruction lengths between
80 bits and 176 bits are encoded using a 3-bit field in bits [14:12] giving the number of 16-bit words in
addition to the first 5 x 16-bit words. The encoding with bits [14:12] set to "111" is reserved for future
longer instruction encodings.

Table 1. RISC-V instruction length encoding. Only the 16-bit and 32-bit encodings are considered frozen at this
time.
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XXXXXXXXXXXXXXAa 16-bit (aa#ll)

XXXXXXXXXXXXXXXX XXXXXXXXXxXbbb1l 32-bit (bbb#111)
* XXXX XXXXXXXXXXKXXXXXX xxxxxxxxxx011111 48-bit
* XXXX XXXXXXXXXXXXXXXX xxxxxxxxx0111111 64-bit
+ XXXX XXXXXXXXXXXXXXXX xnnnxxxxx1111111 (80+16™nnn)-bit, nnn#111
© XXXX XXXXXXXXXXXXXXXX 11 Ixxxxx 1111111 Reserved for 2192-bits
Byte Address: base+4 base+2 base

Given the code size and energy savings of a compressed format, we wanted to build in
support for a compressed format to the ISA encoding scheme rather than adding this as
an afterthought, but to allow simpler implementations we didn’t want to make the
compressed format mandatory. We also wanted to optionally allow longer instructions to
support experimentation and larger instruction-set extensions. Although our encoding
convention required a tighter encoding of the core RISC-V ISA, this has several beneficial

effects.

An implementation of the standard IMAFD ISA need only hold the most-significant 30

bits in instruction caches (a 6.25% saving). On instruction cache refills, any instructions

y encountered with either low bit clear should be recoded into illegal 30-bit instructions
EI before storing in the cache to preserve illegal-instruction exception behavior.

Perhaps more importantly, by condensing our base ISA into a subset of the 32-bit
instruction word, we leave more space available for non-standard and custom extensions.
In particular, the base RV32I ISA uses less than 1/8 of the encoding space in the 32-bit
instruction word. As described Chapter 35, an implementation that does not require
support for the standard compressed instruction extension can map 3 additional non-
conforming 30-bit instruction spaces into the 32-bit fixed-width format, while preserving
support for standard >32-bit instruction-set extensions. Further, if the implementation
also does not need instructions >32-bits in length, it can recover a further four major
opcodes for non-conforming extensions.

Encodings with bits [15:0] all zeros are defined as illegal instructions. These instructions are
considered to be of minimal length: 16 bits if any 16-bit instruction-set extension is present, otherwise
32 bits. The encoding with bits [ILEN-1:0] all ones is also illegal; this instruction is considered to be
ILEN bits long.

We consider it a feature that any length of instruction containing all zero bits is not legal,
as this quickly traps erroneous jumps into zeroed memory regions. Similarly, we also
reserve the instruction encoding containing all ones to be an illegal instruction, to catch
the other common pattern observed with unprogrammed non-volatile memory devices,
disconnected memory buses, or broken memory devices.

Software can rely on a naturally aligned 32-bit word containing zero to act as an illegal
Q instruction on all RISC-V implementations, to be used by software where an illegal
instruction is explicitly desired. Defining a corresponding known illegal value for all ones
is more difficult due to the variable-length encoding. Software cannot generally use the
illegal value of ILEN bits of all Is, as software might not know ILEN for the eventual target
machine (e.g., if software is compiled into a standard binary library used by many different
machines). Defining a 32-bit word of all ones as illegal was also considered, as all
machines must support a 32-bit instruction size, but this requires the instruction-fetch
unit on machines with ILEN >32 report an illegal-instruction exception rather than an
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access-fault exception when such an instruction borders a protection boundary,
complicating variable-instruction-length fetch and decode.

RISC-V base ISAs have either little-endian or big-endian memory systems, with the privileged
architecture further defining bi-endian operation. Instructions are stored in memory as a sequence of
16-bit little-endian parcels, regardless of memory system endianness. Parcels forming one instruction
are stored at increasing halfword addresses, with the lowest-addressed parcel holding the lowest-
numbered bits in the instruction specification.

We originally chose little-endian byte ordering for the RISC-V memory system because
little-endian systems are currently dominant commercially (all x86 systems; i0S, Android,
and Windows for ARM). A minor point is that we have also found little-endian memory
systems to be more natural for hardware designers. However, certain application areas,
such as IP networking, operate on big-endian data structures, and certain legacy code
bases have been built assuming big-endian processors, so we have defined big-endian and
bi-endian variants of RISC-V.

We have to fix the order in which instruction parcels are stored in memory, independent of
memory system endianness, to ensure that the length-encoding bits always appear first in
halfword address order. This allows the length of a variable-length instruction to be
quickly determined by an instruction-fetch unit by examining only the first few bits of the
first 16-bit instruction parcel.

We further make the instruction parcels themselves little-endian to decouple the

Q instruction encoding from the memory system endianness altogether. This design benefits
both software tooling and bi-endian hardware. Otherwise, for instance, a RISC-V
assembler or disassembler would always need to know the intended active endianness,
despite that in bi-endian systems, the endianness mode might change dynamically during
execution. In contrast, by giving instructions a fixed endianness, it is sometimes possible
for carefully written software to be endianness-agnostic even in binary form, much like
position-independent code.

The choice to have instructions be only little-endian does have consequences, however, for
RISC-V software that encodes or decodes machine instructions. Big-endian JIT compilers,
for example, must swap the byte order when storing to instruction memory.

Once we had decided to fix on a little-endian instruction encoding, this naturally led to
placing the length-encoding bits in the LSB positions of the instruction format to avoid
breaking up opcode fields.

1.6. Exceptions, Traps, and Interrupts

We use the term exception to refer to an unusual condition occurring at run time associated with an
instruction in the current RISC-V hart. We use the term interrupt to refer to an external asynchronous
event that may cause a RISC-V hart to experience an unexpected transfer of control. We use the term
trap to refer to the transfer of control to a trap handler caused by either an exception or an interrupt.

The instruction descriptions in following chapters describe conditions that can raise an exception
during execution. The general behavior of most RISC-V EEIs is that a trap to some handler occurs
when an exception is signaled on an instruction (except for floating-point exceptions, which, in the
standard floating-point extensions, do not cause traps). The manner in which interrupts are generated,
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routed to, and enabled by a hart depends on the EEIL

Dy Our use of "exception” and "trap" is compatible with that in the IEEE-754 floating-point
standard.

How traps are handled and made visible to software running on the hart depends on the enclosing
execution environment. From the perspective of software running inside an execution environment,
traps encountered by a hart at runtime can have four different effects:

Contained Trap

The trap is visible to, and handled by, software running inside the execution environment. For
example, in an EEI providing both supervisor and user mode on harts, an ECALL by a user-mode
hart will generally result in a transfer of control to a supervisor-mode handler running on the same
hart. Similarly, in the same environment, when a hart is interrupted, an interrupt handler will be
run in supervisor mode on the hart.

Requested Trap

The trap is a synchronous exception that is an explicit call to the execution environment requesting
an action on behalf of software inside the execution environment. An example is a system call. In
this case, execution may or may not resume on the hart after the requested action is taken by the
execution environment. For example, a system call could remove the hart or cause an orderly
termination of the entire execution environment.

Invisible Trap

The trap is handled transparently by the execution environment and execution resumes normally
after the trap is handled. Examples include emulating missing instructions, handling non-resident
page faults in a demand-paged virtual-memory system, or handling device interrupts for a
different job in a multiprogrammed machine. In these cases, the software running inside the
execution environment is not aware of the trap (we ignore timing effects in these definitions).

Fatal Trap

The trap represents a fatal failure and causes the execution environment to terminate execution.
Examples include failing a virtual-memory page-protection check or allowing a watchdog timer to
expire. Each EEI should define how execution is terminated and reported to an external
environment.

Table 2 shows the characteristics of each kind of trap.

Contained Requested  Invisible Fatal

Execution terminates No No' No Yes
Software is oblivious No No Yes Yes®
Handled by environment No Yes Yes Yes

Table 2 Characteristics of traps: 1) Termination may be requested. 2) Imprecise fatal traps might be
observable by software.

The EEI defines for each trap whether it is handled precisely, though the recommendation is to
maintain preciseness where possible. Contained and requested traps can be observed to be imprecise
by software inside the execution environment. Invisible traps, by definition, cannot be observed to be
precise or imprecise by software running inside the execution environment. Fatal traps can be
observed to be imprecise by software running inside the execution environment, if known-errorful
instructions do not cause immediate termination.
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Because this document describes unprivileged instructions, traps are rarely mentioned. Architectural
means to handle contained traps are defined in the privileged architecture manual, along with other
features to support richer EEIs. Unprivileged instructions that are defined solely to cause requested
traps are documented here. Invisible traps are, by their nature, out of scope for this document.
Instruction encodings that are not defined here and not defined by some other means may cause a
fatal trap.

1.7. UNSPECIFIED Behaviors and Values

The architecture fully describes what implementations must do and any constraints on what they may
do. In cases where the architecture intentionally does not constrain implementations, the term
UNSPECIFIED is explicitly used.

The term UNSPECIFIED refers to a behavior or value that is intentionally unconstrained. The
definition of these behaviors or values is open to extensions, platform standards, or implementations.
Extensions, platform standards, or implementation documentation may provide normative content to
further constrain cases that the base architecture defines as UNSPECIFIED.

Like the base architecture, extensions should fully describe allowable behavior and values and use the
term UNSPECIFIED for cases that are intentionally unconstrained. These cases may be constrained or
defined by other extensions, platform standards, or implementations.
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Chapter 2. RV32l Base Integer Instruction Set, Version 2.1
This chapter describes the RV32I base integer instruction set.

RV32I was designed to be sufficient to form a compiler target and to support modern
operating system environments. The ISA was also designed to reduce the hardware
required in a minimal implementation. RV32I contains 40 unique instructions, though a
simple implementation might cover the ECALL/EBREAK instructions with a single
SYSTEM hardware instruction that always traps and might be able to implement the
FENCE instruction as a NOP, reducing base instruction count to 38 total. RV32I can
emulate almost any other ISA extension (except the A extension, which requires additional

Q hardware support for atomicity).

In practice, a hardware implementation including the machine-mode privileged
architecture will also require the 6 CSR instructions.

Subsets of the base integer ISA might be useful for pedagogical purposes, but the base has
been defined such that there should be little incentive to subset a real hardware
implementation beyond omitting support for misaligned memory accesses and treating all
SYSTEM instructions as a single trap.

y The standard RISC-V assembly language syntax is documented in the Assembly
EI Programmer’s Manual (RISC-V Assembly Programmer’s Manual, n.d.).

74 Most of the commentary for RV32I also applies to the RV64I base.

2.1. Programmers' Model for Base Integer ISA

Table 2 shows the unprivileged state for the base integer ISA. For RV32I, the 32 X registers are each 32
bits wide, i.e., XLEN=32. Register x@ is hardwired with all bits equal to O. General purpose registers x1-
x31 hold values that various instructions interpret as a collection of Boolean values, or as two’s
complement signed binary integers or unsigned binary integers.

There is one additional unprivileged register: the program counter pc holds the address of the current
instruction.

Table 2. RISC-V base unprivileged integer register state.

XLEN-1 (0]
x0/zero
x1
x2
x3
x4
x5
x6
X7
x8
x9
x10
x11

x12
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XLEN-1 (0]
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
x23
x24
x25
x26
x27
x28
x29
x30
x31

XLEN

XLEN-1 0

pc
XLEN

There is no dedicated stack pointer or subroutine return address link register in the Base
Integer ISA; the instruction encoding allows any X register to be used for these purposes.
However, the standard software calling convention uses register X1 to hold the return
address for a call, with register x5 available as an alternate link register. The standard
calling convention uses register X2 as the stack pointer.

Hardware might choose to accelerate function calls and returns that use X1 or x5. See the
descriptions of the JAL and JALR instructions.

The optional compressed 16-bit instruction format is designed around the assumption
that x1 is the return address register and X2 is the stack pointer. Software using other
conventions will operate correctly but may have greater code size.

The number of available architectural registers can have large impacts on code size,
performance, and energy consumption. Although 16 registers would arguably be sufficient
for an integer ISA running compiled code, it is impossible to encode a complete ISA with 16
registers in 16-bit instructions using a 3-address format. Although a 2-address format
would be possible, it would increase instruction count and lower efficiency. We wanted to
avoid intermediate instruction sizes (such as Xtensa’s 24-bit instructions) to simplify base
hardware implementations, and once a 32-bit instruction size was adopted, it was
straightforward to support 32 integer registers. A larger number of integer registers also
helps performance on high-performance code, where there can be extensive use of loop
unrolling, software pipelining, and cache tiling.

For these reasons, we chose a conventional size of 32 integer registers for RV32I. Dynamic
register usage tends to be dominated by a few frequently accessed registers, and regfile
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implementations can be optimized to reduce access energy for the frequently accessed
registers (Tseng & Asanovié, 2000). The optional compressed 16-bit instruction format
mostly only accesses 8 registers and hence can provide a dense instruction encoding, while
additional instruction-set extensions could support a much larger register space (either
flat or hierarchical) if desired.

For resource-constrained embedded applications, we have defined the RV32E subset,
which only has 16 registers (Chapter 3).

2.2. Base Instruction Formats

In the base RV32I ISA, there are four core instruction formats (R/1/S/U), as shown in Base instruction
formats. All are a fixed 32 bits in length. The base ISA has IALIGN=32, meaning that instructions must
be aligned on a four-byte boundary in memory. An instruction-address-misaligned exception is
generated on a taken branch or unconditional jump if the target address is not IALIGN-bit aligned.
This exception is reported on the branch or jump instruction, not on the target instruction. No
instruction-address-misaligned exception is generated for a conditional branch that is not taken.

The alignment constraint for base ISA instructions is relaxed to a two-byte boundary when
instruction extensions with 16-bit lengths or other odd multiples of 16-bit lengths are
added (i.e., IALIGN=16).

/4

Instruction-address-misaligned exceptions are reported on the branch or jump that would
cause instruction misalignment to help debugging, and to simplify hardware design for
systems with IALIGN=32, where these are the only places where misalignment can occur.

The behavior upon decoding a reserved instruction is UNSPECIFIED.

Some platforms may require that opcodes reserved for standard use raise an illegal-
| y instruction exception. Other platforms may permit reserved opcode space be used for non-
conforming extensions.

The RISC-V ISA keeps the source (rsI and rs2) and destination (rd) registers at the same position in all
formats to simplify decoding. Except for the 5-bit immediates used in CSR instructions (Chapter 7),
immediates are always sign-extended, and are generally packed towards the leftmost available bits in
the instruction and have been allocated to reduce hardware complexity. In particular, the sign bit for
all immediates is always in bit 31 of the instruction to speed sign-extension circuitry.

31 2524 2019 1514 121 7 6 0
funct?7 rs2 rs1 funct3 rd opcode R-Type

31 2019 1514 121 7 6 0
imm[11:0] rs1 funct3 rd opcode [-Type

31 25 24 20 19 1514 1211 7 6 0
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-Type

31 1211 7 6 0
imm[31:12] rd opcode U-Type

RISC-V base instruction formats. Each immediate subfield is labeled with the bit position (imm[x]) in
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the immediate value being produced, rather than the bit position within the instruction’s immediate
field as is usually done.

Decoding register specifiers is usually on the critical paths in implementations, and so the
instruction format was chosen to keep all register specifiers at the same position in all
formats at the expense of having to move immediate bits across formats (a property
shared with RISC-IV aka. SPUR (Lee et al., 1989)).

In practice, most immediates are either small or require all XLEN bits. We chose an

Ely asymmetric immediate split (12 bits in regular instructions plus a special load-upper-
immediate instruction with 20 bits) to increase the opcode space available for regular
instructions.

Immediates are sign-extended because we did not observe a benefit to using zero-
extension for some immediates as in the MIPS ISA and wanted to keep the ISA as simple
as possible.

2.3. Immediate Encoding Variants

There are a further two variants of the instruction formats (B/J) based on the handling of immediates,
as shown in Base instruction formats immediate variants..

31 2524 20 19 1514 12 11 7 6 0
funct? rs2 rs1 funct3 rd opcode R-Type
31 2019 1514 12 11 7 6 0
imm[11:0] rs1 funct3 rd opcode I-Type
31 2524 20 19 1514 12 11 7 6 0
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-Type
31 30 25 24 20 19 15 14 12 11 8 7 6 0
t121 imm[10:5] rs2 rs1 | funct3 | imm[4:1] t’l’l:l opcode B-Type
31 12 11 7 6 0
imm[31:12] rd opcode U-Type
31 30 21 20 19 12 11 7 6 0
tZOj imm[10:1] t’l’lj imm[19:12] rd | opcode |J—Type

The only difference between the S and B formats is that the 12-bit immediate field is used to encode
branch offsets in multiples of 2 in the B format. Instead of shifting all bits in the instruction-encoded
immediate left by one in hardware as is conventionally done, the middle bits (imm[10:1]) and sign bit
stay in fixed positions, while the lowest bit in S format (inst[7]) encodes a high-order bit in B format.

Similarly, the only difference between the U and J formats is that the 20-bit immediate is shifted left
by 12 bits to form U immediates and by 1 bit to form ] immediates. The location of instruction bits in
the U and ] format immediates is chosen to maximize overlap with the other formats and with each
other.

Immediate types shows the immediates produced by each of the base instruction formats, and is
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labeled to show which instruction bit (inst[y]) produces each bit of the immediate value.

31 11 10 5 4 1 0
| —inst[31] — | inst[30:25] | inst[24:21] t201 |-immediate
Figure 1. Types of immediate produced by RISC-V instructions.
31 11 10 5 4 1 0
| —inst[31] — | inst[30:25] | inst[11:8] |[7]|S-immediate
31 12 11 10 5 4 1 0
| — inst[31] — |[7]| inst[30:25] | inst[11:8] | 0 |B—immediate
31 30 20 19 12 11 0
tB’lj inst[30:20] | inst[19:12] | 0 |U—immediate
31 20 19 12 11 10 5 4 1 0
| — inst[31] — | inst[19:12] t201 inst[30:25] inst[24:21] | 0 |J—immediate

The fields are labeled with the instruction bits used to construct their value. Sign extensions always

uses inst[31].

Sign-extension is one of the most critical operations on immediates (particularly for
XLEN>32), and in RISC-V the sign bit for all immediates is always held in bit 31 of the
instruction to allow sign-extension to proceed in parallel with instruction decoding.

Although more complex implementations might have separate adders for branch and

jump calculations and so would not benefit from keeping the location of immediate bits

y constant across types of instruction, we wanted to reduce the hardware cost of the
D simplest implementations. By rotating bits in the instruction encoding of B and ]
immediates instead of using dynamic hardware muxes to multiply the immediate by 2, we

reduce instruction signal fanout and immediate mux costs by around a factor of 2. The

scrambled immediate encoding will add negligible time to static or ahead-of-time
compilation. For dynamic generation of instructions, there is some small additional

overhead, but the most common short forward branches have straightforward immediate

encodings.

2.4. Integer Computational Instructions

Most integer computational instructions operate on XLEN bits of values held in the integer register file.
Integer computational instructions are either encoded as register-immediate operations using the I-
type format or as register-register operations using the R-type format. The destination is register rd for
both register-immediate and register-register instructions. No integer computational instructions

cause arithmetic exceptions.

We did not include special instruction-set support for overflow checks on integer
arithmetic operations in the base instruction set, as many overflow checks can be cheaply
implemented using RISC-V branches. Overflow checking for unsigned addition requires
Q only a single additional branch instruction after the addition: add t@, t1, t2; bltu

t0, t1, overflow.

For signed addition, if one operand’s sign is known, overflow checking requires only a
single branch after the addition: addi t@, t1, +imm; blt t@, t1, overflow. This
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covers the common case of addition with an immediate operand.

For general signed addition, three additional instructions after the addition are required,
leveraging the observation that the sum should be less than one of the operands if and
only if the other operand is negative.

add t@, t1, t2
slti t3, t2, 0
slt t4, to, t1
bne t3, t4, overflow

In RV64I, checks of 32-bit signed additions can be optimized further by comparing the
results of ADD and ADDW on the operands.

2.4.1. Integer Register-Immediate Instructions

31 20 19 15 14 12 11 7 6 0
imm[11:0] rsi funct3 rd opcode
12 5 3 5 7
|-immediate[11: src ADDI/SLTI[U] dest OP-IMM

0]
I-immediate[11:0] src ANDI/ORI/XORI dest OP-IMM

ADDI adds the sign-extended 12-bit immediate to register rsl. Arithmetic overflow is ignored and the
result is simply the low XLEN bits of the result. ADDI rd, rs], O is used to implement the MV rd, rsI
assembler pseudoinstruction.

SLTI (set less than immediate) places the value 1 in register rd if register rsI is less than the sign-
extended immediate when both are treated as signed numbers, else O is written to rd. SLTIU is similar
but compares the values as unsigned numbers (i.e., the immediate is first sign-extended to XLEN bits
then treated as an unsigned number). Note, SLTIU rd, rsl, I sets rd to 1 if rsI equals zero, otherwise sets
rd to O (assembler pseudoinstruction SEQZ rd, rs).

ANDI, ORI, XORI are logical operations that perform bitwise AND, OR, and XOR on register rsI and
the sign-extended 12-bit immediate and place the result in rd. Note, XORI rd, rs1, -1 performs a bitwise
logical inversion of register rsl (assembler pseudoinstruction NOT rd, rs).

31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] imm[4:0] rsi funct3 rd opcode
7 5 5 3 5 7
0 0 0O0O O 0O shamt[4:0] src SLLI dest OP-IMM
0O 00O O 0O 0O shamt[4:0] src SRLI dest OP-IMM
01 0 0O O 0O shamt[4:0] src SRAI dest OP-IMM

Shifts by a constant are encoded as a specialization of the I-type format. The operand to be shifted is in
rsl, and the shift amount is encoded in the lower 5 bits of the I-immediate field. The right shift type is
encoded in bit 30. SLLI is a logical left shift (zeros are shifted into the lower bits); SRLI is a logical
right shift (zeros are shifted into the upper bits); and SRAI is an arithmetic right shift (the original sign
bit is copied into the vacated upper bits).

31 12 11 7 6 0
imm[31:12] rd opcode
20 5 7
U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC
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LUI (load upper immediate) is used to build 32-bit constants and uses the U-type format. LUI places
the 32-bit U-immediate value into the destination register rd, filling in the lowest 12 bits with zeros.

AUIPC (add upper immediate to pc) is used to build pc-relative addresses and uses the U-type format.
AUIPC forms a 32-bit offset from the U-immediate, filling in the lowest 12 bits with zeros, adds this
offset to the address of the AUIPC instruction, then places the result in register rd.

The assembly syntax for lui and auipc does not represent the lower 12 bits of the U-
immediate, which are always zero.

The AUIPC instruction supports two-instruction sequences to access arbitrary offsets from
the PC for both control-flow transfers and data accesses. The combination of an AUIPC
and the 12-bit immediate in a JALR can transfer control to any 32-bit PC-relative address,

Ely while an AUIPC plus the 12-bit immediate offset in regular load or store instructions can
access any 32-bit PC-relative data address.

The current PC can be obtained by setting the U-immediate to O. Although a JAL +4
instruction could also be used to obtain the local PC (of the instruction following the JAL),
it might cause pipeline breaks in simpler microarchitectures or pollute BTB structures in
more complex microarchitectures.

2.4.2. Integer Register-Register Operations

RV32I defines several arithmetic R-type operations. All operations read the rsI and rs2 registers as
source operands and write the result into register rd. The funct? and funct3 fields select the type of
operation.

31 25 24 20 19 15 14 12 11 7 6 0
funct?7 rs2 rs1 funct3 rd opcode
7 5 5 3 5 7
0O 00O 0O 0O 0O src2 src ADD/SLT[U] dest OoP
0 0O OO0 0O 00O src2 src AND/OR/XOR dest OP
0O 00O 0O 0O 0O src2 src SLL/SRL dest OoP
01 0 0O 0O OO src2 src SUB/SRA dest OoP

ADD performs the addition of rsI and rs2. SUB performs the subtraction of rs2 from rsl. Overflows are
ignored and the low XLEN bits of results are written to the destination rd. SLT and SLTU perform
signed and unsigned compares respectively, writing 1 to rd if rsI < rs2, O otherwise. Note, SLTU rd, xO,
rs2 sets rd to 1 if rs2 is not equal to zero, otherwise sets rd to zero (assembler pseudoinstruction SNEZ
rd, rs). AND, OR, and XOR perform bitwise logical operations.

SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts on the value in register
rs1 by the shift amount held in the lower 5 bits of register rs2.

2.4.3. NOP Instruction

31 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 funct3 rd opcode
12 5 3 5 7
0 0 ADDI 0 OP-IMM

The NOP instruction does not change any architecturally visible state, except for advancing the pc and
incrementing any applicable performance counters. NOP is encoded as ADDI xO, xO, 0.
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NOPs can be used to align code segments to microarchitecturally significant address
boundaries, or to leave space for inline code modifications. Although there are many
possible ways to encode a NOP, we define a canonical NOP encoding to allow
microarchitectural optimizations as well as for more readable disassembly output. The
other NOP encodings are made available for HINT Instructions.

Dy ADDI was chosen for the NOP encoding as this is most likely to take fewest resources to
execute across a range of systems (if not optimized away in decode). In particular, the
instruction only reads one register. Also, an ADDI functional unit is more likely to be
available in a superscalar design as adds are the most common operation. In particular,
address-generation functional units can execute ADDI using the same hardware needed
for base+offset address calculations, while register-register ADD or logical/shift
operations require additional hardware.

2.5. Control Transfer Instructions

RV32I provides two types of control transfer instructions: unconditional jumps and conditional
branches. Control transfer instructions in RV32I do not have architecturally visible delay slots.

If an instruction access-fault or instruction page-fault exception occurs on the target of a jump or
taken branch, the exception is reported on the target instruction, not on the jump or branch
instruction.

2.5.1. Unconditional Jumps

The jump and link (JAL) instruction uses the J-type format, where the J-immediate encodes a signed
offset in multiples of 2 bytes. The offset is sign-extended and added to the address of the jump
instruction to form the jump target address. Jumps can therefore target a *1 MiB range. JAL stores the
address of the instruction following the jump (‘pc'+4) into register rd. The standard software calling
convention uses 'x1' as the return address register and 'x5' as an alternate link register.

The alternate link register supports calling millicode routines (e.g., those to save and
restore registers in compressed code) while preserving the regular return address register.

Dy The register x5 was chosen as the alternate link register as it maps to a temporary in the
standard calling convention, and has an encoding that is only one bit different than the
regular link register.

Plain unconditional jumps (assembler pseudoinstruction J) are encoded as a JAL with rd=x@.

31 30 21 20 19 12 1 7 6 0
k20]| imm[10:1] k‘l1]| imm[19:12] | rd | opcode
1 10 1 8 5 7
offset[20:1] dest JAL

The indirect jump instruction JALR (jump and link register) uses the I-type encoding. The target
address is obtained by adding the sign-extended 12-bit I-immediate to the register rsl, then setting the
least-significant bit of the result to zero. The address of the instruction following the jump (pc+4) is
written to register rd. Register X0 can be used as the destination if the result is not required.

31 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 funct3 rd opcode
12 5 3 5 7
offset[11:0] base 0 dest JALR
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The unconditional jump instructions all use PC-relative addressing to help support
position-independent code. The JALR instruction was defined to enable a two-instruction
sequence to jump anywhere in a 32-bit absolute address range. A LUI instruction can first
load rs1 with the upper 20 bits of a target address, then JALR can add in the lower bits.
Similarly, AUIPC then JALR can jump anywhere in a 32-bit pc-relative address range.

Note that the JALR instruction does not treat the 12-bit immediate as multiples of 2 bytes,
unlike the conditional branch instructions. This avoids one more immediate format in
hardware. In practice, most uses of JALR will have either a zero immediate or be paired
with a LUI or AUIPC, so the slight reduction in range is not significant.

Dy Clearing the least-significant bit when calculating the JALR target address both simplifies
the hardware slightly and allows the low bit of function pointers to be used to store
auxiliary information. Although there is potentially a slight loss of error checking in this
case, in practice jumps to an incorrect instruction address will usually quickly raise an
exception.

When used with a base rsl=x@, JALR can be used to implement a single instruction
subroutine call to the lowest or highest address region from anywhere in the address
space, which could be used to implement fast calls to a small runtime library.
Alternatively, an ABI could dedicate a general-purpose register to point to a library
elsewhere in the address space.

The JAL and JALR instructions will generate an instruction-address-misaligned exception if the target
address is not aligned to a four-byte boundary.

Instruction-address-misaligned exceptions are not possible on machines that support
|y extensions with 16-bit aligned instructions, such as the compressed instruction-set
extension, C.

Return-address prediction stacks are a common feature of high-performance instruction-fetch units,
but require accurate detection of instructions used for procedure calls and returns to be effective. For
RISC-V, hints as to the instructions' usage are encoded implicitly via the register numbers used. A JAL
instruction should push the return address onto a return-address stack (RAS) only when rd is 'x1' or x5.
JALR instructions should push/pop a RAS as shown in Table 3.

Table 3. Return-address stack prediction hints encoded in the register operands of a JALR instruction.

rd is x1/x5 rslisx1/x5  rd=rsl RAS action

No No — None

No Yes — Pop

Yes No — Push

Yes Yes No  Pop, then push
Yes Yes Yes  Push

Some other ISAs added explicit hint bits to their indirect-jump instructions to guide
return-address stack manipulation. We use implicit hinting tied to register numbers and
the calling convention to reduce the encoding space used for these hints.

Ely When two different link registers (x1 and x5) are given as rsl and rd, then the RAS is both
popped and pushed to support coroutines. If rs1 and rd are the same link register (either
x1 or x5), the RAS is only pushed to enable macro-op fusion of the sequences: 1ui ra,
imm20; jalr ra, imm12(ra)_ and _auipc ra, imm2@; jalr ra, imm12(ra)
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2.5.2. Conditional Branches

All branch instructions use the B-type instruction format. The 12-bit B-immediate encodes signed
offsets in multiples of 2 bytes. The offset is sign-extended and added to the address of the branch
instruction to give the target address. The conditional branch range is =4 KiB.

31 25 24 20 19 15 14 12 11 7 6 0
imm[12]10:5] | rs2 | rs1 | funct3 | imm[4:1]11] | opcode
7 5 5 3 5 7
offset[12]10:5] src2 srcl BEQ/BNE offset[4:1|11] BRANCH
offset[12(10:5] src2 srcl BLT[U] offset[4:1(11] BRANCH
offset[12{10:5] src2 src BGE[U] offset[4:1]11] BRANCH

Branch instructions compare two registers. BEQ and BNE take the branch if registers rsI and rs2 are
equal or unequal respectively. BLT and BLTU take the branch if rsI is less than rs2, using signed and
unsigned comparison respectively. BGE and BGEU take the branch if rsI is greater than or equal to rs2,
using signed and unsigned comparison respectively. Note, BGT, BGTU, BLE, and BLEU can be
synthesized by reversing the operands to BLT, BLTU, BGE, and BGEU, respectively.

y Signed array bounds may be checked with a single BLTU instruction, since any negative
EI index will compare greater than any nonnegative bound.

Software should be optimized such that the sequential code path is the most common path, with less-
frequently taken code paths placed out of line. Software should also assume that backward branches
will be predicted taken and forward branches as not taken, at least the first time they are encountered.
Dynamic predictors should quickly learn any predictable branch behavior.

Unlike some other architectures, the RISC-V jump (JAL with rd=x@) instruction should always be used
for unconditional branches instead of a conditional branch instruction with an always-true condition.
RISC-V jumps are also PC-relative and support a much wider offset range than branches, and will not
pollute conditional-branch prediction tables.

The conditional branches were designed to include arithmetic comparison operations
between two registers (as also done in PA-RISC, Xtensa, and MIPS R6), rather than use
condition codes (x86, ARM, SPARC, PowerPC), or to only compare one register against
zero (Alpha, MIPS), or two registers only for equality (MIPS). This design was motivated by
the observation that a combined compare-and-branch instruction fits into a regular
pipeline, avoids additional condition code state or use of a temporary register, and reduces
static code size and dynamic instruction fetch traffic. Another point is that comparisons
against zero require non-trivial circuit delay (especially after the move to static logic in
advanced processes) and so are almost as expensive as arithmetic magnitude compares.
Another advantage of a fused compare-and-branch instruction is that branches are
observed earlier in the front-end instruction stream, and so can be predicted earlier. There

Q is perhaps an advantage to a design with condition codes in the case where multiple
branches can be taken based on the same condition codes, but we believe this case to be
relatively rare.

We considered but did not include static branch hints in the instruction encoding. These
can reduce the pressure on dynamic predictors, but require more instruction encoding
space and software profiling for best results, and can result in poor performance if
production runs do not match profiling runs.

We considered but did not include conditional moves or predicated instructions, which can
effectively replace unpredictable short forward branches. Conditional moves are the
simpler of the two, but are difficult to use with conditional code that might cause
exceptions (memory accesses and floating-point operations). Predication adds additional
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flag state to a system, additional instructions to set and clear flags, and additional
encoding overhead on every instruction. Both conditional move and predicated
instructions add complexity to out-of-order microarchitectures, adding an implicit third
source operand due to the need to copy the original value of the destination architectural
register into the renamed destination physical register if the predicate is false. Also, static
compile-time decisions to use predication instead of branches can result in lower
performance on inputs not included in the compiler training set, especially given that
unpredictable branches are rare, and becoming rarer as branch prediction techniques
improve.

We note that various microarchitectural techniques exist to dynamically convert
unpredictable short forward branches into internally predicated code to avoid the cost of
flushing pipelines on a branch mispredict (Heil & Smith, 1996), (Klauser et al., 1998), (Kim
et al, 2005) and have been implemented in commercial processors (Sinharoy et al., 2011).
The simplest techniques just reduce the penalty of recovering from a mispredicted short
forward branch by only flushing instructions in the branch shadow instead of the entire
fetch pipeline, or by fetching instructions from both sides using wide instruction fetch or
idle instruction fetch slots. More complex techniques for out-of-order cores add internal
predicates on instructions in the branch shadow, with the internal predicate value written
by the branch instruction, allowing the branch and following instructions to be executed
speculatively and out-of-order with respect to other code.

The conditional branch instructions will generate an instruction-address-misaligned exception if the
target address is not aligned to a four-byte boundary and the branch condition evaluates to true. If the
branch condition evaluates to false, the instruction-address-misaligned exception will not be raised.

Instruction-address-misaligned exceptions are not possible on machines that support
|y| extensions with 16-bit aligned instructions, such as the compressed instruction-set
extension, C.

2.6. Load and Store Instructions

RV32I is a load-store architecture, where only load and store instructions access memory and
arithmetic instructions only operate on CPU registers. RV32I provides a 32-bit address space that is
byte-addressed. The EEI will define what portions of the address space are legal to access with which
instructions (e.g, some addresses might be read only, or support word access only). Loads with a
destination of x@ must still raise any exceptions and cause any other side effects even though the load
value is discarded.

The EEI will define whether the memory system is little-endian or big-endian. In RISC-V, endianness
is byte-address invariant.

In a system for which endianness is byte-address invariant, the following property holds: if
a byte is stored to memory at some address in some endianness, then a byte-sized load
from that address in any endianness returns the stored value.

In a little-endian configuration, multibyte stores write the least-significant register byte at

Q the lowest memory byte address, followed by the other register bytes in ascending order of
their significance. Loads similarly transfer the contents of the lesser memory byte
addresses to the less-significant register bytes.

In a big-endian configuration, multibyte stores write the most-significant register byte at
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the lowest memory byte address, followed by the other register bytes in descending order of
their significance. Loads similarly transfer the contents of the greater memory byte
addresses to the less-significant register bytes.

31 20 19 15 14 12 11 7 6 0
imm[11:0] rsi funct3 rd opcode
12 5 3 5 7
offset[11:0] base width dest LOAD
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] rs2 rsi funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base width offset[4:0] STORE

Load and store instructions transfer a value between the registers and memory. Loads are encoded in
the I-type format and stores are S-type. The effective address is obtained by adding register rsl to the
sign-extended 12-bit offset. Loads copy a value from memory to register rd. Stores copy the value in
register rs2 to memory.

The LW instruction loads a 32-bit value from memory into rd. LH loads a 16-bit value from memory,
then sign-extends to 32-bits before storing in rd. LHU loads a 16-bit value from memory but then zero
extends to 32-bits before storing in rd. LB and LBU are defined analogously for 8-bit values. The SW,
SH, and SB instructions store 32-bit, 16-bit, and 8-bit values from the low bits of register rs2 to
memory.

Regardless of EEI, loads and stores whose effective addresses are naturally aligned shall not raise an
address-misaligned exception. Loads and stores whose effective address is not naturally aligned to the
referenced datatype (i.e., the effective address is not divisible by the size of the access in bytes) have
behavior dependent on the EEL

An EEI may guarantee that misaligned loads and stores are fully supported, and so the software
running inside the execution environment will never experience a contained or fatal address-
misaligned trap. In this case, the misaligned loads and stores can be handled in hardware, or via an
invisible trap into the execution environment implementation, or possibly a combination of hardware
and invisible trap depending on address.

An EEI may not guarantee misaligned loads and stores are handled invisibly. In this case, loads and
stores that are not naturally aligned may either complete execution successfully or raise an exception.
The exception raised can be either an address-misaligned exception or an access-fault exception. For a
memory access that would otherwise be able to complete except for the misalignment, an access-fault
exception can be raised instead of an address-misaligned exception if the misaligned access should
not be emulated, e.g, if accesses to the memory region have side effects. When an EEI does not
guarantee misaligned loads and stores are handled invisibly, the EEI must define if exceptions caused
by address misalignment result in a contained trap (allowing software running inside the execution
environment to handle the trap) or a fatal trap (terminating execution).

Misaligned accesses are occasionally required when porting legacy code, and help
performance on applications when using any form of packed-SIMD extension or handling
externally packed data structures. Our rationale for allowing EEIs to choose to support
misaligned accesses via the reqular load and store instructions is to simplify the addition
£2} of misaligned hardware support. One option would have been to disallow misaligned
accesses in the base ISAs and then provide some separate ISA support for misaligned
accesses, either special instructions to help software handle misaligned accesses or a new
hardware addressing mode for misaligned accesses. Special instructions are difficult to
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use, complicate the ISA, and often add new processor state (e.g., SPARC VIS align address
offset register) or complicate access to existing processor state (e.g., MIPS LWL/LWR
partial register writes). In addition, for loop-oriented packed-SIMD code, the extra
overhead when operands are misaligned motivates software to provide multiple forms of
loop depending on operand alignment, which complicates code generation and adds to
loop startup overhead. New misaligned hardware addressing modes take considerable
space in the instruction encoding or require very simplified addressing modes (e.g.,
register indirect only).

Even when misaligned loads and stores complete successfully, these accesses might run extremely
slowly depending on the implementation (e.g., when implemented via an invisible trap). Furthermore,
whereas naturally aligned loads and stores are guaranteed to execute atomically, misaligned loads and
stores might not, and hence require additional synchronization to ensure atomicity.

We do not mandate atomicity for misaligned accesses so execution environment
implementations can use an invisible machine trap and a software handler to handle
Dy some or all misaligned accesses. If hardware misaligned support is provided, software can
exploit this by simply using reqgular load and store instructions. Hardware can then
automatically optimize accesses depending on whether runtime addresses are aligned.

2.7. Memory Ordering Instructions

31 28 27 26 25 24 23 22 21 20 19 15 14 12 11 7T 6 0
fm P1 |PO|PR [PW| SI [SO|SR[SW rsl funct3 rd opecode
4 1 11 1 1 1 1 1 5 3 5 7
FM 0 FENCE 0 MISC-MEM

The FENCE instruction is used to order device I/O and memory accesses as viewed by other RISC-V
harts and external devices or coprocessors. Any combination of device input (I), device output (O),
memory reads (R), and memory writes (W) may be ordered with respect to any combination of the
same. Informally, no other RISC-V hart or external device can observe any operation in the successor
set following a FENCE before any operation in the predecessor set preceding the FENCE. Chapter 17
provides a precise description of the RISC-V memory consistency model.

The FENCE instruction also orders memory reads and writes made by the hart as observed by memory
reads and writes made by an external device. However, FENCE does not order observations of events
made by an external device using any other signaling mechanism.

A device might observe an access to a memory location via some external communication
mechanism, e.g., a memory-mapped control register that drives an interrupt signal to an
interrupt controller. This communication is outside the scope of the FENCE ordering

Dy mechanism and hence the FENCE instruction can provide no guarantee on when a change
in the interrupt signal is visible to the interrupt controller. Specific devices might provide
additional ordering guarantees to reduce software overhead but those are outside the
scope of the RISC-V memory model.

The EEI will define what I/O operations are possible, and in particular, which memory addresses when
accessed by load and store instructions will be treated and ordered as device input and device output
operations respectively rather than memory reads and writes. For example, memory-mapped I/O
devices will typically be accessed with uncached loads and stores that are ordered using the I and O
bits rather than the R and W bits. Instruction-set extensions might also describe new I/O instructions
that will also be ordered using the I and O bits in a FENCE.
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Table 4. Fence mode encoding

m field Mnemonic Meanin
g
0000 none Normal Fence
1000 TSO With FENCE RW,RW: exclude write-to-read ordering; otherwise: Reserved for
future use.
other Reserved for future use.

The fence mode field fm defines the semantics of the FENCE. A FENCE with fm=0000 orders all memory
operations in its predecessor set before all memory operations in its successor set.

The FENCE.TSO instruction is encoded as a FENCE instruction with fm=1000, predecessor=RW, and
successor=RW. FENCE. TS0 orders all load operations in its predecessor set before all memory operations
in its successor set, and all store operations in its predecessor set before all store operations in its
successor set. This leaves non-AMO store operations in the FENCE.TSO" s predecessor set unordered with
non-AMO loads in its successor set.

y Because FENCE RW,RW imposes a superset of the orderings that FENCE.TSO imposes, it
EI is correct to ignore the fm field and implement FENCE.TSO as FENCE RW,RW.

The unused fields in the FENCE instructions--rsl and rd--are reserved for finer-grain fences in future
extensions. For forward compatibility, base implementations shall ignore these fields, and standard
software shall zero these fields. Likewise, many fm and predecessor/successor set settings in Table 4
are also reserved for future use. Base implementations shall treat all such reserved configurations as
normal fences with fm=0000, and standard software shall use only non-reserved configurations.

We chose a relaxed memory model to allow high performance from simple machine
implementations and from likely future coprocessor or accelerator extensions. We
separate out I/0 ordering from memory R/W ordering to avoid unnecessary serialization

Q within a device-driver hart and also to support alternative non-memory paths to control
added coprocessors or I/O devices. Simple implementations may additionally ignore the
predecessor and successor fields and always execute a conservative fence on all
operations.

2.8. Environment Call and Breakpoints

SYSTEM instructions are used to access system functionality that might require privileged access and
are encoded using the I-type instruction format. These can be divided into two main classes: those that
atomically read-modify-write control and status registers (CSRs), and all other potentially privileged
instructions. CSR instructions are described in Chapter 7, and the base unprivileged instructions are
described in the following section.

The SYSTEM instructions are defined to allow simpler implementations to always trap to a
Q single software trap handler. More sophisticated implementations might execute more of
each system instruction in hardware.

31 20 19 15 14 12 11 7 6 0
func12 Y funct3 rd opcode
12 5 3 5 7
ECALL 0 PRIV 0 SYSTEM
EBREAK 0 PRIV 0 SYSTEM

These two instructions cause a precise requested trap to the supporting execution environment.
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The ECALL instruction is used to make a service request to the execution environment. The EEI will
define how parameters for the service request are passed, but usually these will be in defined locations
in the integer register file.

The EBREAK instruction is used to return control to a debugging environment.

ECALL and EBREAK were previously named SCALL and SBREAK. The instructions have
| y the same functionality and encoding, but were renamed to reflect that they can be used
more generally than to call a supervisor-level operating system or debugger.

EBREAK was primarily designed to be used by a debugger to cause execution to stop and
fall back into the debugger. EBREAK is also used by the standard gcc compiler to mark
code paths that should not be executed.

Another use of EBREAK is to support "semihosting’, where the execution environment
includes a debugger that can provide services over an alternate system call interface built
around the EBREAK instruction. Because the RISC-V base ISAs do not provide more than
one EBREAK instruction, RISC-V semihosting uses a special sequence of instructions to
distinguish a semihosting EBREAK from a debugger inserted EBREAK.

slli x@, x@, 0x1f # Entry NOP
ebreak # Break to debugger
srai x@, x@, 7 # NOP encoding the semihosting call number 7

Note that these three instructions must be 32-bit-wide instructions, i.e., they mustn’t be
among the compressed 16-bit instructions described in Chapter 26.

The shift NOP instructions are still considered available for use as HINTS.

Semihosting is a form of service call and would be more naturally encoded as an ECALL
using an existing ABI, but this would require the debugger to be able to intercept ECALLs,
which is a newer addition to the debug standard. We intend to move over to using ECALLs
with a standard ABI, in which case, semihosting can share a service ABI with an existing
standard.

We note that ARM processors have also moved to using SVC instead of BKPT for
semihosting calls in newer designs.

2.9. HINT Instructions

RV32I reserves a large encoding space for HINT instructions, which are usually used to communicate
performance hints to the microarchitecture. Like the NOP instruction, HINTs do not change any
architecturally visible state, except for advancing the pc and any applicable performance counters.
Implementations are always allowed to ignore the encoded hints.

Most RV32I HINTs are encoded as integer computational instructions with rd=x0. The other RV32I
HINTSs are encoded as FENCE instructions with a null predecessor or successor set and with fm=0.

These HINT encodings have been chosen so that simple implementations can ignore
Dy HINTs altogether, and instead execute a HINT as a reqular instruction that happens not
to mutate the architectural state. For example, ADD is a HINT if the destination register is

The RISC-V Instruction Set Manual Volume I | © RISC-V



2.9. HINT Instructions | Page 36

X0; the five-bit rsl and rs2 fields encode arguments to the HINT. However, a simple
implementation can simply execute the HINT as an ADD of rsl and rs2 that writes X0,
which has no architecturally visible effect.

As another example, a FENCE instruction with a zero pred field and a zero fm field is a
HINT; the succ, rsl, and rd fields encode the arguments to the HINT. A simple
implementation can simply execute the HINT as a FENCE that orders the null set of prior
memory accesses before whichever subsequent memory accesses are encoded in the succ
field. Since the intersection of the predecessor and successor sets is null, the instruction
imposes no memory orderings, and so it has no architecturally visible effect.

Table 5 lists all RV32I HINT code points. 91% of the HINT space is reserved for standard HINTs. The
remainder of the HINT space is designated for custom HINTSs: no standard HINTs will ever be defined
in this subspace.

We anticipate standard hints to eventually include memory-system spatial and temporal
Q locality hints, branch prediction hints, thread-scheduling hints, security tags, and
instrumentation flags for simulation/emulation.

Table 5. RV32I HINT instructions.

Instruction Constraints Code Points Purpose
LUI rd=x0 220
AUIPC rd=x0 220
ADDI rd=x0, and either rs1#x0 or 217 1
imm#0
ANDI rd=x0 917 Designated for future
standard use
ORI rd=x0 217
XORI rd=x0 217
ADD rd=x0, rsI=x0 210 39
ADD rd=X0, rsI=x0, rs2#x2-x5 28
ADD rd=x0, rs1=x0, rs2=x2-x5 4 (rs2=x2) NTL.P1
(rs2=x3) NTL.PALL
(rs2=x4) NTL.S1
(rs2=x5) NTL.ALL
SUB rd=x0 210
AND rd=x0 210
OR rd=x0 210
XOR rd=x0 210
SLL rd=x0 210
SRL rd=x0 210
SRA rd=x0 210 Designated for future
FENCE rd=x0, rs1#x0, fm=0, and either 210 _ g3 standard use
pred=0 or succ=0
FENCE rd#x@, rs1=x0, fm=0, and either 210 g3
pred=0 or succ=0
FENCE rd=rs1=x0, fm=0, pred=0, 15
succ#0
FENCE rd=rs1=x0, fm=0, pred=W, 15
succ=0
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Instruction

FENCE

SLTI
SLTIU
SLLI
SRLI
SRAI
SLT
SLTU

Constraints

rd=rsl=x0, fm=0, pred=W,
succ=0

rd=x0

rd=x0

rd=x@

rd=x0

rd=x0

rd=x@

rd=x0
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Code Points Purpose

1 PAUSE

Designated for custom use
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Chapter 3. RV32E and RV64E Base Integer Instruction Sets, Version 2.0

This chapter describes a proposal for the RV32E and RV64E base integer instruction sets, designed for
microcontrollers in embedded systems. RV32E and RV64E are reduced versions of RV32I and RV64]I,
respectively: the only change is to reduce the number of integer registers to 16. This chapter only
outlines the differences between RV32E/RV64E and RV32I/RV64I, and so should be read after
Chapter 2 and Chapter 4.

RV32E was designed to provide an even smaller base core for embedded microcontrollers.
There is also interest in RV64E for microcontrollers within large SoC designs, and to
Dy reduce context state for highly threaded 64-bit processors.

Unless otherwise stated, standard extensions compatible with RV32I and RV64I are also
compatible with RV32E and RV64E, respectively.

3.1. RV32E and RV64E Programmers’ Model

RV32E and RV64E reduce the integer register count to 16 general-purpose registers, (x8-x15), where
X0 is a dedicated zero register.

We have found that in the small RV32I core implementations, the upper 16 registers
consume around one quarter of the total area of the core excluding memories, thus their
removal saves around 25% core area with a corresponding core power reduction.

3.2. RV32E and RV64E Instruction Set Encoding

RV32E and RV64E use the same instruction-set encoding as RV32I and RV64I respectively, except
that only registers x0-x15 are provided. All encodings specifying the other registers x16-x31 are
reserved.

The previous draft of this chapter made all encodings using the x16-x31 registers

y available as custom. This version takes a more conservative approach, making these

EI reserved so that they can be allocated between custom space or new standard encodings
at a later date.
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Chapter 4. RV64| Base Integer Instruction Set, Version 2.1

This chapter describes the RV64I base integer instruction set, which builds upon the RV32I variant
described in Chapter 2. This chapter presents only the differences with RV32I, so should be read in
conjunction with the earlier chapter.

4. Register State

RV64I widens the integer registers and supported user address space to 64 bits (XLEN=64 in Table 2).

4.2. Integer Computational Instructions

Most integer computational instructions operate on XLEN-bit values. Additional instruction variants
are provided to manipulate 32-bit values in RV64I, indicated by a 'W' suffix to the opcode. These "*W"
instructions ignore the upper 32 bits of their inputs and always produce 32-bit signed values, sign-
extending them to 64 bits, i.e. bits XLEN-1 through 31 are equal.

The compiler and calling convention maintain an invariant that all 32-bit values are held
in a sign-extended format in 64-bit registers. Even 32-bit unsigned integers extend bit 31
into bits 63 through 32. Consequently, conversion between unsigned and signed 32-bit
integers is a no-op, as is conversion from a signed 32-bit integer to a signed 64-bit integer.

Dy Existing 64-bit wide SLTU and unsigned branch compares still operate correctly on
unsigned 32-bit integers under this invariant. Similarly, existing 64-bit wide logical
operations on 32-bit sign-extended integers preserve the sign-extension property. A few
new instructions (ADD[I|W/SUBW/SxxW) are required for addition and shifts to ensure
reasonable performance for 32-bit values.

4.2]1. Integer Register-Immediate Instructions

31 20 19 15 14 12 11 7 6 0
imm[11:0] rsi funct3 rd opcode
12 5 3 5 7
|-immediate[11:0] src ADDIW dest OP-IMM-32

ADDIW is an RV64I instruction that adds the sign-extended 12-bit immediate to register rsl and
produces the proper sign-extension of a 32-bit result in rd. Overflows are ignored and the result is the
low 32 bits of the result sign-extended to 64 bits. Note, ADDIW rd, rsl, O writes the sign-extension of
the lower 32 bits of register rsI into register rd (assembler pseudoinstruction SEXT.W).

31 26 25 20 19 15 14 12 11 7 6 0
imm[11:6] imm[5:0] rsi funct3 rd opcode
6 6 5 3 5 7
000000 shamt[5:0] src SLLI dest OP-IMM
000000 shamt[5:0] src SRLI dest OP-IMM
010000 shamt[5:0] src SRAI dest OP-IMM

Shifts by a constant are encoded as a specialization of the I-type format using the same instruction
opcode as RV32I. The operand to be shifted is in rsl, and the shift amount is encoded in the lower 6
bits of the I-immediate field for RV64I. The right shift type is encoded in bit 30. SLLI is a logical left
shift (zeros are shifted into the lower bits); SRLI is a logical right shift (zeros are shifted into the upper
bits); and SRAI is an arithmetic right shift (the original sign bit is copied into the vacated upper bits).
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31 26 25 24 20 19 15 14 12 11 7 6 0
imm[11:6] [5] imm[4:0] rsi funct3 rd opcode
6 1 5 5 3 5 7
000000 0 shamt[4:0] src SLLIW dest OP-IMM-32
000000 0 shamt[4:0] src SRLIW dest OP-IMM-32
010000 0 shamt[4:0] src SRAIW dest OP-IMM-32

SLLIW, SRLIW, and SRAIW are RV64I-only instructions that are analogously defined but operate on
32-bit values and sign-extend their 32-bit results to 64 bits. SLLIW, SRLIW, and SRAIW encodings
with imm[5] # O are reserved.

Previously, SLLIW, SRLIW, and SRAIW with imm[5] # O were defined to cause illegal-
| yl instruction exceptions, whereas now they are marked as reserved. This is a backwards-
compatible change.

31 12 11 7 6 0
imm[31:12] rd opcode
20 5 7
U-immediate[31:12] dest LUI
U-immediate[31:12] dest AUIPC

LUI (load upper immediate) uses the same opcode as RV32I. LUI places the 32-bit U-immediate into
register rd, filling in the lowest 12 bits with zeros. The 32-bit result is sign-extended to 64 bits.

AUIPC (add upper immediate to pc) uses the same opcode as RV321. AUIPC is used to build pc-relative
addresses and uses the U-type format. AUIPC forms a 32-bit offset from the U-immediate, filling in
the lowest 12 bits with zeros, sign-extends the result to 64 bits, adds it to the address of the AUIPC
instruction, then places the result in register rd.

y Note that the set of address offsets that can be formed by pairing LUI with LD, AUIPC with
EI JALR, etc. in RV641 is [-231-211, 231911 1]

4.2.2. Integer Register-Register Operations

31 25 24 20 19 15 14 12 11 7 6 0
funct?7 rs2 rs1 funct3 rd opcode
7 5 5 3 5 7
000000 src2 src SLL/SRL dest OoP
010000 src2 src SRA dest OoP
000000 src2 src ADDW dest OP-32
000000 src2 src SLLW/SRLW dest OP-32
010000 src2 src SUBW/SRAW dest OP-32

ADDW and SUBW are RV64I-only instructions that are defined analogously to ADD and SUB but
operate on 32-bit values and produce signed 32-bit results. Overflows are ignored, and the low 32-bits
of the result is sign-extended to 64-bits and written to the destination register.

SLL, SRL, and SRA perform logical left, logical right, and arithmetic right shifts on the value in register
rsI by the shift amount held in register rs2. In RV64I, only the low 6 bits of rs2 are considered for the
shift amount.

SLLW, SRLW, and SRAW are RV64I-only instructions that are analogously defined but operate on 32-
bit values and sign-extend their 32-bit results to 64 bits. The shift amount is given by rs2[4:0].
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4.3. Load and Store Instructions

RV64I extends the address space to 64 bits. The execution environment will define what portions of
the address space are legal to access.

31 20 19 15 14 12 11 7 6 0
imm[11:0] rsi funct3 rd opcode
12 5 3 5 7
offset[11:0] base width dest LOAD
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] rs2 rsi funct3 imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base width offset[4:0] STORE

The LD instruction loads a 64-bit value from memory into register rd for RV64I.

The LW instruction loads a 32-bit value from memory and sign-extends this to 64 bits before storing it
in register rd for RV641. The LWU instruction, on the other hand, zero-extends the 32-bit value from
memory for RV641. LH and LHU are defined analogously for 16-bit values, as are LB and LBU for 8-bit
values. The SD, SW, SH, and SB instructions store 64-bit, 32-bit, 16-bit, and 8-bit values from the low
bits of register rs2 to memory respectively.

4.4, HINT Instructions

All instructions that are microarchitectural HINTs in RV32I (see Chapter 2) are also HINTs in RV641.
The additional computational instructions in RV64Il expand both the standard and custom HINT
encoding spaces.

Table 6 lists all RV641 HINT code points. 91% of the HINT space is reserved for standard HINTs, but
none are presently defined. The remainder of the HINT space is designated for custom HINTSs; no
standard HINTs will ever be defined in this subspace.

Table 6. RV64I HINT instructions.

Instruction Constraints Code Points Purpose
LUI rd=x0 220
AUIPC rd=x0 220
ADDI rd=x0, and either rsl1#x0 or 2171
imm#0
ANDI rd=x0 2" Designated for future standard
ORI rd=x0 217 use
XORI rd=x0 217
ADDIW rd=x0 217
ADD rd=x0, rs1#x0 210 39
ADD rd=x0, rs1=x0, rs2#x2-x5 28
ADD rd=x0, rs1=x0, rs2=x2-x5 4 rs2=x2) NTL.P1

rs2=x4) NTL.S1

(
(rs2=x3) NTL.PALL
(
(rs2=x5) NTL.ALL
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Instruction
SUB
AND
OR
XOR
SLL
SRL
SRA
ADDW
SUBW
SLLW
SRLW
SRAW
FENCE

FENCE

FENCE

FENCE

FENCE

SLTI
SLTIU
SLLI
SRLI
SRAI
SLLIW
SRLIW
SRAIW
SLT
SLTU

Constraints
rd=x0
rd=x0
rd=x0
rd=x0
rd=x0
rd=x0
rd=x0
rd=x0
rd=x0
rd=x0
rd=x0
rd=x0

rd=x0, rs1#x0,fm=0, and either
pred=0 or succ=0

rd#x0, rs1=x0, fm=0, and either
pred=0 or succ=0

rd=rs1=x0, fm=0, pred=0,
succ#0

pred=0 or succ=0, pred#W,
succ =0

rd=rsl=x0, fm=0, pred=W,
succ=0

rd=x0
rd=x0
rd=x0
rd=x0
rd=x0
rd=x0
rd=x0
rd=x0
rd=x0
rd=x0
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Code Points

210
210
210
210
210
210
210
210
210
210
210

210

210_63

210_63

15

15

Purpose

Designated for future standard
use

PAUSE

Designated for custom use
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Chapter 5. RV128I Base Integer Instruction Set, Version 1.7

There is only one mistake that can be made in computer design that is difficult to
recover from—not having enough address bits for memory addressing and memory
management.

— Bell and Strecker, ISCA-3, 1976.

This chapter describes RV128lI, a variant of the RISC-V ISA supporting a flat 128-bit address space. The
variant is a straightforward extrapolation of the existing RV32I and RV64I designs.

The primary reason to extend integer register width is to support larger address spaces. It
is not clear when a flat address space larger than 64 bits will be required. At the time of
writing, the fastest supercomputer in the world as measured by the Top500 benchmark
had over 1PB of DRAM, and would require over 50 bits of address space if all the DRAM
resided in a single address space. Some warehouse-scale computers already contain even
larger quantities of DRAM, and new dense solid-state non-volatile memories and fast
interconnect technologies might drive a demand for even larger memory spaces. Exascale
systems research is targeting I00PB memory systems, which occupy 57 bits of address

Q space. At historic rates of growth, it is possible that greater than 64 bits of address space
might be required before 2030. History suggests that whenever it becomes clear that more
than 64 bits of address space is needed, architects will repeat intensive debates about
alternatives to extending the address space, including segmentation, 96-bit address
spaces, and software workarounds, until, finally, flat 128-bit address spaces will be
adopted as the simplest and best solution. We have not frozen the RV128 spec at this time,
as there might be need to evolve the design based on actual usage of 128-bit address
spaces.

RV128I builds upon RV64I in the same way RV64I builds upon RV32I, with integer registers extended
to 128 bits (i.e, XLEN=128). Most integer computational instructions are unchanged as they are
defined to operate on XLEN bits. The RV64I "*W" integer instructions that operate on 32-bit values in
the low bits of a register are retained but now sign extend their results from bit 31 to bit 127. A new set
of "*D" integer instructions are added that operate on 64-bit values held in the low bits of the 128-bit
integer registers and sign extend their results from bit 63 to bit 127. The "*D" instructions consume two
major opcodes (OP-IMM-64 and OP-64) in the standard 32-bit encoding.

To improve compatibility with RV64, in a reverse of how RV32 to RV64 was handled, we

y might change the decoding around to rename RV641 ADD as a 64-bit ADDD, and add a

EI 128-bit ADDQ in what was previously the OP-64 major opcode (now renamed the OP-128
major opcode).

Shifts by an immediate (SLLI/SRLI/SRAI) are now encoded using the low 7 bits of the I-immediate,
and variable shifts (SLL/SRL/SRA) use the low 7 bits of the shift amount source register.

A LDU (load double unsigned) instruction is added using the existing LOAD major opcode, along with
new LQ and SQ instructions to load and store quadword values. SQ is added to the STORE major
opcode, while LQ is added to the MISC-MEM major opcode.

The floating-point instruction set is unchanged, although the 128-bit Q floating-point extension can
now support FMV.X.Q and FMV.Q.X instructions, together with additional FCVT instructions to and
from the T (128-bit) integer format.
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Chapter 6. "Zifencei" Extension for Instruction-Fetch Fence, Version 2.0

This chapter defines the "Zifencei" extension, which includes the FENCE.I instruction that provides
explicit synchronization between writes to instruction memory and instruction fetches on the same
hart. Currently, this instruction is the only standard mechanism to ensure that stores visible to a hart
will also be visible to its instruction fetches.

We considered but did not include a "store instruction word" instruction as in (Tremblay et

y al, 2000). JIT compilers may generate a large trace of instructions before a single

EI FENCE.I, and amortize any instruction cache snooping/invalidation overhead by writing
translated instructions to memory regions that are known not to reside in the I-cache.

The FENCE.I instruction was designed to support a wide variety of implementations. A
simple implementation can flush the local instruction cache and the instruction pipeline
when the FENCE.I is executed. A more complex implementation might snoop the
instruction (data) cache on every data (instruction) cache miss, or use an inclusive unified
private L2 cache to invalidate lines from the primary instruction cache when they are
being written by a local store instruction. If instruction and data caches are kept coherent
in this way, or if the memory system consists of only uncached RAMs, then just the fetch
pipeline needs to be flushed at a FENCE.IL

The FENCE.I instruction was previously part of the base I instruction set. Two main issues
are driving moving this out of the mandatory base, although at time of writing it is still the
only standard method for maintaining instruction-fetch coherence.

First, it has been recognized that on some systems, FENCE.I will be expensive to
implement and alternate mechanisms are being discussed in the memory model task
group. In particular, for designs that have an incoherent instruction cache and an
incoherent data cache, or where the instruction cache refill does not snoop a coherent

Q data cache, both caches must be completely flushed when a FENCE.I instruction is
encountered. This problem is exacerbated when there are multiple levels of I and D cache
in front of a unified cache or outer memory system.

Second, the instruction is not powerful enough to make available at user level in a Unix-
like operating system environment. The FENCE.I only synchronizes the local hart, and the
OS can reschedule the user hart to a different physical hart after the FENCE.I This would
require the OS to execute an additional FENCE.I as part of every context migration. For
this reason, the standard Linux ABI has removed FENCE.I from user-level and now
requires a system call to maintain instruction-fetch coherence, which allows the OS to
minimize the number of FENCE.I executions required on current systems and provides
forward-compatibility with future improved instruction-fetch coherence mechanisms.

Future approaches to instruction-fetch coherence under discussion include providing
more restricted versions of FENCE.I that only target a given address specified in rsl,
and/or allowing software to use an ABI that relies on machine-mode cache-maintenance

operations.
31 20 19 15 14 12 11 7 6 0
funct12 rs1 funct3 rd opcode
12 5 3 5 7
0 0 FENCE.I 0 MISC-MEM
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The FENCE.I instruction is used to synchronize the instruction and data streams. RISC-V does not
guarantee that stores to instruction memory will be made visible to instruction fetches on a RISC-V
hart until that hart executes a FENCE.I instruction. A FENCE.I instruction ensures that a subsequent
instruction fetch on a RISC-V hart will see any previous data stores already visible to the same RISC-V
hart. FENCE.I does not ensure that other RISC-V harts' instruction fetches will observe the local hart’s
stores in a multiprocessor system. To make a store to instruction memory visible to all RISC-V harts,
the writing hart also has to execute a data FENCE before requesting that all remote RISC-V harts
execute a FENCE.L

The unused fields in the FENCE.I instruction, imm[11:0], rs1, and rd, are reserved for finer-grain fences
in future extensions. For forward compatibility, base implementations shall ignore these fields, and
standard software shall zero these fields.

Because FENCE.I only orders stores with a hart’s own instruction fetches, application code

—y should only rely upon FENCE.I if the application thread will not be migrated to a different

J hart. The EEI can provide mechanisms for efficient multiprocessor instruction-stream
synchronization.
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Chapter 7. "Zicsr", Extension for Control and Status Register (CSR) Instructions,
Version 2.0

RISC-V defines a separate address space of 4096 Control and Status registers associated with each
hart. This chapter defines the full set of CSR instructions that operate on these CSRs.

While CSRs are primarily used by the privileged architecture, there are several uses in
unprivileged code including for counters and timers, and for floating-point status.

| y| The counters and timers are no longer considered mandatory parts of the standard base
ISAs, and so the CSR instructions required to access them have been moved out of Chapter
2 into this separate chapter.

7.1. CSR Instructions

All CSR instructions atomically read-modify-write a single CSR, whose CSR specifier is encoded in the
12-bit csr field of the instruction held in bits 31-20. The immediate forms use a 5-bit zero-extended
immediate encoded in the rsl field.

31 20 19 15 14 12 11 7 6 0

csr rs1 funct3 rd opcode

12 5 3 5 7
source/dest source CSRRW dest SYSTEM
source/dest source CSRRS dest SYSTEM
source/dest source CSRRC dest SYSTEM
source/dest uimm[4:0] CSRRWI dest SYSTEM
source/dest uimm[4:0] CSRRSI dest SYSTEM
source/dest uimm[4:0] CSRRCI dest SYSTEM

The CSRRW (Atomic Read/Write CSR) instruction atomically swaps values in the CSRs and integer
registers. CSRRW reads the old value of the CSR, zero-extends the value to XLEN bits, then writes it to
integer register rd. The initial value in rsl is written to the CSR. If rd=x0, then the instruction shall not
read the CSR and shall not cause any of the side effects that might occur on a CSR read.

The CSRRS (Atomic Read and Set Bits in CSR) instruction reads the value of the CSR, zero-extends the
value to XLEN bits, and writes it to integer register rd. The initial value in integer register rsl is treated
as a bit mask that specifies bit positions to be set in the CSR. Any bit that is high in rsI will cause the
corresponding bit to be set in the CSR, if that CSR bit is writable.

The CSRRC (Atomic Read and Clear Bits in CSR) instruction reads the value of the CSR, zero-extends
the value to XLEN bits, and writes it to integer register rd. The initial value in integer register rsl is
treated as a bit mask that specifies bit positions to be cleared in the CSR. Any bit that is high in rsI will
cause the corresponding bit to be cleared in the CSR, if that CSR bit is writable.

For both CSRRS and CSRRGC, if rsI1=x0, then the instruction will not write to the CSR at all, and so shall
not cause any of the side effects that might otherwise occur on a CSR write, nor raise illegal-
instruction exceptions on accesses to read-only CSRs. Both CSRRS and CSRRC always read the
addressed CSR and cause any read side effects regardless of rsI and rd fields. Note that if rsI specifies a
register other than x@, and that register holds a zero value, the instruction will not action any
attendant per-field side effects, but will action any side effects caused by writing to the entire CSR.

A CSRRW with rsI1=x0 will attempt to write zero to the destination CSR.

The CSRRWI, CSRRSI, and CSRRCI variants are similar to CSRRW, CSRRS, and CSRRC respectively,
except they update the CSR using an XLEN-bit value obtained by zero-extending a 5-bit unsigned
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immediate (uimm[4:0]) field encoded in the rs1 field instead of a value from an integer register. For
CSRRSI and CSRRCI, if the uimm[4:0] field is zero, then these instructions will not write to the CSR,
and shall not cause any of the side effects that might otherwise occur on a CSR write, nor raise illegal-
instruction exceptions on accesses to read-only CSRs. For CSRRWI, if rd=x0, then the instruction shall
not read the CSR and shall not cause any of the side effects that might occur on a CSR read. Both
CSRRSI and CSRRCI will always read the CSR and cause any read side effects regardless of rd and rsI
fields.

Table 7. Conditions determining whether a CSR instruction reads or writes the specified CSR.

Register operand

Instruction rd is X0 rslis x@ Reads CSR Writes CSR
CSRRW Yes - No Yes
CSRRW No - Yes Yes
CSRRS/CSRRC - Yes Yes No
CSRRS/CSRRC - No Yes Yes

Immediate operand

Instruction rdisx@ uimm = O  Reads CSR Writes CSR
CSRRWI Yes - No Yes
CSRRWI No - Yes Yes
CSRRSI/CSRRCI - Yes Yes No
CSRRSI/CSRRCI - No Yes Yes

Table 7 summarizes the behavior of the CSR instructions with respect to whether they read and/or
write the CSR.

In addition to side effects that occur as a consequence of reading or writing a CSR, individual fields
within a CSR might have side effects when written. The CSRRW][I] instructions action side effects for
all such fields within the written CSR. The CSRRS[I] an CSRRC[I] instructions only action side effects
for fields for which the rsI or uimm argument has at least one bit set corresponding to that field.

As of this writing, no standard CSRs have side effects on field writes. Hence, whether a
Dy standard CSR access has any side effects can be determined solely from the opcode.

Defining CSRs with side effects on field writes is not recommended.

For any event or consequence that occurs due to a CSR having a particular value, if a write to the CSR
gives it that value, the resulting event or consequence is said to be an indirect effect of the write.
Indirect effects of a CSR write are not considered by the RISC-V ISA to be side effects of that write.

An example of side effects for CSR accesses would be if reading from a specific CSR causes

a light bulb to turn on, while writing an odd value to the same CSR causes the light to turn

off. Assume writing an even value has no effect. In this case, both the read and write have

side effects controlling whether the bulb is lit, as this condition is not determined solely

from the CSR value. (Note that after writing an odd value to the CSR to turn off the light,

_y then reading to turn the light on, writing again the same odd value causes the light to turn

J off again. Hence, on the last write, it is not a change in the CSR value that turns off the
light.)

On the other hand, if a bulb is rigged to light whenever the value of a particular CSR is
odd, then turning the light on and off is not considered a side effect of writing to the CSR
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but merely an indirect effect of such writes.

More concretely, the RISC-V privileged architecture defined in Volume II specifies that
certain combinations of CSR values cause a trap to occur. When an explicit write to a CSR
creates the conditions that trigger the trap, the trap is not considered a side effect of the
write but merely an indirect effect.

Standard CSRs do not have any side effects on reads. Standard CSRs may have side effects
on writes. Custom extensions might add CSRs for which accesses have side effects on
either reads or writes.

Some CSRs, such as the instructions-retired counter, instret, may be modified as side effects of
instruction execution. In these cases, if a CSR access instruction reads a CSR, it reads the value prior to
the execution of the instruction. If a CSR access instruction writes such a CSR, the write is done
instead of the increment. In particular, a value written to instret by one instruction will be the value
read by the following instruction.

The assembler pseudoinstruction to read a CSR, CSRR rd, csr, is encoded as CSRRS rd, csr, x0. The
assembler pseudoinstruction to write a CSR, CSRW csr, rs], is encoded as CSRRW xO, csr, rs1, while
CSRWI csr, uimm, is encoded as CSRRWI xO, csr, uimm.

Further assembler pseudoinstructions are defined to set and clear bits in the CSR when the old value
is not required: CSRS/CSRC csr, rsl; CSRSI/CSRCI csr, uimm.

7.1.1. CSR Access Ordering

Each RISC-V hart normally observes its own CSR accesses, including its implicit CSR accesses, as
performed in program order. In particular, unless specified otherwise, a CSR access is performed after
the execution of any prior instructions in program order whose behavior modifies or is modified by
the CSR state and before the execution of any subsequent instructions in program order whose
behavior modifies or is modified by the CSR state. Furthermore, an explicit CSR read returns the CSR
state before the execution of the instruction, while an explicit CSR write suppresses and overrides any
implicit writes or modifications to the same CSR by the same instruction.

Likewise, any side effects from an explicit CSR access are normally observed to occur synchronously
in program order. Unless specified otherwise, the full consequences of any such side effects are
observable by the very next instruction, and no consequences may be observed out-of-order by
preceding instructions. (Note the distinction made earlier between side effects and indirect effects of
CSR writes.)

For the RVWMO memory consistency model (Chapter 17), CSR accesses are weakly ordered by default,
so other harts or devices may observe CSR accesses in an order different from program order. In
addition, CSR accesses are not ordered with respect to explicit memory accesses, unless a CSR access
modifies the execution behavior of the instruction that performs the explicit memory access or unless
a CSR access and an explicit memory access are ordered by either the syntactic dependencies defined
by the memory model or the ordering requirements defined by the Memory-Ordering PMAs section in
Volume II of this manual. To enforce ordering in all other cases, software should execute a FENCE
instruction between the relevant accesses. For the purposes of the FENCE instruction, CSR read
accesses are classified as device input (1), and CSR write accesses are classified as device output (O).

Informally, the CSR space acts as a weakly ordered memory-mapped I/O region, as
| yl defined by the Memory-Ordering PMAs section in Volume II of this manual. As a result,
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the order of CSR accesses with respect to all other accesses is constrained by the same
mechanisms that constrain the order of memory-mapped I/0 accesses to such a region.

These CSR-ordering constraints are imposed to support ordering main memory and
memory-mapped /0 accesses with respect to CSR accesses that are visible to, or affected
by, devices or other harts. Examples include the time, cycle, and mcycle CSRs, in
addition to CSRs that reflect pending interrupts, like mip and sip. Note that implicit reads
of such CSRs (e.g., taking an interrupt because of a change in mip) are also ordered as
device input.

Most CSRs (including, e.g., the fcsr) are not visible to other harts; their accesses can be
freely reordered in the global memory order with respect to FENCE instructions without
violating this specification.

The hardware platform may define that accesses to certain CSRs are strongly ordered, as defined by
the Memory-Ordering PMAs section in Volume II of this manual. Accesses to strongly ordered CSRs
have stronger ordering constraints with respect to accesses to both weakly ordered CSRs and accesses
to memory-mapped I/O regions.

y The rules for the reordering of CSR accesses in the global memory order should probably
EI be moved to Chapter 17 concerning the RVWMO memory consistency model.
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Chapter 8. "Zicntr" and "Zihpm" Extensions for Counters, Version 2.0

RISC-V ISAs provide a set of up to thirty-two 64-bit performance counters and timers that are
accessible via unprivileged XLEN-bit read-only CSR registers 0xC00—0xC1F (when XLEN=32, the
upper 32 bits are accessed via CSR registers 0xC80—0xCIF). These counters are divided between the
"Zicntr" and "Zihpm" extensions.

8.1. "Zicntr" Extension for Base Counters and Timers

The Zicntr standard extension comprises the first three of these counters (CYCLE, TIME, and
INSTRET), which have dedicated functions (cycle count, real-time clock, and instructions retired,
respectively). The Zicntr extension depends on the Zicsr extension.

We recommend provision of these basic counters in implementations as they are essential
for basic performance analysis, adaptive and dynamic optimization, and to allow an
application to work with real-time streams. Additional counters in the separate Zihpm

Q extension can help diagnose performance problems and these should be made accessible
from user-level application code with low overhead.

Some execution environments might prohibit access to counters, for example, to impede
timing side-channel attacks.

31 20 19 15 14 12 11 7 6 0
csr rs1 funct3 rd opcode
12 5 3 5 7
RDCYCLE[H] 0 CSRRS dest SYSTEM
RDTIME[H] 0 CSRRS dest SYSTEM
RDINSTRET[H] 0 CSRRS dest SYSTEM

For base ISAs with XLEN>64, CSR instructions can access the full 64-bit CSRs directly. In particular,
the RDCYCLE, RDTIME, and RDINSTRET pseudoinstructions read the full 64 bits of the cycle, time,
and instret counters.

The counter pseudoinstructions are mapped to the read-only csrrs rd, counter, x@
Q canonical form, but the other read-only CSR instruction forms (based on
CSRRC/CSRRSI/CSRRCI) are also legal ways to read these CSRs.

For base ISAs with XLEN=32, the Zicntr extension enables the three 64-bit read-only counters to be
accessed in 32-bit pieces. The RDCYCLE, RDTIME, and RDINSTRET pseudoinstructions provide the
lower 32 bits, and the RDCYCLEH, RDTIMEH, and RDINSTRETH pseudoinstructions provide the
upper 32 bits of the respective counters.

We required the counters be 64 bits wide, even when XLEN=32, as otherwise it is very
difficult for software to determine if values have overflowed. For a low-end
implementation, the upper 32 bits of each counter can be implemented using software

CQ} counters incremented by a trap handler triggered by overflow of the lower 32 bits. The
sample code given below shows how the full 64-bit width value can be safely read using the
individual 32-bit width pseudoinstructions.

The RDCYCLE pseudoinstruction reads the low XLEN bits of the cycle CSR which holds a count of
the number of clock cycles executed by the processor core on which the hart is running from an
arbitrary start time in the past. RDCYCLEH is only present when XLEN=32 and reads bits 63-32 of the
same cycle counter. The underlying 64-bit counter should never overflow in practice. The rate at
which the cycle counter advances will depend on the implementation and operating environment.
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The execution environment should provide a means to determine the current rate (cycles/second) at
which the cycle counter is incrementing.

RDCYCLE is intended to return the number of cycles executed by the processor core, not
the hart. Precisely defining what is a "core" is difficult given some implementation choices
(e.g, AMD Bulldozer). Precisely defining what is a "clock cycle” is also difficult given the
range of implementations (including software emulations), but the intent is that
RDCYCLE is used for performance monitoring along with the other performance counters.
In particular, where there is one hart/core, one would expect cycle-count/instructions-
retired to measure CPI for a hart.

Cores don’t have to be exposed to software at all, and an implementor might choose to
pretend multiple harts on one physical core are running on separate cores with one
hart/core, and provide separate cycle counters for each hart. This might make sense in a
simple barrel processor (e.g., CDC 6600 peripheral processors) where inter-hart timing
interactions are non-existent or minimal.

Where there is more than one hart/core and dynamic multithreading, it is not generally
possible to separate out cycles per hart (especially with SMT). It might be possible to
define a separate performance counter that tried to capture the number of cycles a
particular hart was running, but this definition would have to be very fuzzy to cover all the
possible threading implementations. For example, should we only count cycles for which

Q any instruction was issued to execution for this hart, and/or cycles any instruction retired,
or include cycles this hart was occupying machine resources but couldn’t execute due to
stalls while other harts went into execution? Likely, "all of the above" would be needed to
have understandable performance stats. This complexity of defining a per-hart cycle
count, and also the need in any case for a total per-core cycle count when tuning
multithreaded code led to just standardizing the per-core cycle counter, which also
happens to work well for the common single hart/core case.

Standardizing what happens during "sleep" is not practical given that what "sleep" means
is not standardized across execution environments, but if the entire core is paused
(entirely clock-gated or powered-down in deep sleep), then it is not executing clock cycles,
and the cycle count shouldn’t be increasing per the spec. There are many details, e.g.,
whether clock cycles required to reset a processor after waking up from a power-down
event should be counted, and these are considered execution-environment-specific details.

Even though there is no precise definition that works for all platforms, this is still a useful
facility for most platforms, and an imprecise, common, "usually correct” standard here is
better than no standard. The intent of RDCYCLE was primarily performance
monitoring/tuning, and the specification was written with that goal in mind.

The RDTIME pseudoinstruction reads the low XLEN bits of the "time" CSR, which counts wall-clock
real time that has passed from an arbitrary start time in the past. RDTIMEH is only present when
XLEN=32 and reads bits 63-32 of the same real-time counter. The underlying 64-bit counter
increments by one with each tick of the real-time clock, and, for realistic real-time clock frequencies,
should never overflow in practice. The execution environment should provide a means of determining
the period of a counter tick (seconds/tick). The period should be constant within a small error bound.
The environment should provide a means to determine the accuracy of the clock (i.e.,, the maximum
relative error between the nominal and actual real-time clock periods).

Q} On some simple platforms, cycle count might represent a valid implementation of
RDTIME, in which case RDTIME and RDCYCLE may return the same result.
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It is difficult to provide a strict mandate on clock period given the wide variety of possible
implementation platforms. The maximum error bound should be set based on the
requirements of the platform.

The real-time clocks of all harts must be synchronized to within one tick of the real-time clock.

As with other architectural mandates, it suffices to appear "as if" harts are synchronized to
within one tick of the real-time clock, i.e., software is unable to observe that there is a
greater delta between the real-time clock values observed on two harts.

The RDINSTRET pseudoinstruction reads the low XLEN bits of the instret CSR, which counts the
number of instructions retired by this hart from some arbitrary start point in the past. RDINSTRETH
is only present when XLEN=32 and reads bits 63-32 of the same instruction counter. The underlying
64-bit counter should never overflow in practice.

Q Instructions that cause synchronous exceptions, including ECALL and EBREAK, are not
considered to retire and hence do not increment the instret CSR.

The following code sequence will read a valid 64-bit cycle counter value into x3:x2, even if the counter
overflows its lower half between reading its upper and lower halves.

again:
rdcycleh x3
rdcycle x2
rdcycleh x4
bne x3, x4, again

Example 1. Sample code for reading the 64-bit cycle counter when XLEN=32.

8.2. "Zihpm" Extension for Hardware Performance Counters

The Zihpm extension comprises up to 29 additional unprivileged 64-bit hardware performance
counters, hpmcounter3-hpmcounter31. When XLEN=32, the upper 32 bits of these performance
counters are accessible via additional CSRs hpmcounter3h- hpmcounter31h. The Zihpm extension
depends on the Zicsr extension.

In some applications, it is important to be able to read multiple counters at the same
instant in time. When run under a multitasking environment, a user thread can suffer a
context switch while attempting to read the counters. One solution is for the user thread to
read the real-time counter before and after reading the other counters to determine if a

Q context switch occurred in the middle of the sequence, in which case the reads can be
retried. We considered adding output latches to allow a user thread to snapshot the
counter values atomically, but this would increase the size of the user context, especially
for implementations with a richer set of counters.

The implemented number and width of these additional counters, and the set of events they count, is
platform-specific. Accessing an unimplemented or ill-configured counter may cause an illegal-
instruction exception or may return a constant value.

The execution environment should provide a means to determine the number and width of the
implemented counters, and an interface to configure the events to be counted by each counter.
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For execution environments implemented on RISC-V privileged platforms, the privileged
architecture manual describes privileged CSRs controlling access by lower privileged
modes to these counters, and to set the events to be counted.

Alternative execution environments (e.g., user-level-only software performance models)
may provide alternative mechanisms to configure the events counted by the performance
counters.

It would be useful to eventually standardize event settings to count ISA-level metrics, such
as the number of floating-point instructions executed for example, and possibly a few
common microarchitectural metrics, such as "L1 instruction cache misses"
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Chapter 9. "Zihintntl" Extension for Non-Temporal Locality Hints, Version 1.0

The NTL instructions are HINTs that indicate that the explicit memory accesses of the immediately
subsequent instruction (henceforth "target instruction") exhibit poor temporal locality of reference.
The NTL instructions do not change architectural state, nor do they alter the architecturally visible
effects of the target instruction. Four variants are provided:

The NTL.PI instruction indicates that the target instruction does not exhibit temporal locality within
the capacity of the innermost level of private cache in the memory hierarchy. NTL.P1 is encoded as
ADD x0, x0, x2.

The NTL.PALL instruction indicates that the target instruction does not exhibit temporal locality
within the capacity of any level of private cache in the memory hierarchy. NTL.PALL is encoded as
ADD x0, x0, x3.

The NTL.S1 instruction indicates that the target instruction does not exhibit temporal locality within
the capacity of the innermost level of shared cache in the memory hierarchy. NTL.S1 is encoded as
ADD xO, x0, x4.

The NTL.ALL instruction indicates that the target instruction does not exhibit temporal locality
within the capacity of any level of cache in the memory hierarchy. NTL.ALL is encoded as ADD xO, xO,
x5.

The NTL instructions can be used to avoid cache pollution when streaming data or
traversing large data structures, or to reduce latency in producer-consumer interactions.

A microarchitecture might use the NTL instructions to inform the cache replacement
policy, or to decide which cache to allocate into, or to avoid cache allocation altogether.
For example, NTL.P1 might indicate that an implementation should not allocate a line in a
private L1 cache, but should allocate in L2 (whether private or shared). In another
implementation, NTL.P1 might allocate the line in L1, but in the least-recently used state.

NTL.ALL will typically inform implementations not to allocate anywhere in the cache
|y hierarchy. Programmers should use NTL.ALL for accesses that have no exploitable
temporal locality.

Like any HINTSs, these instructions may be freely ignored. Hence, although they are
described in terms of cache-based memory hierarchies, they do not mandate the provision
of caches.

Some implementations might respect these HINTs for some memory accesses but not
others: e.g., implementations that implement LR/SC by acquiring a cache line in the
exclusive state in L1 might ignore NTL instructions on LR and SC, but might respect NTL
instructions for AMOs and regular loads and stores.

Table 8 lists several software use cases and the recommended NTL variant that portable software—i.e.,
software not tuned for any specific implementation’s memory hierarchy—should use in each case.

Table 8. Recommended NTL variant for portable software to employ in various scenarios.

Scenario Recommended NTL variant
Access to a working set between and in size NTL.P1

Access to a working set between and in size NTL.PALL

Access to a working set greater than in size NTL.S1
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Scenario Recommended NTL variant
Access with no exploitable temporal locality (e.g., streaming) NTL.ALL
Access to a contended synchronization variable NTL.PALL

The working-set sizes listed in Table 8 are not meant to constrain implementers' cache-
| y sizing decisions. Cache sizes will obviously vary between implementations, and so software
writers should only take these working-set sizes as rough guidelines.

Table 9 lists several sample memory hierarchies and recommends how each NTL variant maps onto
each cache level. The table also recommends which NTL variant that implementation-tuned software
should use to avoid allocating in a particular cache level. For example, for a system with a private L1
and a shared L2, it is recommended that NTL.P1 and NTL.PALL indicate that temporal locality cannot
be exploited by the L1, and that NTL.S1 and NTL.ALL indicate that temporal locality cannot be
exploited by the L2. Furthermore, software tuned for such a system should use NTL.P1 to indicate a
lack of temporal locality exploitable by the L1, or should use NTL.ALL indicate a lack of temporal
locality exploitable by the L2.

If the C extension is provided, compressed variants of these HINTs are also provided: C.NTL.P1 is
encoded as C.ADD x0, x2; C.NTL.PALL is encoded as C.ADD xO, x3; C.NTL.S1 is encoded as C.ADD xO,
x4;and C.NTL.ALL is encoded as C.ADD xO, x5.

The NTL instructions affect all memory-access instructions except the cache-management
instructions in the Zicbom extension.

As of this writing, there are no other exceptions to this rule, and so the NTL instructions
affect all memory-access instructions defined in the base ISAs and the A, F, D, Q, C, and V
y standard extensions, as well as those defined within the hypervisor extension in Volume II.

E’ The NTL instructions can affect cache-management operations other than those in the
Zichom extension. For example, NTL.PALL followed by CBO.ZERO might indicate that the
line should be allocated in L3 and zeroed, but not allocated in L1 or L2.
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Table 9. Mapping of NTL variants to various memory hierarchies.

Memory hierarchy Recommended mapping of NTL Recommended NTL variant for
variant to actual cache level explicit cache management
P1 PALL S1 ALL L1 L2 L3 L4/L5

Common Scenarios

No caches - none

Private L1 only L1 L1 L1 L1 ALL
Private L1; shared L2 L1 L1 L2 L2 P1 ALL --- -
Private L1; shared L2/L3 L1 L1 L2 L3 P1 S1 ALL ---
Private L1/L2 L1 L2 L2 L2 P1 ALL
Private L1/L2; shared L3 L1 L2 L3 L3 P1 PALL ALL -
Private L1/L2; shared L3/L4 L1 L2 L3 L4 P1 PALL S1 ALL

Uncommon Scenarios

Private L1/L2/L3; shared L4 L1 L3 L4 L4 P1 P1 PALL ALL
Private L1; shared L2/L3/L4 L1 L1 L2 L4 P1 S1 ALL ALL
Private L1/L2; shared L3/L4/L5 L1 L2 L3 L5 P1 PALL S1 ALL
Private L1/L2/L3; shared L4/L5 L1 L3 L4 L5 P1 P1 PALL ALL

When an NTL instruction is applied to a prefetch hint in the Zicbop extension, it indicates that a
cache line should be prefetched into a cache that is outer from the level specified by the NTL.

For example, in a system with a private L1 and shared L2, NTL.P1 followed by
PREFETCH.R might prefetch into L2 with read intent.

y To prefetch into the innermost level of cache, do not prefix the prefetch instruction with an
EI NTL instruction.

In some systems, NTL.ALL followed by a prefetch instruction might prefetch into a cache
or prefetch buffer internal to a memory controller.

Software is discouraged from following an NTL instruction with an instruction that does not explicitly
access memory. Nonadherence to this recommendation might reduce performance but otherwise has
no architecturally visible effect.

In the event that a trap is taken on the target instruction, implementations are discouraged from
applying the NTL to the first instruction in the trap handler. Instead, implementations are
recommended to ignore the HINT in this case.

If an interrupt occurs between the execution of an NTL instruction and its target
instruction, execution will normally resume at the target instruction. That the NTL
instruction is not reexecuted does not change the semantics of the program.

Dy Some implementations might prefer not to process the NTL instruction until the target
instruction is seen (e.g., so that the NTL can be fused with the memory access it modifies).
Such implementations might preferentially take the interrupt before the NTL, rather than
between the NTL and the memory access.

Q Since the NTL instructions are encoded as ADDs, they can be used within LR/SC loops
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without voiding the forward-progress guarantee. But, since using other loads and stores
within an LR/SC loop does void the forward-progress guarantee, the only reason to use an
NTL within such a loop is to modify the LR or the SC.
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Chapter 10. "Zihintpause" Extension for Pause Hint, Version 2.0

The PAUSE instruction is a HINT that indicates the current hart’s rate of instruction retirement
should be temporarily reduced or paused. The duration of its effect must be bounded and may be
zero.

Software can use the PAUSE instruction to reduce energy consumption while executing
spin-wait code sequences. Multithreaded cores might temporarily relinquish execution
resources to other harts when PAUSE is executed. It is recommended that a PAUSE
instruction generally be included in the code sequence for a spin-wait loop.

A future extension might add primitives similar to the x86 MONITOR/MWAIT
instructions, which provide a more efficient mechanism to wait on writes to a specific
memory location. However, these instructions would not supplant PAUSE. PAUSE is more
appropriate when polling for non-memory events, when polling for multiple events, or
when software does not know precisely what events it is polling for.

The duration of a PAUSE instruction’s effect may vary significantly within and among
implementations. In typical implementations this duration should be much less than the
time to perform a context switch, probably more on the rough order of an on-chip cache
miss latency or a cacheless access to main memory.

A series of PAUSE instructions can be used to create a cumulative delay loosely
proportional to the number of PAUSE instructions. In spin-wait loops in portable code,
however, only one PAUSE instruction should be used before re-evaluating loop conditions,
else the hart might stall longer than optimal on some implementations, degrading system
performance.

PAUSE is encoded as a FENCE instruction with pred=W, succ=0, fm=0, rd=x0, and rs1=x0.

PAUSE is encoded as a hint within the FENCE opcode because some implementations are
expected to deliberately stall the PAUSE instruction until outstanding memory
transactions have completed. Because the successor set is null, however, PAUSE does not
mandate any particular memory ordering—hence, it truly is a HINT.

Ely Like other FENCE instructions, PAUSE cannot be used within LR/SC sequences without
voiding the forward-progress guarantee.

The choice of a predecessor set of W is arbitrary, since the successor set is null. Other
HINTs similar to PAUSE might be encoded with other predecessor sets.
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Chapter 11. "Zimop" Extension for May-Be-Operations, Version 1.0

This chapter defines the "Zimop" extension, which introduces the concept of instructions that may be
operations (MOPs). MOPs are initially defined to simply write zero to x[rd], but are designed to be
redefined by later extensions to perform some other action. The Zimop extension defines an encoding
space for 40 MOPs.

It is sometimes desirable to define instruction-set extensions whose instructions, rather
than raising illegal-instruction exceptions when the extension is not implemented, take no
useful action (beyond writing x[rd]). For example, programs with control-flow integrity
checks can execute correctly on implementations without the corresponding extension,
provided the checks are simply ignored. Implementing these checks as MOPs allows the
Df same programs to run on implementations with or without the corresponding extension.

Although similar in some respects to HINTs, MOPs cannot be encoded as HINTSs, because
unlike HINTs, MOPs are allowed to alter architectural state.

Because MOPs may be redefined by later extensions, standard software should not execute
a MOP unless it is deliberately targeting an extension that has redefined that MOP.

The Zimop extension defines 32 MOP instructions named MOP.R.n, where n is an integer between O
and 31, inclusive. Unless redefined by another extension, these instructions simply write O to x[rd].
Their encoding allows future extensions to define them to read x[rs1], as well as write x[rd].

31 30 29 28 27 26 25 22 21 20 19 15 14 12 11 7 6 0
| 1 |n[4]| 0O O | n[3:2] | 0o 1 1 1 | n[1:0] | rsl | 1 0 O | rd | 1 1 1 0O 0 1 1 |
SYSTEM

The Zimop extension additionally defines 8 MOP instructions named MOP.RR.n, where n is an integer
between O and 7, inclusive. Unless redefined by another extension, these instructions simply write O to
x[rd]. Their encoding allows future extensions to define them to read x[rs1] and x[rs2], as well as
write X[ rd].

31 30 29 28 27 26 25 24 20 19 15 14 12 11 7 6 0
| 1 |n[2]| 0O O | n[1:0] | 1 | rs2 | rs1 | 1 0O O | rd | 1 1 1 o 0 1 1 |
SYSTEM

The recommended assembly syntax for MOP.R.n is MOP.R.n rd, rsl, with any X-register

y specifier being valid for either argument. Similarly for MOP.RR.n, the recommended

EI syntax is MOP.RR.n rd, rsl, rs2. The extension that redefines a MOP may define an
alternate assembly mnemonic.

—y These MOPs are encoded in the SYSTEM major opcode in part because it is expected their
B behavior will be modulated by privileged CSR state.

. These MOPs are defined to write zero to x[rd], rather than performing no operation, to
y simplify instruction decoding and to allow testing the presence of features by branching on
the zeroness of the result.

The MOPs defined in the Zimop extension do not carry a syntactic dependency from x[rs1] or
x[rs2] to x[rd], though an extension that redefines the MOP may impose such a requirement.

—y Not carrying a syntactic dependency relieves straightforward implementations of reading
J x[rs1] and x[rs2].
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1.1. "Zcmop" Compressed May-Be-Operations Extension, Version 1.0

This section defines the "Zcmop" extension, which defines eight 16-bit MOP instructions named
C.MOP.n, where n is an odd integer between 1 and 15, inclusive. C.MOP.n is encoded in the reserved
encoding space corresponding to C.LUI xn, O, as shown in Table 10. Unlike the MOPs defined in the
Zimop extension, the C.MOP.n instructions are defined to not write any register. Their encoding allows
future extensions to define them to read register x[n].

The Zcmop extension requires the Zca extension.

15 13 12 11 10 8 7 6 2 1 0
0 1 1 0 0 n[3:1] 1 0 0 0 0 0 0 1

Very few suitable 16-bit encoding spaces exist. This space was chosen because it already
| yl has unusual behavior with respect to the rd/rs1 field—it encodes ¢.addi16sp when the
field contains X2--and is therefore of lower value for most purposes.

Table 10. C.MOP.n instruction encoding.

Mnemonic Encoding Redefinable to read register
C.MOP.1 0110000010000001 x1

C.MOP3 0110000110000001 x3

C.MOP.5 0110001010000001 x5

C.MOP.7 0110001110000001 x7

C.MOP.9 0110010010000001 x9

C.MOP.11 0110010110000001 x11

C.MOP.13 0110011010000001 x13

C.MOP.15 0110011110000001 x15

y The recommended assembly syntax for C.MOP.n is simply the nullary C.MOP.n. The
B possibly accessed register is implicitly Xn.

The expectation is that each Zcmop instruction is equivalent to some Zimop instruction,
but the choice of expansion (if any) is left to the extension that redefines the MOP. Note, a
Zcmop instruction that does not write a value can expand into a write to x0.
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Chapter 12. "Zicond" Extension for Integer Conditional Operations, Version 1.0.0

12.1. Introduction

The Zicond extension defines a simple solution that provides most of the benefit and all of the
flexibility one would desire to support conditional arithmetic and conditional-select/move operations,
while remaining true to the RISC-V design philosophy. The instructions follow the format for R-type
instructions with 3 operands (i.e, 2 source operands and 1 destination operand). Using these
instructions, branchless sequences can be implemented (typically in two-instruction sequences)
without the need for instruction fusion, special provisions during the decoding of architectural
instructions, or other microarchitectural provisions.

One of the shortcomings of RISC-V, compared to competing instruction set architectures, is the
absence of conditional operations to support branchless code-generation: this includes conditional
arithmetic, conditional select and conditional move operations. The design principles of RISC-V (e.g.
the absence of an instruction-format that supports 3 source registers and an output register) make it
unlikely that direct equivalents of the competing instructions will be introduced.

Yet, low-cost conditional instructions are a desirable feature as they allow the replacement of branches
in a broad range of suitable situations (whether the branch turns out to be unpredictable or
predictable) so as to reduce the capacity and aliasing pressures on BTBs and branch predictors, and to
allow for longer basic blocks (for both the hardware and the compiler to work with).

12.2. Zicond specification

The "Conditional" operations extension provides a simple solution that provides most of the benefit
and all of the flexibility one would desire to support conditional arithmetic and conditional-
select/move operations, while remaining true to the RISC-V design philosophy. The instructions
follow the format for R-type instructions with 3 operands (i.e., 2 source operands and 1 destination
operand). Using these instructions, branchless sequences can be implemented (typically in two-
instruction sequences) without the need for instruction fusion, special provisions during the decoding
of architectural instructions, or other microarchitectural provisions.

The following instructions comprise the Zicond extension:

RV32 RV64 Mnemonic Instruction
v v czero.eqz rd, rsl, rs2 Conditional zero, if condition is equal to zero
v v czero.nez rd, rsl, rs2 Conditional zero, if condition is nonzero

Architecture Comment: defining additional comparisons, in addition to equal-to-zero and
| yl not-equal-to-zero, does not offer a benefit due to the lack of immediates or an additional
register operand that the comparison takes place against.

Based on these two instructions, synthetic instructions (i.e, short instruction sequences) for the
following conditional arithmetic operations are supported:

- conditional add, if zero

. conditional add, if non-zero

- conditional subtract, if zero

- conditional subtract, if non-zero
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- conditional bitwise-and, if zero

- conditional bitwise-and, if non-zero
- conditional bitwise-or, if zero

- conditional bitwise-or, if non-zero

- conditional bitwise-xor, if zero

- conditional bitwise-xor, if non-zero
Additionally, the following conditional select instructions are supported:

- conditional-select, if zero

- conditional-select, if non-zero

More complex conditions, such as comparisons against immediates, registers, single-bit tests,
comparisons against ranges, etc. can be realized by composing these new instructions with existing
instructions.

12.3. Instructions (in alphabetical order)

12.3.1. czero.eqz

Synopsis

Moves zero to a register rd, if the condition rs2 is equal to zero, otherwise moves rs1 to rd.

Mnemonic

czero.eqz rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

0O 00 0 1 11 rs2 rsi 17 0 1 rd 017 1 0 0 11
CZERO condition value CZERO.EQZ oP

Description

If rs2 contains the value zero, this instruction writes the value zero to rd. Otherwise, this instruction
copies the contents of rsI to rd.

This instruction carries a syntactic dependency from both rsI and rs2 to rd. Furthermore, if the Zkt
extension is implemented, this instruction’s timing is independent of the data values in rsI and rs2.

SAIL code
let condition = X(rs2);
result : xlenbits = if (condition == zeros()) then zeros()

else X(rs1);
X(rd) = result;
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12.3.2. czero.nez

Synopsis

Moves zero to a register rd, if the condition rs2 is nonzero, otherwise moves rsl to rd.

Mnemonic

czero.nez rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

0O 00 0 1 11 rs2 rsi 1 1 1 rd 01 1 0 0 11
CZERO condition value CZERO.NEZ OP

Description

If rs2 contains a nonzero value, this instruction writes the value zero to rd. Otherwise, this
instruction copies the contents of rsI to rd.

This instruction carries a syntactic dependency from both rsl and rs2 to rd. Furthermore, if the Zkt
extension is implemented, this instruction’s timing is independent of the data values in rsI and rs2.

SAIL code
let condition = X(rs2);
result : xlenbits = if (condition != zeros()) then zeros()

else X(rs1);
X(rd) = result;

12.4. Usage examples

The instructions from this extension can be used to construct sequences that perform conditional-
arithmetic, conditional-bitwise-logical, and conditional-select operations.
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12.4.1. Instruction sequences

Operation

Conditional add, if zero
rd = (rc == 0) ? (rs1 + rs2) : rsi

Conditional add, if non-zero
rd = (rc !1=0) ? (rs1 + rs2) : rsl

Conditional subtract, if zero
rd = (rc == 0) ? (rs1 - rs2) : rsi

Conditional subtract, if non-zero
rd = (rc !'=0) ? (rs1 - rs2) : rsl

Conditional bitwise-or, if zero
rd = (rc == 0) ? (rs1 | rs2) : rsi

Conditional bitwise-or, if non-zero
rd = (rc !=0) ? (rs1 | rs2) : rsi

Conditional bitwise-xor, if zero
rd = (rc == @) ? (rs1 A rs2) : rsi

Conditional bitwise-xor, if non-zero
rd = (rc 1=0) 2 (rs1 A rs2) : rsi

Conditional bitwise-and, if zero

rd = (rc == 0) ? (rs1 & rs2) : rsi

Conditional bitwise-and, if non-zero

rd = (rc !'=0) ? (rs1 & rs2) : rsl

Conditional select, if zero
rd = (rc ==0) ? rs1 : rs2

Conditional select, if non-zero
rd = (rc '=0) ? rs1 : rs2

Instruction sequence

czero.

add

czero.

add

czero.

sub

czero.

sub

czero.

or

czero.

or

czero.

xor

czero.

xor

and

czero.

or

and

czero.

or

czero.
.eqz

czero
or

czero.
czero.

or
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nez

eqz

nez

eqz

nez

eqz

nez

eqz

eqz

nez

nez

eqz
nez

rd, rs2, rc
rd, rs1, rd

rd, rs2, rc
rd, rs1, rd

rd, rs2, rc
rd, rs1, rd

rd, rs2, rc
rd, rs1, rd

rd, rs2, rc
rd, rs1, rd

rd, rs2, rc
rd, rs1, rd

rd, rs2, rc
rd, rs1, rd

rd, rs2, rc
rd, rs1, rd

rd, rs1, rs2
rtmp, rs1, rc
rd, rd, rtmp

rd, rs1, rs2
rtmp, rs1, rc
rd, rd, rtmp

rd, rs1, rc
rtmp, rs2, rc
rd, rd, rtmp

rd, rs1, rc
rtmp, rs2, rc
rd, rd, rtmp

Length

2 insns

3 insns
(requires 1 temporary)
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Chapter 13. "M" Extension for Integer Multiplication and Division, Version 2.0

This chapter describes the standard integer multiplication and division instruction extension, which
is named "M" and contains instructions that multiply or divide values held in two integer registers.

We separate integer multiply and divide out from the base to simplify low-end
Q implementations, or for applications where integer multiply and divide operations are
either infrequent or better handled in attached accelerators.

13.1. Multiplication Operations

31 25 24 20 19 15 14 12 11 7 6 0
funct?7 rs2 rs1 funct3 rd opcode
7 5 5 3 5 7
MULDIV multiplier multiplicandMUL/MULH[[S]JU]  dest OP
MULDIV multiplier multiplicand MULW dest OP-32

MUL performs an XLEN-bitxXLEN-bit multiplication of rsI by rs2 and places the lower XLEN bits in
the destination register. MULH, MULHU, and MULHSU perform the same multiplication but return
the upper XLEN bits of the full 2xXLEN-bit product, for signedxsigned, unsignedxunsigned, and
rsIxunsigned rs2 multiplication, respectively. If both the high and low bits of the same product are
required, then the recommended code sequence is: MULH|[S]U] rdh, rsl, rs2; MUL rdl, rsl, rs2 (source
register specifiers must be in same order and rdh cannot be the same as rsI or rs2). Microarchitectures
can then fuse these into a single multiply operation instead of performing two separate multiplies.

MULHSU is used in multi-word signed multiplication to multiply the most-significant
Dy word of the multiplicand (which contains the sign bit) with the less-significant words of
the multiplier (which are unsigned).

MULW is an RV64 instruction that multiplies the lower 32 bits of the source registers, placing the
sign-extension of the lower 32 bits of the result into the destination register.

In RV64, MUL can be used to obtain the upper 32 bits of the 64-bit product, but signed

Dy arguments must be proper 32-bit signed values, whereas unsigned arguments must have
their upper 32 bits clear. If the arguments are not known to be sign- or zero-extended, an
alternative is to shift both arguments left by 32 bits, then use MULH[[S|U].

13.2. Division Operations

31 25 24 20 19 15 14 12 11 7 6 0
funct?7 rs2 rs1 funct3 rd opcode
7 5 5 3 5 7
MULDIV divisor dividend DIV[U]/REM[U] dest OoP
MULDIV divisor dividend DIV[U]JW/REM[UJW  dest OP-32

DIV and DIVU perform an XLEN bits by XLEN bits signed and unsigned integer division of rsI by rs2,
rounding towards zero. REM and REMU provide the remainder of the corresponding division
operation. For REM, the sign of a nonzero result equals the sign of the dividend.

_y; For both signed and unsigned division, except in the case of overflow, it holds that
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dividend = divisor x quotient + remainder,

If both the quotient and remainder are required from the same division, the recommended code
sequence is: DIV[U] rdq rsl, rs2; REM[U] rdr, rsl, rs2 (rdq cannot be the same as rsl or rs2).
Microarchitectures can then fuse these into a single divide operation instead of performing two
separate divides.

DIVW and DIVUW are RV64 instructions that divide the lower 32 bits of rsI by the lower 32 bits of rs2,
treating them as signed and unsigned integers respectively, placing the 32-bit quotient in rd, sign-
extended to 64 bits. REMW and REMUW are RV64 instructions that provide the corresponding signed
and unsigned remainder operations respectively. Both REMW and REMUW always sign-extend the
32-bit result to 64 bits, including on a divide by zero.

The semantics for division by zero and division overflow are summarized in Table 11. The quotient of
division by zero has all bits set, and the remainder of division by zero equals the dividend. Signed
division overflow occurs only when the most-negative integer is divided by -1. The quotient of a signed
division with overflow is equal to the dividend, and the remainder is zero. Unsigned division overflow
cannot occur.

Table 11. Semantics for division by zero and division overflow. L is the width of the operation in bits: XLEN for
DIV[U] and REM[U], or 32 for DIV[U]W and REM[U|W.

Condition Dividend Divisor DIVU[W] REMU[W] DIV[W] REM[W]
Division by zero X 0 2L 1 X -1 X
Overflow (signed only) L1 -1 - - L-1 0

We considered raising exceptions on integer divide by zero, with these exceptions causing
a trap in most execution environments. However, this would be the only arithmetic trap in
the standard ISA (floating-point exceptions set flags and write default values, but do not
cause traps) and would require language implementors to interact with the execution
environment’s trap handlers for this case. Further, where language standards mandate
that a divide-by-zero exception must cause an immediate control flow change, only a
single branch instruction needs to be added to each divide operation, and this branch

Q instruction can be inserted after the divide and should normally be very predictably not
taken, adding little runtime overhead.

The value of all bits set is returned for both unsigned and signed divide by zero to simplify
the divider circuitry. The value of all Is is both the natural value to return for unsigned
divide, representing the largest unsigned number, and also the natural result for simple
unsigned divider implementations. Signed division is often implemented using an
unsigned division circuit and specifying the same overflow result simplifies the hardware.

13.3. Zmmul Extension, Version 1.0

The Zmmul extension implements the multiplication subset of the M extension. It adds all of the
instructions defined in Section 13.1, namely: MUL, MULH, MULHU, MULHSU, and (for RV64 only)
MULW. The encodings are identical to those of the corresponding M-extension instructions. M
implies Zmmul.

The Zmmul extension enables low-cost implementations that require multiplication
operations but not division. For many microcontroller applications, division operations are
Dy too infrequent to justify the cost of divider hardware. By contrast, multiplication operations
are more frequent, making the cost of multiplier hardware more justifiable. Simple FPGA
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soft cores particularly benefit from eliminating division but retaining multiplication, since
many FPGAs provide hardwired multipliers but require dividers be implemented in soft
logic.
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Chapter 14. "A" Extension for Atomic Instructions, Version 2.1

The atomic-instruction extension, named "A", contains instructions that atomically read-modify-write
memory to support synchronization between multiple RISC-V harts running in the same memory
space. The two forms of atomic instruction provided are load-reserved/store-conditional instructions
and atomic fetch-and-op memory instructions. Both types of atomic instruction support various
memory consistency orderings including unordered, acquire, release, and sequentially consistent
semantics. These instructions allow RISC-V to support the RCsc memory consistency model.
(Gharachorloo et al., 1990)

After much debate, the language community and architecture community appear to have
| yl finally settled on release consistency as the standard memory consistency model and so
the RISC-V atomic support is built around this model.

The A extension comprises instructions provided by the Zaamo and Zalrsc extensions.

14.1. Specifying Ordering of Atomic Instructions

The base RISC-V ISA has a relaxed memory model, with the FENCE instruction used to impose
additional ordering constraints. The address space is divided by the execution environment into
memory and I/O domains, and the FENCE instruction provides options to order accesses to one or
both of these two address domains.

To provide more efficient support for release consistency (Gharachorloo et al, 1990), each atomic
instruction has two bits, ag and rl, used to specify additional memory ordering constraints as viewed
by other RISC-V harts. The bits order accesses to one of the two address domains, memory or I/O,
depending on which address domain the atomic instruction is accessing. No ordering constraint is
implied to accesses to the other domain, and a FENCE instruction should be used to order across both
domains.

If both bits are clear, no additional ordering constraints are imposed on the atomic memory operation.
If only the aq bit is set, the atomic memory operation is treated as an acquire access, i.e., no following
memory operations on this RISC-V hart can be observed to take place before the acquire memory
operation. If only the rl bit is set, the atomic memory operation is treated as a release access, i.e., the
release memory operation cannot be observed to take place before any earlier memory operations on
this RISC-V hart. If both the aq and rl bits are set, the atomic memory operation is sequentially
consistent and cannot be observed to happen before any earlier memory operations or after any later
memory operations in the same RISC-V hart and to the same address domain.

14.2. "Zalrsc" Extension for Load-Reserved/Store-Conditional Instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 aq| rl rs2 rs1 funct3 rd opcode
5 1 1 5 5 3 5 7
LR.W/D ordeing 0 addr width dest AMO
SC.wW/D ordeing src addr width dest AMO

Complex atomic memory operations on a single memory word or doubleword are performed with the
load-reserved (LR) and store-conditional (SC) instructions. LR.W loads a word from the address in rsl,
places the sign-extended value in rd, and registers a reservation set—a set of bytes that subsumes the
bytes in the addressed word. SC.W conditionally writes a word in rs2 to the address in rsl: the SCW
succeeds only if the reservation is still valid and the reservation set contains the bytes being written. If
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the SC.W succeeds, the instruction writes the word in rs2 to memory, and it writes zero to rd. If the
SC.W fails, the instruction does not write to memory, and it writes a nonzero value to rd. For the
purposes of memory protection, a failed SC.W may be treated like a store. Regardless of success or
failure, executing an SC.W instruction invalidates any reservation held by this hart. LR.D and SC.D act
analogously on doublewords and are only available on RV64. For RV64, LR W and SC.W sign-extend
the value placed in rd.

Both compare-and-swap (CAS) and LR/SC can be used to build lock-free data structures.
After extensive discussion, we opted for LR/SC for several reasons: 1) CAS suffers from the
ABA problem, which LR/SC avoids because it monitors all writes to the address rather
than only checking for changes in the data value; 2) CAS would also require a new integer
instruction format to support three source operands (address, compare value, swap value)
as well as a different memory system message format, which would complicate
microarchitectures; 3) Furthermore, to avoid the ABA problem, other systems provide a
double-wide CAS (DW-CAS) to allow a counter to be tested and incremented along with a
data word. This requires reading five registers and writing two in one instruction, and also
a new larger memory system message type, further complicating implementations; 4)
LR/SC provides a more efficient implementation of many primitives as it only requires one
load as opposed to two with CAS (one load before the CAS instruction to obtain a value for

Dy speculative computation, then a second load as part of the CAS instruction to check if
value is unchanged before updating).

The main disadvantage of LR/SC over CAS is livelock, which we avoid, under certain
circumstances, with an architected guarantee of eventual forward progress as described
below. Another concern is whether the influence of the current x86 architecture, with its
DW-CAS, will complicate porting of synchronization libraries and other software that
assumes DW-CAS is the basic machine primitive. A possible mitigating factor is the recent
addition of transactional memory instructions to x86, which might cause a move away
from DW-CAS.

More generally, a multi-word atomic primitive is desirable, but there is still considerable
debate about what form this should take, and guaranteeing forward progress adds
complexity to a system.

The failure code with value 1 encodes an unspecified failure. Other failure codes are reserved at this
time. Portable software should only assume the failure code will be non-zero.

We reserve a failure code of 1 to mean "unspecified” so that simple implementations may
| yl return this value using the existing mux required for the SLT/SLTU instructions. More
specific failure codes might be defined in future versions or extensions to the ISA.

For LR and SC, the Zalrsc extension requires that the address held in rsI be naturally aligned to the
size of the operand (i.e, eight-byte aligned for doublewords and four-byte aligned for words). If the
address is not naturally aligned, an address-misaligned exception or an access-fault exception will be
generated. The access-fault exception can be generated for a memory access that would otherwise be
able to complete except for the misalignment, if the misaligned access should not be emulated.

Emulating misaligned LR/SC sequences is impractical in most systems.

y; Misaligned LR/SC sequences also raise the possibility of accessing multiple reservation
sets at once, which present definitions do not provide for.

An implementation can register an arbitrarily large reservation set on each LR, provided the
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reservation set includes all bytes of the addressed data word or doubleword. An SC can only pair with
the most recent LR in program order. An SC may succeed only if no store from another hart to the
reservation set can be observed to have occurred between the LR and the SC, and if there is no other
SC between the LR and itself in program order. An SC may succeed only if no write from a device
other than a hart to the bytes accessed by the LR instruction can be observed to have occurred between
the LR and SC. Note this LR might have had a different effective address and data size, but reserved
the SC’s address as part of the reservation set.

Following this model, in systems with memory translation, an SC is allowed to succeed if
the earlier LR reserved the same location using an alias with a different virtual address,
but is also allowed to fail if the virtual address is different.

Dy To accommodate legacy devices and buses, writes from devices other than RISC-V harts
are only required to invalidate reservations when they overlap the bytes accessed by the
LR. These writes are not required to invalidate the reservation when they access other
bytes in the reservation set.

The SC must fail if the address is not within the reservation set of the most recent LR in program
order. The SC must fail if a store to the reservation set from another hart can be observed to occur
between the LR and SC. The SC must fail if a write from some other device to the bytes accessed by the
LR can be observed to occur between the LR and SC. (If such a device writes the reservation set but
does not write the bytes accessed by the LR, the SC may or may not fail.) An SC must fail if there is
another SC (to any address) between the LR and the SC in program order. The precise statement of the
atomicity requirements for successful LR/SC sequences is defined by the Atomicity Axiom in Section
17.1.

The platform should provide a means to determine the size and shape of the reservation
set.

A platform specification may constrain the size and shape of the reservation set.

A store-conditional instruction to a scratch word of memory should be used to forcibly
invalidate any existing load reservation:

Dy - during a preemptive context switch, and

- if necessary when changing virtual to physical address mappings, such as when
migrating pages that might contain an active reservation.

The invalidation of a hart’s reservation when it executes an LR or SC imply that a hart can
only hold one reservation at a time, and that an SC can only pair with the most recent LR,
and LR with the next following SC, in program order. This is a restriction to the Atomicity
Axiom in Section 17.1 that ensures software runs correctly on expected common
implementations that operate in this manner.

An SC instruction can never be observed by another RISC-V hart before the LR instruction that
established the reservation.

The LR/SC sequence can be given acquire semantics by setting the aq bit on the LR
instruction. The LR/SC sequence can be given release semantics by by setting the rl bit on

y the SC instruction. Assuming suitable mappings for other atomic operations, setting the
D aq bit on the LR instruction, and setting the rl bit on the SC instruction makes the LR/SC
sequence sequentially consistent in the C++ memory_order_seq_cst sense. Such a

sequence does not act as a fence for ordering ordinary load and store instructions before
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and after the sequence. Specific instruction mappings for other C++ atomic operations, or
stronger notions of "sequential consistency’, may require both bits to be set on either or
both of the LR or SC instruction.

If neither bit is set on either LR or SC, the LR/SC sequence can be observed to occur before
or after surrounding memory operations from the same RISC-V hart. This can be
appropriate when the LR/SC sequence is used to implement a parallel reduction
operation.

Software should not set the rl bit on an LR instruction unless the aq bit is also set, nor should software
set the aq bit on an SC instruction unless the rl bit is also set. LR.rl and SC.aq instructions are not
guaranteed to provide any stronger ordering than those with both bits clear, but may result in lower
performance.
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# a0 holds address of memory location
# al holds expected value
# a2 holds desired value
# a0 holds return value, @ if successful, !0 otherwise
cas:
1r.w t0, (a0) # Load original value.
bne t0, al, fail # Doesn't match, so fail.
sc.w t@, a2, (ad) # Try to update.
bnez t@, cas # Retry if store-conditional failed.
i
i

1i a0, @ Set return to success.
jrra Return.

fail:
1i a0, 1 # Set return to failure.
jrra # Return.

Example 2. Sample code for compare-and-swap function using LR/SC.

LR/SC can be used to construct lock-free data structures. An example using LR/SC to implement a
compare-and-swap function is shown in Example 2. If inlined, compare-and-swap functionality need
only take four instructions.

14.3. Eventual Success of Store-Conditional Instructions
The Zalrsc extension defines constrained LR/SC loops, which have the following properties:

- The loop comprises only an LR/SC sequence and code to retry the sequence in the case of failure,
and must comprise at most 16 instructions placed sequentially in memory.

- An LR/SC sequence begins with an LR instruction and ends with an SC instruction. The dynamic
code executed between the LR and SC instructions can only contain instructions from the base "I"
instruction set, excluding loads, stores, backward jumps, taken backward branches, JALR, FENCE,
and SYSTEM instructions. If the "C" extension is supported, then compressed forms of the
aforementioned "I" instructions are also permitted.

- The code to retry a failing LR/SC sequence can contain backwards jumps and/or branches to
repeat the LR/SC sequence, but otherwise has the same constraint as the code between the LR and
SC.

- The LR and SC addresses must lie within a memory region with the LR/SC eventuality property.
The execution environment is responsible for communicating which regions have this property.

- The SC must be to the same effective address and of the same data size as the latest LR executed by
the same hart.

LR/SC sequences that do not lie within constrained LR/SC loops are unconstrained. Unconstrained
LR/SC sequences might succeed on some attempts on some implementations, but might never
succeed on other implementations.

We restricted the length of LR/SC loops to fit within 64 contiguous instruction bytes in the
base ISA to avoid undue restrictions on instruction cache and TLB size and associativity.
Similarly, we disallowed other loads and stores within the loops to avoid restrictions on
Df data-cache associativity in simple implementations that track the reservation within a
private cache. The restrictions on branches and jumps limit the time that can be spent in
the sequence. Floating-point operations and integer multiply/divide were disallowed to
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simplify the operating system’s emulation of these instructions on implementations
lacking appropriate hardware support.

Software is not forbidden from using unconstrained LR/SC sequences, but portable
software must detect the case that the sequence repeatedly fails, then fall back to an
alternate code sequence that does not rely on an unconstrained LR/SC sequence.
Implementations are permitted to unconditionally fail any unconstrained LR/SC sequence.

If a hart H enters a constrained LR/SC loop, the execution environment must guarantee that one of the
following events eventually occurs:

- H or some other hart executes a successful SC to the reservation set of the LR instruction in H's
constrained LR/SC loops.

- Some other hart executes an unconditional store or AMO instruction to the reservation set of the
LR instruction in H's constrained LR/SC loop, or some other device in the system writes to that
reservation set.

- H executes a branch or jump that exits the constrained LR/SC loop.

- Htraps.

Note that these definitions permit an implementation to fail an SC instruction
occasionally for any reason, provided the aforementioned guarantee is not violated.

As a consequence of the eventuality guarantee, if some harts in an execution environment
are executing constrained LR/SC loops, and no other harts or devices in the execution
environment execute an unconditional store or AMO to that reservation set, then at least
one hart will eventually exit its constrained LR/SC loop. By contrast, if other harts or
devices continue to write to that reservation set, it is not guaranteed that any hart will exit
its LR/SC loop.

Loads and load-reserved instructions do not by themselves impede the progress of other
harts' LR/SC sequences. We note this constraint implies, among other things, that loads
and load-reserved instructions executed by other harts (possibly within the same core)
cannot impede LR/SC progress indefinitely. For example, cache evictions caused by
y another hart sharing the cache cannot impede LR/SC progress indefinitely. Typically, this
EI implies reservations are tracked independently of evictions from any shared cache.
Similarly, cache misses caused by speculative execution within a hart cannot impede
LR/SC progress indefinitely.

These definitions admit the possibility that SC instructions may spuriously fail for
implementation reasons, provided progress is eventually made.

One advantage of CAS is that it guarantees that some hart eventually makes progress,
whereas an LR/SC atomic sequence could livelock indefinitely on some systems. To avoid
this concern, we added an architectural guarantee of livelock freedom for certain LR/SC
sequences.

Earlier versions of this specification imposed a stronger starvation-freedom guarantee.
However, the weaker livelock-freedom guarantee is sufficient to implement the C11 and
C++11 languages, and is substantially easier to provide in some microarchitectural styles.

14.4. "Zaamo" Extension for Atomic Memory Operations
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31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct5 aq| rl rs2 rs1 funct3 rd opcode
5 1 1 5 5 3 5 7

AMOSWAP.W/D src addr width dest AMO
AMOADD.W/D src addr width dest AMO
AMOAND.W/D src addr width dest AMO
AMOOR.W/D src addr width dest AMO
AMOXOR.W/D src addr width dest AMO
AMOMAX[UI.W/D src addr width dest AMO
AMOMIN[U].W/D src addr width dest AMO

The atomic memory operation (AMO) instructions perform read-modify-write operations for
multiprocessor synchronization and are encoded with an R-type instruction format. These AMO
instructions atomically load a data value from the address in rs, place the value into register rd, apply
a binary operator to the loaded value and the original value in rs2, then store the result back to the
original address in rsI. AMOs can either operate on doublewords (RV64 only) or words in memory. For
RV64, 32-bit AMOs always sign-extend the value placed in rd, and ignore the upper 32 bits of the
original value of rs2.

For AMOs, the Zaamo extension requires that the address held in rsI be naturally aligned to the size of
the operand (i.e., eight-byte aligned for doublewords and four-byte aligned for words). If the address is
not naturally aligned, an address-misaligned exception or an access-fault exception will be generated.
The access-fault exception can be generated for a memory access that would otherwise be able to
complete except for the misalignment, if the misaligned access should not be emulated.

The misaligned atomicity granule PMA, defined in Volume II of this manual, optionally relaxes this
alignment requirement. If present, the misaligned atomicity granule PMA specifies the size of a
misaligned atomicity granule, a power-of-two number of bytes. The misaligned atomicity granule
PMA applies only to AMOs, loads and stores defined in the base ISAs, and loads and stores of no more
than XLEN bits defined in the F, D, and Q extensions. For an instruction in that set, if all accessed
bytes lie within the same misaligned atomicity granule, the instruction will not raise an exception for
reasons of address alignment, and the instruction will give rise to only one memory operation for the
purposes of RVWMO—i.e,, it will execute atomically.

The operations supported are swap, integer add, bitwise AND, bitwise OR, bitwise XOR, and signed and
unsigned integer maximum and minimum. Without ordering constraints, these AMOs can be used to
implement parallel reduction operations, where typically the return value would be discarded by
writing to x0.

We provided fetch-and-op style atomic primitives as they scale to highly parallel systems
better than LR/SC or CAS. A simple microarchitecture can implement AMOs using the
LR/SC primitives, provided the implementation can guarantee the AMO eventually
completes. More complex implementations might also implement AMOs at memory
controllers, and can optimize away fetching the original value when the destination is x0.

The set of AMOs was chosen to support the ClI/C++I11 atomic memory operations

Dy efficiently, and also to support parallel reductions in memory. Another use of AMOs is to
provide atomic updates to memory-mapped device registers (e.g., setting, clearing, or
toggling bits) in the I/O space.

The Zaamo extension enables microcontroller class implementations to utilize atomic
primitives from the AMO subset of the A extension. Typically such implementations do not
have caches and thus may not be able to naturally support the LR/SC instructions
provided by the Zalrsc extension.

To help implement multiprocessor synchronization, the AMOs optionally provide release consistency
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semantics. If the aq bit is set, then no later memory operations in this RISC-V hart can be observed to
take place before the AMO. Conversely, if the rl bit is set, then other RISC-V harts will not observe the
AMO before memory accesses preceding the AMO in this RISC-V hart. Setting both the aq and the 1l
bit on an AMO makes the sequence sequentially consistent, meaning that it cannot be reordered with
earlier or later memory operations from the same hart.

The AMOs were designed to implement the C1l and C++11 memory models efficiently.

y Although the FENCE R, RW instruction suffices to implement the acquire operation and

EI FENCE RW, W suffices to implement release, both imply additional unnecessary ordering
as compared to AMOs with the corresponding aq or rl bit set.

An example code sequence for a critical section guarded by a test-and-test-and-set spinlock is shown
in Example Example 3. Note the first AMO is marked aq to order the lock acquisition before the
critical section, and the second AMO is marked rl to order the critical section before the lock
relinquishment.
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1i 10, 1 # Initialize swap value.
again:

1w t1, (ad) # Check if lock is held.

bnez t1, again # Retry if held.

amoswap.w.aq t1, t0, (a@) # Attempt to acquire lock.

bnez t1, again # Retry if held.

#

# Critical section.

#

amoswap.w.rl x@, x@, (a@) # Release lock by storing 0.

Example 3. Sample code for mutual exclusion. a@ contains the address of the lock.

/4

/4

We recommend the use of the AMO Swap idiom shown above for both lock acquire and
release to simplify the implementation of speculative lock elision. (Rajwar & Goodman,
2001)

The instructions in the "A" extension can be used to provide sequentially consistent loads
and stores, but this constrains hardware reordering of memory accesses more than
necessary. A C++ sequentially consistent load can be implemented as an LR with aq set.
However, the LR/SC eventual success guarantee may slow down concurrent loads from the
same effective address. A sequentially consistent store can be implemented as an
AMOSWAP that writes the old value to x@ and has rl set. However the superfluous load
may impose ordering constraints that are unnecessary for this use case. Specific
compilation conventions may require both the aq and rl bits to be set in either or both the
LR and AMOSWAP instructions.
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Chapter 15. "Zawrs" Extension for Wait-on-Reservation-Set instructions, Version 1.01

The Zawrs extension defines a pair of instructions to be used in polling loops that allows a core to
enter a low-power state and wait on a store to a memory location. Waiting for a memory location to be
updated is a common pattern in many use cases such as:

1. Contenders for a lock waiting for the lock variable to be updated.

2. Consumers waiting on the tail of an empty queue for the producer to queue work/data. The
producer may be code executing on a RISC-V hart, an accelerator device, an external I/O agent.

3. Code waiting on a flag to be set in memory indicative of an event occurring. For example, software
on a RISC-V hart may wait on a "done" flag to be set in memory by an accelerator device indicating
completion of a job previously submitted to the device.

Such use cases involve polling on memory locations, and such busy loops can be a wasteful
expenditure of energy. To mitigate the wasteful looping in such usages, a WRS.NTO (WRS-with-no-
timeout) instruction is provided. Instead of polling for a store to a specific memory location, software
registers a reservation set that includes all the bytes of the memory location using the LR instruction.
Then a subsequent WRS.NTO instruction would cause the hart to temporarily stall execution in a low-
power state until a store occurs to the reservation set or an interrupt is observed.

Sometimes the program waiting on a memory update may also need to carry out a task at a future time
or otherwise place an upper bound on the wait. To support such use cases a second instruction
WRS.STO (WRS-with-short-timeout) is provided that works like WRS.NTO but bounds the stall duration
to an implementation-define short timeout such that the stall is terminated on the timeout if no other
conditions have occurred to terminate the stall. The program using this instruction may then
determine if its deadline has been reached.

y The instructions in the Zawrs extension are only useful in conjunction with the LR
EI instruction, which is provided by the Zalrsc component of the A extension.

15.1. Wait-on-Reservation-Set Instructions

The WRS.NTO and WRS.STO instructions cause the hart to temporarily stall execution in a low-power
state as long as the reservation set is valid and no pending interrupts, even if disabled, are observed.
For WRS.STO the stall duration is bounded by an implementation defined short timeout. These
instructions are available in all privilege modes. These instructions are not supported in a constrained

LR/SC loop.

31 20 19 15 14 12 11 7 6 0
| funct12 | rs1 | funct3 rd | opcode |
WRS.NTO(0x0d) 0 0 0 SYSTEM(0x73)
WRS.STO(0x1d)
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Hart execution may be stalled while the following conditions are all satisfied:

a. The reservation set is valid
b. If WRS.STO, a "short" duration since start of stall has not elapsed

¢. No pending interrupt is observed (see the rules below)

While stalled, an implementation is permitted to occasionally terminate the stall and complete
execution for any reason.

WRS.NTO and WRS.STO instructions follow the rules of the WFI instruction for resuming execution on a
pending interrupt.

When the TW (Timeout Wait) bit in mstatus is set and WRS.NTO is executed in any privilege mode other
than M mode, and it does not complete within an implementation-specific bounded time limit, the
WRS.NTO instruction will cause an illegal instruction exception.

When executing in VS or VU mode, if the VTW bit is set in hstatus, the TW bit in mstatus is clear, and
the WRS.NTO does not complete within an implementation-specific bounded time limit, the WRS.NTO
instruction will cause a virtual instruction exception.

Since the WRS.STO and WRS.NTO instructions can complete execution for reasons other
than stores to the reservation set, software will likely need a means of looping until the
required stores have occurred.

The duration of a WRS.STO instruction’s timeout may vary significantly within and among
implementations. In typical implementations this duration should be roughly in the range
| yl of 10 to 100 times an on-chip cache miss latency or a cacheless access to main memory.

WRS.NTO, unlike WFI, is not specified to cause an illegal instruction exception if executed in
U-mode when the governing TW bit is 0. WFI is typically not expected to be used in U-mode
and on many systems may promptly cause an illegal instruction exception if used at U-
mode. Unlike WFI, WRS.NTO is expected to be used by software in U-mode when waiting on
memory but without a deadline for that wait.
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Chapter 16. "Zacas" Extension for Atomic Compare-and-Swap (CAS) Instructions,
Version 1.0.0

16.1. Introduction

Compare-and-Swap (CAS) provides an easy and typically faster way to perform thread
synchronization operations when supported as a hardware instruction. CAS is typically used by lock-
free and wait-free algorithms. This extension proposes CAS instructions to operate on 32-bit, 64-bit,
and 128-bit (RV64 only) data values. The CAS instruction supports the C++11 atomic compare and
exchange operation.

While compare-and-swap for XLEN wide data may be accomplished using LR/SC, the CAS atomic
instructions scale better to highly parallel systems than LR/SC. Many lock-free algorithms, such as a
lock-free queue, require manipulation of pointer variables. A simple CAS operation may not be
sufficient to guard against what is commonly referred to as the ABA problem in such algorithms that
manipulate pointer variables. To avoid the ABA problem, the algorithms associate a reference counter
with the pointer variable and perform updates using a quadword compare and swap (of both the
pointer and the counter). The double and quadword CAS instructions support implementation of
algorithms for ABA problem avoidance.

The Zacas extension depends upon the Zaamo extension (_RISC-V Instruction Set Manual, Volume I:
Unprivileged ISA _, n.d.).

16.2. Word/Doubleword/Quadword CAS (AMOCAS.W/D/Q)

31 27 26 25 24 20 19 15 14 12 11 7 6 0
00101 ‘ aq ‘ rl rs2 ‘ rsl ‘ funct3 ‘ rd ‘ opcode ‘
AMOCAS.W sTC addr 010 dest AMO
AMOCAS.D 011
AMOCAS.Q 100

For RV32, AMOCAS.W atomically loads a 32-bit data value from address in rs1, compares the loaded
value to the 32-bit value held in rd, and if the comparison is bitwise equal, then stores the 32-bit value
held in rs2 to the original address in rs1. The value loaded from memory is placed into register rd.
The operation performed by AMOCAS.W for RV32 is as follows:

temp = mem[X(rs1)]

if ( temp == X(rd) )
mem[X(rs1)] = X(rs2)

X(rd) = temp

AMOCAS. D is similar to AMOCAS.W but operates on 64-bit data values.

For RV32, AMOCAS.D atomically loads 64-bits of a data value from address in rs1, compares the loaded
value to a 64-bit value held in a register pair consisting of rd and rd+1, and if the comparison is
bitwise equal, then stores the 64-bit value held in the register pair rs2 and rs2+1 to the original
address in rs1. The value loaded from memory is placed into the register pair rd and rd+1. The
instruction requires the first register in the pair to be even numbered; encodings with odd numbered
registers specified in rs2 and rd are reserved. When the first register of a source register pair is x0,
then both halves of the pair read as zero. When the first register of a destination register pair is x0,
then the entire register result is discarded and neither destination register is written. The operation

performed by AMOCAS.D for RV32 is as follows:
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temp@ = mem[X(rs1)+0]

temp1 = mem[X(rs1)+4]

compd = (rd == x0) ? 0 : X(rd)
compl = (rd == x@) 7?7 0@ : X(rd+1)
swapd = (rs2 == x0) ? 0 : X(rs2)

swap1l = (rs2 == x0) 7 0 : X(rs2+1)

if ( temp@ == comp@ ) && ( temp1 == compl )
mem[X(rs1)+0] = swap@
mem[X(rs1)+4] = swap]l

endif

if (rd !'=x0)
X(rd) = temp@
X(rd+1) = temp1

endif

For RV64, AMOCAS.W atomically loads a 32-bit data value from address in rs1, compares the loaded
value to the lower 32 bits of the value held in rd, and if the comparison is bitwise equal, then stores the
lower 32 bits of the value held in rs2 to the original address in rs1. The 32-bit value loaded from
memory is sign-extended and is placed into register rd. The operation performed by AMOCAS.W for
RV64 is as follows:

temp[31:0] = mem[X(rs1)]

if ( temp[31:0] == X(rd)[31:0] )
mem[X(rs1)] = X(rs2)[31:0]

X(rd) = SignExtend(temp[31:0])

For RV64, AMOCAS.D atomically loads 64-bits of a data value from address in rs1, compares the loaded
value to a 64-bit value held in rd, and if the comparison is bitwise equal, then stores the 64-bit value
held in rs2 to the original address in rs1. The value loaded from memory is placed into register rd.
The operation performed by AMOCAS.D for RV64 is as follows:

temp = mem[X(rs1)]

if ( temp == X(rd) )
mem[X(rs1)] = X(rs2)

X(rd) = temp

AMOCAS.Q (RV64 only) atomically loads 128-bits of a data value from address in rs1, compares the
loaded value to a 128-bit value held in a register pair consisting of rd and rd+1, and if the comparison
is bitwise equal, then stores the 128-bit value held in the register pair rs2 and rs2+1 to the original
address in rs1. The value loaded from memory is placed into the register pair rd and rd+1. The
instruction requires the first register in the pair to be even numbered; encodings with odd numbered
registers specified in rs2 and rd are reserved. When the first register of a source register pair is x0,
then both halves of the pair read as zero. When the first register of a destination register pair is x0,
then the entire register result is discarded and neither destination register is written. The operation
performed by AMOCAS.Q is as follows:

mem[X(rs1)+0]
mem[X(rs1)+8]

temp@
temp1
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compd = (rd == x@) ? 0@ : X(rd)
compl = (rd == x0) ? @ : X(rd+1)
swapd = (rs2 == x0) ? 0 : X(rs2)

swapl = (rs2 == x0) 7 0 : X(rs2+1)
if ( temp@ == comp® ) && ( temp1 == compl )

mem[X(rs1)+0] = swap@
mem[X(rs1)+8] = swap]
endif
if (rd !'=x0)

X(rd) = temp@
X(rd+1) = templ
endif

Dy For a future RV128 extension, AMOCAS.Q would encode a single XLEN=128 register in rs2
and rd.

Some algorithms may load the previous data value of a memory location into the register
used as the compare data value source by a Zacas instruction. When using a Zacas
instruction that uses a register pair to source the compare value, the two registers may be
loaded using two individual loads. The two individual loads may read an inconsistent pair
of values but that is not an issue since the AMOCAS operation itself uses an atomic load-
pair from memory to obtain the data value for its comparison.

The following example code sequence illustrates the use of AMOCAS.D in a RV32
implementation to atomically increment a 64-bit counter.

# a0 - address of the counter.

y increment:
EI w a2, (a0) # Load current counter value using
w a3, 4(a0) # two individual loads.
retry
mv  ab, a2 Save the low 32 bits of the current value.

#
mv  a/, a3 # Save the high 32 bits of the current value.
addi a4, a2, # Increment the low 32 bits.
sltu al, a4, a2 # Determine if there is a carry out.
add a5, a3, al # Add the carry if any to high 32 bits.
amocas.d.aqrl a2, a4, (a0)
bne a2, ab, retry # If amocas.d failed then retry
bne a3, a7, retry # using current values loaded by amocas.d.
ret

Just as for AMOs in the A extension, AMOCAS.W/D/Q requires that the address held in rs1 be naturally
aligned to the size of the operand (ie., 16-byte aligned for quadwords, eight-byte aligned for
doublewords, and four-byte aligned for words). And the same exception options apply if the address is
not naturally aligned.

Just as for AMOs in the A extension, the AMOCAS.W/D/Q optionally provide release consistency
semantics, using the aq and rl bits, to help implement multiprocessor synchronization. The memory
operation performed by an AMOCAS.W/D/Q, when successful, has acquire semantics if aq bit is 1 and has
release semantics if rl bit is 1. The memory operation performed by an AMOCAS.W/D/Q, when not
successful, has acquire semantics if ag bit is 1 but does not have release semantics, regardless of rl.
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A FENCE instruction may be used to order the memory read access and, if produced, the memory
write access by an AMOCAS.W/D/Q instruction.

An unsuccessful AMOCAS.W/D/Q may either not perform a memory write or may write back
Dy the old value loaded from memory. The memory write, if produced, does not have release
semantics, regardless of r1.

An AMOCAS.W/D/Q instruction always requires write permissions.
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The following example code sequence illustrates the use of AMOCAS.Q to implement the
enqueue operation for a non-blocking concurrent queue using the algorithm outlined in
(Michael & Scott, 1996). The algorithm atomically operates on a pointer and its associated
modification counter using the AMOCAS. Q instruction to avoid the ABA problem.

# Enqueue operation of a non-blocking concurrent queue.
#f Data structures used by the queue:

#  structure pointer_t {ptr: node_t *, count: uint64_t}
#  structure node_t {next: pointer_t, value: data type}
#  structure queue_t  {Head: pointer_t, Tail: pointer_t}
# Inputs to the procedure:
# a0 - address of Tail variable
# 34 - address of a new node to insert at tail
enqueue:
1d a6, (a0) # a6 = Tail.ptr
1d a7, 8(ad) # a7 = Tail.count
1d a2, (ab) # a2 = Tail.ptr->next.ptr
y 1d a3, 8(ab) # a3 = Tail.ptr->next.count
[::J 1d t1, (30)
1d  t2, 8(a0)
bne ab, t1, enqueue # Retry if Tail & next are not consistent
bne a7, t2, enqueue # Retry if Tail & next are not consistent
bne 32, x@, move_tail # Was tail pointing to the last node?
mv  t1, a2 # Save Tail.ptr->next.ptr
mv  t2, a3 # Save Tail.ptr->next.count
addi a5, a3, 1 # Link the node at the end of the list

amocas.q.aqrl a2, a4, (ab)

bne a2, t1, enqueue
bne a3, t2, enqueue

#
#
#

#
#
#

Retry if CAS failed
Retry if CAS failed
Update Tail to the inserted node

Enqueue done
Tail was not pointing to the last node

addi ab, a7, 1
amocas.q.aqrl a6, a4, (a0)
ret

move tail:
addi a3, a7, 1

Try to swing Tail to the next node

amocas.q.aqrl ab, a2, (ad)

j enqueue

16.3. Additional AMO PMAs

#

Retry

There are four levels of PMA support defined for AMOs in the A extension. Zacas defines three
additional levels of support: AMOCASW, AMOCASD, and AMOCASQ.

AMOCASW indicates that in addition to instructions indicated by AMOArithmetic level support, the
AMOCAS.W instruction is supported. AMOCASD indicates that in addition to instructions indicated by
AMOCASW level support, the AMOCAS.D instruction is supported. AMOCASQ indicates that in addition to
instructions indicated by AMOCASD level support, the AMOCAS.Q instruction is supported.

—y AMOCASW/D/Q require AMOArithmetic level support as the AMOCAS.W/D/Q instructions
|

require ability to perform an arithmetic comparison and a swap operation.
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Chapter 17. RVWMO Memory Consistency Model, Version 2.0

This chapter defines the RISC-V memory consistency model. A memory consistency model is a set of
rules specifying the values that can be returned by loads of memory. RISC-V uses a memory model
called "RVWMO" (RISC-V Weak Memory Ordering) which is designed to provide flexibility for
architects to build high-performance scalable designs while simultaneously supporting a tractable
programming model.

Under RVWMO, code running on a single hart appears to execute in order from the perspective of
other memory instructions in the same hart, but memory instructions from another hart may observe
the memory instructions from the first hart being executed in a different order. Therefore,
multithreaded code may require explicit synchronization to guarantee ordering between memory
instructions from different harts. The base RISC-V ISA provides a FENCE instruction for this purpose,
described in Section 2.7, while the atomics extension "A" additionally defines load-reserved/store-
conditional and atomic read-modify-write instructions.

The standard ISA extension for total store ordering "Ztso" (Chapter 18) augments RVWMO with
additional rules specific to those extensions.

The appendices to this specification provide both axiomatic and operational formalizations of the
memory consistency model as well as additional explanatory material.

This chapter defines the memory model for regular main memory operations. The
interaction of the memory model with I/O memory, instruction fetches, FENCE.I, page
table walks, and SFENCE.VMA is not (yet) formalized. Some or all of the above may be
formalized in a future revision of this specification. The RV128 base ISA and future ISA
extensions such as the V vector and ] JIT extensions will need to be incorporated into a

Dy future revision as well.

Memory consistency models supporting overlapping memory accesses of different widths
simultaneously remain an active area of academic research and are not yet fully
understood. The specifics of how memory accesses of different sizes interact under
RVWMO are specified to the best of our current abilities, but they are subject to revision
should new issues be uncovered.

17.1. Definition of the RVWMO Memory Model

The RVWMO memory model is defined in terms of the global memory order, a total ordering of the
memory operations produced by all harts. In general, a multithreaded program has many different
possible executions, with each execution having its own corresponding global memory order.

The global memory order is defined over the primitive load and store operations generated by memory
instructions. It is then subject to the constraints defined in the rest of this chapter. Any execution
satisfying all of the memory model constraints is a legal execution (as far as the memory model is
concerned).

17.1.1. Memory Model Primitives

The program order over memory operations reflects the order in which the instructions that generate
each load and store are logically laid out in that hart’s dynamic instruction stream; i.e., the order in
which a simple in-order processor would execute the instructions of that hart.
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Memory-accessing instructions give rise to memory operations. A memory operation can be either a
load operation, a store operation, or both simultaneously. All memory operations are single-copy
atomic: they can never be observed in a partially complete state.

Among instructions in RV32GC and RV64GC, each aligned memory instruction gives rise to exactly
one memory operation, with two exceptions. First, an unsuccessful SC instruction does not give rise to
any memory operations. Second, FLD and FSD instructions may each give rise to multiple memory
operations if XLEN<64, as stated in Section 21.3 and clarified below. An aligned AMO gives rise to a
single memory operation that is both a load operation and a store operation simultaneously.

Instructions in the RVI28 base instruction set and in future ISA extensions such as V
| yl (vector) and P (SIMD) may give rise to multiple memory operations. However, the memory
model for these extensions has not yet been formalized.

A misaligned load or store instruction may be decomposed into a set of component memory
operations of any granularity. An FLD or FSD instruction for which XLEN<64 may also be
decomposed into a set of component memory operations of any granularity. The memory operations
generated by such instructions are not ordered with respect to each other in program order, but they
are ordered normally with respect to the memory operations generated by preceding and subsequent
instructions in program order. The atomics extension "A" does not require execution environments to
support misaligned atomic instructions at all. However, if misaligned atomics are supported via the
misaligned atomicity granule PMA, then AMOs within an atomicity granule are not decomposed, nor
are loads and stores defined in the base ISAs, nor are loads and stores of no more than XLEN bits
defined in the F, D, and Q extensions.

The decomposition of misaligned memory operations down to byte granularity facilitates

y emulation on implementations that do not natively support misaligned accesses. Such

EI implementations might, for example, simply iterate over the bytes of a misaligned access
one by one.

An LR instruction and an SC instruction are said to be paired if the LR precedes the SC in program
order and if there are no other LR or SC instructions in between; the corresponding memory
operations are said to be paired as well (except in case of a failed SC, where no store operation is
generated). The complete list of conditions determining whether an SC must succeed, may succeed, or
must fail is defined in Section 14.2.

Load and store operations may also carry one or more ordering annotations from the following set:
"acquire-RCpc’, "acquire-RCsc", "release-RCpc", and "release-RCsc". An AMO or LR instruction with aq
set has an "acquire-RCsc" annotation. An AMO or SC instruction with rl set has a "release-RCsc"
annotation. An AMO, LR, or SC instruction with both aq and rl set has both "acquire-RCsc" and

"release-RCsc" annotations.

For convenience, we use the term "acquire annotation" to refer to an acquire-RCpc annotation or an
acquire-RCsc annotation. Likewise, a "release annotation" refers to a release-RCpc annotation or a
release-RCsc annotation. An "RCpc annotation” refers to an acquire-RCpc annotation or a release-
RCpc annotation. An RCsc annotation refers to an acquire-RCsc annotation or a release-RCsc
annotation.

In the memory model literature, the term "RCpc" stands for release consistency with
processor-consistent synchronization operations, and the term "RCsc" stands for release
| y consistency with sequentially consistent synchronization operations.

While there are many different definitions for acquire and release annotations in the
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literature, in the context of RVWMO these terms are concisely and completely defined by
Preserved Program Order rules 5-7.

'RCpc" annotations are currently only used when implicitly assigned to every memory
access per the standard extension "Ztso" (Chapter 18). Furthermore, although the ISA does
not currently contain native load-acquire or store-release instructions, nor RCpc variants
thereof, the RVWMO model itself is designed to be forwards-compatible with the potential
addition of any or all of the above into the ISA in a future extension.

17.1.2. Syntactic Dependencies

The definition of the RVWMO memory model depends in part on the notion of a syntactic
dependency, defined as follows.

In the context of defining dependencies, a register refers either to an entire general-purpose register,
some portion of a CSR, or an entire CSR. The granularity at which dependencies are tracked through
CSRs is specific to each CSR and is defined in Section 17.2.

Syntactic dependencies are defined in terms of instructions' source registers, instructions' destination
registers, and the way instructions carry a dependency from their source registers to their destination
registers. This section provides a general definition of all of these terms; however, Section 17.3 provides
a complete listing of the specifics for each instruction.

In general, a register r other than x@ is a source register for an instruction i if any of the following hold:

- In the opcode of i, rs1, rs2, or rs3is setto r

- iis a CSR instruction, and in the opcode of i, csr is set to r, unless i is CSRRW or CSRRWI and rd is
set to x0

- risa CSR and an implicit source register for i, as defined in Section 17.3

- ris a CSR that aliases with another source register for i

Memory instructions also further specify which source registers are address source registers and which
are data source registers.

In general, a register r other than x@ is a destination register for an instruction i if any of the following
hold:

- In the opcode of i, rd is set to r

- iis a CSR instruction, and in the opcode of i, csr is set to r, unless i is CSRRS or CSRRC and rsl is
set to X0 or i is CSRRSI or CSRRCI and uimm{[4:0] is set to zero.

- risa CSR and an implicit destination register for i, as defined in Section 17.3

- ris a CSR that aliases with another destination register for i

Most non-memory instructions carry a dependency from each of their source registers to each of their
destination registers. However, there are exceptions to this rule; see Section 17.3.

Instruction j has a syntactic dependency on instruction i via destination register s of i and source
register r of j if either of the following hold:

- s is the same as r, and no instruction program-ordered between i and j has r as a destination
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register
« There is an instruction m program-ordered between i and j such that all of the following hold:
1. jhas a syntactic dependency on m via destination register g and source register r
2. m has a syntactic dependency on i via destination register s and source register p
3. mcarries a dependency from p to q

Finally, in the definitions that follow, let a and b be two memory operations, and let i and j be the
instructions that generate a and b, respectively.

b has a syntactic address dependency on a if r is an address source register for j and j has a syntactic
dependency on i via source register r

b has a syntactic data dependency on a if b is a store operation, r is a data source register for j, and j has a
syntactic dependency on i via source register r

b has a syntactic control dependency on a if there is an instruction m program-ordered between i and j
such that m is a branch or indirect jump and m has a syntactic dependency on i.

Generally speaking, non-AMO load instructions do not have data source registers, and
unconditional non-AMO store instructions do not have destination registers. However, a

Dy successful SC instruction is considered to have the register specified in rd as a destination
register, and hence it is possible for an instruction to have a syntactic dependency on a
successful SC instruction that precedes it in program order.

17.1.3. Preserved Program Order

The global memory order for any given execution of a program respects some but not all of each hart’s
program order. The subset of program order that must be respected by the global memory order is
known as preserved program order.

The complete definition of preserved program order is as follows (and note that AMOs are
simultaneously both loads and stores): memory operation a precedes memory operation b in preserved
program order (and hence also in the global memory order) if a precedes b in program order, a and b
both access regular main memory (rather than 1/O regions), and any of the following hold:

- Overlapping-Address Orderings:

1. bisastore, and a and b access overlapping memory addresses

2. a and b are loads, x is a byte read by both a and b, there is no store to x between a and b in
program order, and a and b return values for x written by different memory operations

3. ais generated by an AMO or SC instruction, b is a load, and b returns a value written by a
- Explicit Synchronization

4. There is a FENCE instruction that orders a before b

5. a has an acquire annotation

6. b has a release annotation

7. a and b both have RCsc annotations

8. ais paired with b
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- Syntactic Dependencies
9. b has a syntactic address dependency on a
10. b has a syntactic data dependency on a
11. b is a store, and b has a syntactic control dependency on a
- Pipeline Dependencies

12. b is a load, and there exists some store m between a and b in program order such that m has an
address or data dependency on a, and b returns a value written by m

13. b is a store, and there exists some instruction m between a and b in program order such that m
has an address dependency on a

17.1.4. Memory Model Axioms

An execution of a RISC-V program obeys the RVWMO memory consistency model only if there exists
a global memory order conforming to preserved program order and satisfying the load value axiom, the
atomicity axiom, and the progress axiom.

Load Value Axiom

Each byte of each load i returns the value written to that byte by the store that is the latest in global
memory order among the following stores:
1. Stores that write that byte and that precede i in the global memory order

2. Stores that write that byte and that precede i in program order

Atomicity Axiom

If rand w are paired load and store operations generated by aligned LR and SC instructions in a hart h,
s is a store to byte x, and r returns a value written by s, then s must precede w in the global memory
order, and there can be no store from a hart other than h to byte x following s and preceding w in the
global memory order.

The Atomicity Axiom theoretically supports LR/SC pairs of different widths and to

y mismatched addresses, since implementations are permitted to allow SC operations to

EI succeed in such cases. However, in practice, we expect such patterns to be rare, and their
use is discouraged.

Progress Axiom
No memory operation may be preceded in the global memory order by an infinite sequence of other
memory operations.

17.2. CSR Dependency Tracking Granularity

Table 12. Granularities at which syntactic dependencies are tracked through CSRs

Name Portions Tracked as Independent Units  Aliases

fflags Bits 4, 3,2,1,0 fesr
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Name Portions Tracked as Independent Units  Aliases
frm entire CSR fesr
fesr Bits 7-5,4,3,2,1,0 fflags, frm

Note: read-only CSRs are not listed, as they do not participate in the definition of syntactic
dependencies.

17.3. Source and Destination Register Listings

This section provides a concrete listing of the source and destination registers for each instruction.
These listings are used in the definition of syntactic dependencies in Section 17.1.2.

The term "accumulating CSR" is used to describe a CSR that is both a source and a destination register,
but which carries a dependency only from itself to itself.

Instructions carry a dependency from each source register in the "Source Registers" column to each
destination register in the "Destination Registers" column, from each source register in the "Source
Registers" column to each CSR in the "Accumulating CSRs" column, and from each CSR in the
"Accumulating CSRs" column to itself, except where annotated otherwise.

Key:

- *Address source register

- PData source register

- T The instruction does not carry a dependency from any source register to any destination register
- ¥ The instruction carries dependencies from source register(s) to destination register(s) as

specified

Table 13. RV32I Base Integer Instruction Set

Source Registers Destination Registers Accumulating CSRs

LUI rd
AUIPC rd
JAL rd
JALRT rsl rd
BEQ rsl, rs2

BNE rsl, rs2

BLT rsl, rs2

BGE rsl, rs2

BLTU rsl, rs2

BGEU rsl, rs2

LB T rs1”® rd
LHT rs1? rd
Lw 1 rs1? rd
LBU T rs1”® rd
LHU T rs1? rd
SB rs1% rs2®
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SH

SW
ADDI
SLTI
SLTIU
XORI
ORI
ANDI
SLLI
SRLI
SRAI
ADD
SUB

SLL

SLT
SLTU
XOR
SRL
SRA

OR

AND
FENCE
FENCE.I
ECALL
EBREAK
CSRRWH
CSRRS*
CSRRC*

Source Registers
rsl1? rs2 P
rs1”, rs2 P
rsl

rsl

rsl

rsl

rsl

rsl

rsl

rsl

rsl

rsl, rs2
rsl, rs2
rsl, rs2
rsl, rs2
rsl, rs2
rsl, rs2
rsl, rs2
rsl, rs2
rsl, rs2

rsl, rs2

rsl, csr
rsl, csr

rsl, csr

Destination Registers Accumulating CSRs

rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd
rd

rd, csr
rd ,csr

rd”, esr

“unless rd=x0
“unless rs1=x@

“unless rsl=x@

* carries a dependency from rsl to csr and from csr to rd

CSRRWI #
CSRRSI #
CSRRCI #

LWU T
LD T

SD

SLLI
SRLI
SRAI
ADDIW

CcSr
cSr

cSr

Source Registers
rsl®

rs1®

rs1* rs2 P

rsl

rsl

rsl

rsl

rd, csr
rd, esr

rd, csr

Table 14.

“unless rd=x0
“unless uimm([4:0]=0

“unless uimm[4:0]=0

RV64I Base Integer Instruction Set

Destination Registers Accumulating CSRs
rd

rd

rd
rd
rd
rd
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SLLIW
SRLIW
SRAIW
ADDW
SUBW
SLLW
SRLW
SRAW

MUL
MULH
MULHSU
MULHU
DIV
DIVU
REM
REMU

MULW
DIVW
DIVUW
REMW
REMUW

LRWT

SC.wt
AMOSWAP.WT
AMOADD.WT
AMOXORWT
AMOAND.WT
AMOORWT
AMOMIN.WT
AMOMAX.WT
AMOMINU.WT
AMOMAXU.WT
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Source Registers Destination Registers Accumulating CSRs
rsl rd
rsl rd
rsl rd
rsl, rs2 rd
rsl, rs2 rd
rsl, rs2 rd
rsl, rs2 rd
rsl, rs2 rd

Table 15. RV32M Standard Extension

Source Registers Destination Registers Accumulating CSRs
rsl, rs2 rd
rsl, rs2 rd
rsl, rs2 rd
rsl, rs2 rd
rsl, rs2 rd
rsl, rs2 rd
rsl, rs2 rd
rsl, rs2 rd

Table 16. RV64M Standard Extension

Source Registers Destination Registers Accumulating CSRs
rsl, rs2 rd
rsl, rs2 rd
rsl, rs2 rd
rsl, rs2 rd
rsl, rs2 rd

Table 17. RV32A Standard Extension

Source Registers Destination Registers Accumulating CSRs
rsl® rd

rs1? rs2 P rd” " if successful
rs1® rs2P rd

rsl1® rs2® rd

rs1? rs2 P rd

rsl1® rs2P rd

rsl® rs2” rd

rs1? rs2 P rd

rsl® rs2® rd

rsl1® rs2® rd

rs1® rs2 P rd

Table 18. RV64A Standard Extension
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Source Registers Destination Registers Accumulating CSRs

LR.DT rsl® rd
SC.DT rs1” rs2 P rd’
AMOSWAP.DY rs1®, rs2” rd
AMOADD.DT rs1® rs2 P rd
AMOXOR.DT rs1® rs2® rd
AMOAND.DT rs1*, rs2” rd
AMOOR.DT rs1® rs2P rd
AMOMIN.DT rs1® rs2® rd
AMOMAX.DT rs1*, rs2” rd
AMOMINU.DT rs1? rs2P rd
AMOMAXU.DT rs1® rs2® rd

Table 19. RV32F Standard Extension

Source Registers Destination Registers Accumulating CSRs

FLWT rsl® rd
FSW sl rs2®
FMADD.S rsl, rs2, rs3, frm’ rd NV, OF, UF, NX
FMSUB.S rsl, rs2, rs3, frm’ rd NV, OF, UF, NX
FNMSUB.S rsl, rs2, rs3, frm’ rd NV, OF, UF, NX
FNMADD.S rsl, rs2, rs3, frm’ rd NV, OF, UF, NX
FADD.S rsl, rs2, frm” rd NV, OF, NX
FSUB.S rsl, rs2, frm’ rd NV, OF, NX
FMUL.S rsl, rs2, frm’ rd NV, OF, UF, NX
FDIV.S rsl, rs2, frm’ rd NV, DZ, OF, UF, NX
FSQRT.S rsl, frm’ rd NV, NX
FSGNJ.S rsl, rs2 rd
FSGNJN.S rsl, rs2 rd
FSGNJX.S rsl, rs2 rd
FMIN.S rsl, rs2 rd NV
FMAX.S rsl, rs2 rd NV
FCVT.W.S rsl, frm’ rd NV, NX
FCVT.WU.S rsl, frm’ rd NV, NX
FMV.X.W rsl rd
FEQ.S rsl, rs2 rd NV
FLT.S rsl, rs2 rd NV
FLE.S rsl, rs2 rd NV
FCLASS.S rsl rd
FCVT.S.W rsl, frm’ rd NX
FCVT.S.WU rsl, frm’ rd NX
FMV.W.X rsl rd

Table 20. RV64F Standard Extension
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“if successful

‘if rm=111
‘if rm=111
‘if rm=111
‘if rm=111
‘if rm=111
‘if rm=111
‘if rm=111
‘if rm=111

‘if rm=111

‘if rm=111
“if rm=111

“if rm=111

‘if rm=111



FCVT.L.S
FCVT.LU.S
FCVT.S.L
FCVT.S.LU

FLDT

FSD
FMADD.D
FMSUB.D
FNMSUB.D
FNMADD.D
FADD.D
FSUB.D
FMUL.D
FDIV.D
FSQRT.D
FSGNJ.D
FSGNJN.D
FSGNJX.D
FMIN.D
FMAX.D
FCVT.S.D
FCVT.D.S
FEQ.D
FLT.D
FLE.D
FCLASS.D
FCVT.W.D
FCVT.WU.D
FCVT.D.W
FCVT.D.WU

FCVT.L.D
FCVT.LU.D
FMV.X.D
FCVT.D.L
FCVT.D.LU
FMV.D.X

Source Registers
rsl, frm’
rsl, frm’
rsl, frm’

rsl, frm”

Source Registers
rs1”®

rs1? rs2P

rsl, rs2, rs3, frm”
rsl, rs2, rs3, frm
rsl, rs2, rs3, frm’
rsl, rs2, rs3, frm”
rsl, rs2, frm’

rsl, rs2, frm’

rsl, rs2, frm’

rsl, rs2, frm’

rsl, frm’
181, rs2
rsl, rs2
rsl, rs2
rsl, rs2
rsl, rs2
rsl, frm’
rsl

rsl, rs2
rsl, rs2
rsl, rs2
rsl

rsl,

rsl, frm’
rsl

rsl

Source Registers
rsl, frm’

rsl, frm’

rsl

rsl, frm’

rsl, frm’

rsl
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Destination Registers Accumulating CSRs

rd NV, NX ‘if rm=111
rd NV, NX ‘if rm=111
rd NX if rm=111
rd NX “if rm=111

Table 21. RV32D Standard Extension

Destination Registers Accumulating CSRs

rd

rd NV, OF, UF, NX ‘if rm=111
rd NV, OF, UF, NX ‘if rm=111
rd NV, OF, UF, NX ‘if rm=111
rd NV, OF, UF, NX ‘if rm=111
rd NV, OF, NX ‘if rm=111
rd NV, OF, NX ‘if rm=111
rd NV, OF, UF, NX ‘if rm=111
rd NV, DZ, OF, UF, NX ‘if rm=111
rd NV, NX “if rm=111
rd

rd

rd

rd NV

rd NV

rd NV, OF, UF, NX “if rm=111
rd NV

rd NV

rd NV

rd NV

rd

rd NV, NX ‘if rm=111
rd NV, NX ‘if rm=111
rd

rd

Table 22. RV64D Standard Extension

Destination Registers Accumulating CSRs

rd NV, NX 'if rm=111
rd NV, NX if rm=111
rd

rd NX 'if rm=111
rd NX ‘if rm=111
rd
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Chapter 18. "Ztso" Extension for Total Store Ordering, Version 1.0

This chapter defines the "Ztso" extension for the RISC-V Total Store Ordering (RVTSO) memory
consistency model. RVTSO is defined as a delta from RVWMO, which is defined in Section 17.1.

The Ztso extension is meant to facilitate the porting of code originally written for the x86

y or SPARC architectures, both of which use TSO by default. It also supports

EI implementations which inherently provide RVTSO behavior and want to expose that fact to
software.

RVTSO makes the following adjustments to RVWMO:

- All load operations behave as if they have an acquire-RCpc annotation
- All store operations behave as if they have a release-RCpc annotation.

- All AMOs behave as if they have both acquire-RCsc and release-RCsc annotations.

These rules render all PPO rules except 4-7 redundant. They also make redundant any
non-I/0 fences that do not have both PW and SR set. Finally, they also imply that no
memory operation will be reordered past an AMO in either direction.

Dy In the context of RVTSO, as is the case for RVWMO, the storage ordering annotations are
concisely and completely defined by PPO rules 5-7. In both of these memory models, it is
the Section 17.14.1 that allows a hart to forward a value from its store buffer to a
subsequent (in program order) load—that is to say that stores can be forwarded locally
before they are visible to other harts.

Additionally, if the Ztso extension is implemented, then vector memory instructions in the V
extension and Zve family of extensions follow RVTSO at the instruction level. The Ztso extension does
not strengthen the ordering of intra-instruction element accesses.

In spite of the fact that Ztso adds no new instructions to the ISA, code written assuming RVTSO will
not run correctly on implementations not supporting Ztso. Binaries compiled to run only under Ztso
should indicate as such via a flag in the binary, so that platforms which do not implement Ztso can
simply refuse to run them.
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Chapter 19. "CMQ" Extensions for Base Cache Management Operation ISA, Version
1.0.0

19.1. Pseudocode for instruction semantics

The semantics of each instruction in the Instructions chapter is expressed in a SAIL-like syntax.

19.2. Introduction

Cache-management operation (or CMO) instructions perform operations on copies of data in the
memory hierarchy. In general, CMO instructions operate on cached copies of data, but in some cases, a
CMO instruction may operate on memory locations directly. Furthermore, CMO instructions are
grouped by operation into the following classes:

- A management instruction manipulates cached copies of data with respect to a set of agents that
can access the data

- A zero instruction zeros out a range of memory locations, potentially allocating cached copies of
data in one or more caches

- A prefetch instruction indicates to hardware that data at a given memory location may be accessed

in the near future, potentially allocating cached copies of data in one or more caches

This document introduces a base set of CMO ISA extensions that operate specifically on cache blocks
or the memory locations corresponding to a cache block; these are known as cache-block operation (or
CBO) instructions. Each of the above classes of instructions represents an extension in this
specification:

- The Zicbom extension defines a set of cache-block management instructions: CBO.INVAL,

CBO.CLEAN, and CBO.FLUSH
- The Zichoz extension defines a cache-block zero instruction: CB0O.ZERO

- The Zicbop extension defines a set of cache-block prefetch instructions: PREFETCH.R, PREFETCH. W,
and PREFETCH.I

The execution behavior of the above instructions is also modified by CSR state added by this
specification.

The remainder of this document provides general background information on CMO instructions and
describes each of the above ISA extensions.

The term CMO encompasses all operations on caches or resources related to caches. The

| yl term CBO represents a subset of CMOs that operate only on cache blocks. The first CMO
extensions only define CBOs.

19.3. Background

This chapter provides information common to all CMO extensions.

19.3.1. Memory and Caches

A memory location is a physical resource in a system uniquely identified by a physical address. An agent
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is a logic block, such as a RISC-V hart, accelerator, I/O device, etc., that can access a given memory
location.

Dy A given agent may not be able to access all memory locations in a system, and two
different agents may or may not be able to access the same set of memory locations.

A load operation (or store operation) is performed by an agent to consume (or modify) the data at a
given memory location. Load and store operations are performed as a result of explicit memory
accesses to that memory location. Additionally, a read transfer from memory fetches the data at the
memory location, while a write transfer to memory updates the data at the memory location.

A cache is a structure that buffers copies of data to reduce average memory latency. Any number of
caches may be interspersed between an agent and a memory location, and load and store operations
from an agent may be satisfied by a cache instead of the memory location.

Load and store operations are decoupled from read and write transfers by caches. For

y example, a load operation may be satisfied by a cache without performing a read transfer

EI from memory, or a store operation may be satisfied by a cache that first performs a read
transfer from memory.

Caches organize copies of data into cache blocks, each of which represents a contiguous, naturally
aligned power-of-two (or NAPOT) range of memory locations. A cache block is identified by any of the
physical addresses corresponding to the underlying memory locations. The capacity and organization
of a cache and the size of a cache block are both implementation-specific, and the execution
environment provides software a means to discover information about the caches and cache blocks in
a system. In the initial set of CMO extensions, the size of a cache block shall be uniform throughout
the system.

/4 In future CMO extensions, the requirement for a uniform cache block size may be relaxed.

Implementation techniques such as speculative execution or hardware prefetching may cause a given
cache to allocate or deallocate a copy of a cache block at any time, provided the corresponding physical
addresses are accessible according to the supported access type PMA and are cacheable according to
the cacheability PMA. Allocating a copy of a cache block results in a read transfer from another cache
or from memory, while deallocating a copy of a cache block may result in a write transfer to another
cache or to memory depending on whether the data in the copy were modified by a store operation.
Additional details are discussed in Coherent Agents and Caches.

19.3.2. Cache-Block Operations

A CBO instruction causes one or more operations to be performed on the cache blocks identified by
the instruction. In general, a CBO instruction may identify one or more cache blocks; however, in the
initial set of CMO extensions, CBO instructions identify a single cache block only.

A cache-block management instruction performs one of the following operations, relative to the copy
of a given cache block allocated in a given cache:
- An invalidate operation deallocates the copy of the cache block

- A clean operation performs a write transfer to another cache or to memory if the data in the copy of
the cache block have been modified by a store operation

- A flush operation atomically performs a clean operation followed by an invalidate operation
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Additional details, including the actual operation performed by a given cache-block management
instruction, are described in Cache-Block Management Instructions.

A cache-block zero instruction performs a set of store operations that write zeros to the set of bytes
corresponding to a cache block. Unless specified otherwise, the store operations generated by a cache-
block zero instruction have the same general properties and behaviors that other store instructions in
the architecture have. An implementation may or may not update the entire set of bytes atomically
with a single store operation. Additional details are described in Cache-Block Zero Instructions.

A cache-block prefetch instruction is a HINT to the hardware that software expects to perform a
particular type of memory access in the near future. Additional details are described in Cache-Block
Prefetch Instructions.

19.4. Coherent Agents and Caches

For a given memory location, a set of coherent agents consists of the agents for which all of the
following hold:

- Store operations from all agents in the set appear to be serialized with respect to each other
- Store operations from all agents in the set eventually appear to all other agents in the set

- Aload operation from an agent in the set returns data from a store operation from an agent in the
set (or from the initial data in memory)

The coherent agents within such a set shall access a given memory location with the same physical
address and the same physical memory attributes; however, if the coherence PMA for a given agent
indicates a given memory location is not coherent, that agent shall not be a member of a set of
coherent agents with any other agent for that memory location and shall be the sole member of a set of
coherent agents consisting of itself.

An agent who is a member of a set of coherent agents is said to be coherent with respect to the other
agents in the set. On the other hand, an agent who is not a member is said to be non-coherent with
respect to the agents in the set.

Caches introduce the possibility that multiple copies of a given cache block may be present in a system
at the same time. An implementation-specific mechanism keeps these copies coherent with respect to
the load and store operations from the agents in the set of coherent agents. Additionally, if a coherent
agent in the set executes a CBO instruction that specifies the cache block, the resulting operation shall
apply to any and all of the copies in the caches that can be accessed by the load and store operations
from the coherent agents.

An operation from a CBO instruction is defined to operate only on the copies of a cache

y block that are cached in the caches accessible by the explicit memory accesses performed

EI by the set of coherent agents. This includes copies of a cache block in caches that are
accessed only indirectly by load and store operations, e.g. coherent instruction caches.

The set of caches subject to the above mechanism form a set of coherent caches, and each coherent
cache has the following behaviors, assuming all operations are performed by the agents in a set of
coherent agents:

- A coherent cache is permitted to allocate and deallocate copies of a cache block and perform read
and write transfers as described in Memory and Caches
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- A coherent cache is permitted to perform a write transfer to memory provided that a store
operation has modified the data in the cache block since the most recent invalidate, clean, or flush
operation on the cache block

- At least one coherent cache is responsible for performing a write transfer to memory once a store
operation has modified the data in the cache block until the next invalidate, clean, or flush
operation on the cache block, after which no coherent cache is responsible (or permitted) to
perform a write transfer to memory until the next store operation has modified the data in the
cache block

- A coherent cache is required to perform a write transfer to memory if a store operation has
modified the data in the cache block since the most recent invalidate, clean, or flush operation on
the cache block and if the next clean or flush operation requires a write transfer to memory

The above restrictions ensure that a "clean” copy of a cache block, fetched by a read

y transfer from memory and unmodified by a store operation, cannot later overwrite the

EI copy of the cache block in memory updated by a write transfer to memory from a non-
coherent agent.

A non-coherent agent may initiate a cache-block operation that operates on the set of coherent caches
accessed by a set of coherent agents. The mechanism to perform such an operation is implementation-
specific.

19.4.1. Memory Ordering

Preserved Program Order

The preserved program order (abbreviated PPO) rules are defined by the RVWMO memory ordering
model. How the operations resulting from CMO instructions fit into these rules is described below.

For cache-block management instructions, the resulting invalidate, clean, and flush operations behave
as stores in the PPO rules subject to one additional overlapping address rule. Specifically, if a precedes
b in program order, then a will precede b in the global memory order if:

- aisaninvalidate, clean, or flush, b is a load, and a and b access overlapping memory addresses

The above rule ensures that a subsequent load in program order never appears in the

|y| global memory order before a preceding invalidate, clean, or flush operation to an
overlapping address.

Additionally, invalidate, clean, and flush operations are classified as W or O (depending on the
physical memory attributes for the corresponding physical addresses) for the purposes of predecessor

and successor sets in FENCE instructions. These operations are not ordered by other instructions that
order stores, e.g. FENCE.T and SFENCE . VMA.

For cache-block zero instructions, the resulting store operations behave as stores in the PPO rules and
are ordered by other instructions that order stores.

Finally, for cache-block prefetch instructions, the resulting operations are not ordered by the PPO
rules nor are they ordered by any other ordering instructions.
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Load Values

An invalidate operation may change the set of values that can be returned by a load. In particular, an
additional condition is added to the Load Value Axiom:

- If an invalidate operation i precedes a load r and operates on a byte x returned by r, and no store to
x appears between i and r in program order or in the global memory order, then r returns any of
the following values for x:

L If no clean or flush operations on x precede i in the global memory order, either the initial
value of x or the value of any store to x that precedes i

2. If no store to x precedes a clean or flush operation on x in the global memory order and if the
clean or flush operation on x precedes i in the global memory order, either the initial value of x
or the value of any store to x that precedes i

3. If a store to x precedes a clean or flush operation on x in the global memory order and if the
clean or flush operation on x precedes i in the global memory order, either the value of the
latest store to x that precedes the latest clean or flush operation on x or the value of any store to
x that both precedes i and succeeds the latest clean or flush operation on x that precedes i

4. The value of any store to x by a non-coherent agent regardless of the above conditions
The first three bullets describe the possible load values at different points in the global

Dy memory order relative to clean or flush operations. The final bullet implies that the load
value may be produced by a non-coherent agent at any time.

19.4.2. Traps

Execution of certain CMO instructions may result in traps due to CSR state, described in the Control
and Status Register State section, or due to the address translation and protection mechanisms. The
trapping behavior of CMO instructions is described in the following sections.

lllegal Instruction and Virtual Instruction Exceptions

Cache-block management instructions and cache-block zero instructions may raise illegal instruction
exceptions or virtual instruction exceptions depending on the current privilege mode and the state of
the CMO control registers described in the Control and Status Register State section.

Cache-block prefetch instructions raise neither illegal instruction exceptions nor virtual instruction
exceptions.

Page Fault, Guest-Page Fault, and Access Fault Exceptions

Similar to load and store instructions, CMO instructions are explicit memory access instructions that
compute an effective address. The effective address is ultimately translated into a physical address
based on the privilege mode and the enabled translation mechanisms, and the CMO extensions
impose the following constraints on the physical addresses in a given cache block:

- The PMP access control bits shall be the same for all physical addresses in the cache block, and if
write permission is granted by the PMP access control bits, read permission shall also be granted

- The PMAs shall be the same for all physical addresses in the cache block, and if write permission is
granted by the supported access type PMAs, read permission shall also be granted
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If the above constraints are not met, the behavior of a CBO instruction is UNSPECIFIED.

y This specification assumes that the above constraints will typically be met for main
EI memory regions and may be met for certain I/O regions.

The Zicboz extension introduces an additional supported access type PMA for cache-block zero
instructions. Main memory regions are required to support accesses by cache-block zero instructions;
however, I/O regions may specify whether accesses by cache-block zero instructions are supported.

A cache-block management instruction is permitted to access the specified cache block whenever a
load instruction or store instruction is permitted to access the corresponding physical addresses. If
neither a load instruction nor store instruction is permitted to access the physical addresses, but an
instruction fetch is permitted to access the physical addresses, whether a cache-block management
instruction is permitted to access the cache block is UNSPECIFIED. If access to the cache block is not
permitted, a cache-block management instruction raises a store page fault or store guest-page fault
exception if address translation does not permit any access or raises a store access fault exception
otherwise. During address translation, the instruction also checks the accessed bit and may either
raise an exception or set the bit as required.

The interaction between cache-block management instructions and instruction fetches
y will be specified in a future extension.

As implied by omission, a cache-block management instruction does not check the dirty
bit and neither raises an exception nor sets the bit.

A cache-block zero instruction is permitted to access the specified cache block whenever a store
instruction is permitted to access the corresponding physical addresses and when the PMAs indicate
that cache-block zero instructions are a supported access type. If access to the cache block is not
permitted, a cache-block zero instruction raises a store page fault or store guest-page fault exception if
address translation does not permit write access or raises a store access fault exception otherwise.
During address translation, the instruction also checks the accessed and dirty bits and may either raise
an exception or set the bits as required.

A cache-block prefetch instruction is permitted to access the specified cache block whenever a load
instruction, store instruction, or instruction fetch is permitted to access the corresponding physical
addresses. If access to the cache block is not permitted, a cache-block prefetch instruction does not
raise any exceptions and shall not access any caches or memory. During address translation, the
instruction does not check the accessed and dirty bits and neither raises an exception nor sets the bits.

When a page fault, guest-page fault, or access fault exception is taken, the relevant *tval CSR is written
with the faulting effective address (i.e. the same faulting address value as for other causes of these
exceptions).

Like a load or store instruction, a CMO instruction may or may not be permitted to access
a cache block based on the states of the MPRV, MPV, and MPP bits in mstatus and the SUM
y and MXR bits inmstatus, sstatus, and vsstatus.

E’ This specification expects that implementations will process cache-block management
instructions like store/AMO instructions, so store/AMO exceptions are appropriate for
these instructions, regardless of the permissions required.
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Address Misaligned Exceptions

CMO instructions do not generate address misaligned exceptions.

Breakpoint Exceptions and Debug Mode Entry

Unless otherwise defined by the debug architecture specification, the behavior of trigger modules with
respect to CMO instructions is UNSPECIFIED.

For the Zichom, Zichoz, and Zicbop extensions, this specification recommends the
following common trigger module behaviors:

- Type 6 address match triggers, i.e. tdatal.type=6 and mcontrol6.select=0, should
be supported
- Type 2 address/data match triggers, i.e. tdatal.type=2, should be unsupported

- The size of a memory access equals the size of the cache block accessed, and the
compare values follow from the addresses of the NAPOT memory region corresponding
to the cache block containing the effective address

- Unless an encoding for a cache block is added to the mcontrolb.size field, an
address trigger should only match a memory access from a CBO instruction if
mcontrol6.size=0

If the Zichom extension is implemented, this specification recommends the following
additional trigger module behaviors:

- Implementing address match triggers should be optional

- Type 6 data match triggers, i.e. tdatal.type=6 and mcontrol6.select=1, should be

unsupported
Dy - Memory accesses are considered to be stores, i.e. an address trigger matches only if
mcontrol6.store=1

If the Zicboz extension is implemented, this specification recommends the following
additional trigger module behaviors:
- Implementing address match triggers should be mandatory

- Type 6 data match triggers, i.e. tdatal.type=6 and mcontrol6.select=1, should be
supported, and implementing these triggers should be optional

- Memory accesses are considered to be stores, i.e. an address trigger matches only if

mcontrol6.store=1

If the Zicbop extension is implemented, this specification recommends the following
additional trigger module behaviors:
- Implementing address match triggers should be optional

- Type 6 data match triggers, i.e. tdatal.type=b and mcontrolb.select=1, should be
unsupported

- Memory accesses may be considered to be loads or stores depending on the
implementation, i.e. whether an address trigger matches on these instructions when
mcontrol6.load=1ormcontrol6.store=1is implementation-specific
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This specification also recommends that the behavior of trigger modules with respect to
the Zichoz extension should be defined in version 1.0 of the debug architecture
specification. The behavior of trigger modules with respect to the Zichom and Zicbop
extensions is expected to be defined in future extensions.

Hypervisor Extension

For the purposes of writing the mtinst or htinst register on a trap, the following standard
transformation is defined for cache-block management instructions and cache-block zero
instructions:

31 20 19 15 14 12 11 7 6 0
operation 0O 0 0O 0O O| funct3 |O O O O O opcode

The operation field corresponds to the 12 most significant bits of the trapping instruction.

y As described in the hypervisor extension, a zero may be written into mtinst or htinst
EI instead of the standard transformation defined above.

19.4.3. Effects on Constrained LR/SC Loops

The following event is added to the list of events that satisfy the eventuality guarantee provided by
constrained LR/SC loops, as defined in the A extension:

- Some other hart executes a cache-block management instruction or a cache-block zero instruction
to the reservation set of the LR instruction in H's constrained LR/SC loop.

The above event has been added to accommodate cache coherence protocols that cannot
distinguish between invalidations for stores and invalidations for cache-block
management operations.

y Aside from the above event, CMO instructions neither change the properties of

D constrained LR/SC loops nor modify the eventuality guarantee provided by them. For
example, executing a CMO instruction may cause a constrained LR/SC loop on any hart to
fail periodically or may cause a unconstrained LR/SC sequence on the same hart to fail
always. Additionally, executing a cache-block prefetch instruction does not impact the
eventuality guarantee provided by constrained LR/SC loops executed on any hart.

19.4.4. Software Discovery

The initial set of CMO extensions requires the following information to be discovered by software:

- The size of the cache block for management and prefetch instructions
- The size of the cache block for zero instructions

- CBIE support at each privilege level

Other general cache characteristics may also be specified in the discovery mechanism.

The RISC-V Instruction Set Manual Volume I | © RISC-V



19.5. Control and Status Register State | Page 103
19.5. Control and Status Register State

The CMO extensions rely on state in envcfg CSRs that will be defined in a future update to
| yl the privileged architecture. If this CSR update is not ratified, the CMO extension will
define its own CSRs.

Three CSRs control the execution of CMO instructions:

- menvcfg
- senvcfg
- henvcfg
The senvcfg register is used by all supervisor modes, including VS-mode. A hypervisor is responsible

for saving and restoring senvcfg on guest context switches. The henvefg register is only present if the
H-extension is implemented and enabled.

Each xenvcfg register (where x ism, s, or h) has the following generic format:

Table 23. Generic Format for xenvcfg CSRs

Bits Name Description

[5:4] (BIE Cache Block Invalidate instruction Enable
Enables the execution of the cache block invalidate instruction, CB0. INVAL, in a lower privilege mode:

- 00: The instruction raises an illegal instruction or virtual instruction exception
- 01: The instruction is executed and performs a flush operation
- 10: Reserved
- 11: The instruction is executed and performs an invalidate operation
[6] CBCFE  Cache Block Clean and Flush instruction Enable
Enables the execution of the cache block clean instruction, CBO.CLEAN, and the cache block flush
instruction, CBO.FLUSH, in a lower privilege mode:
- 0: The instruction raises an illegal instruction or virtual instruction exception
- 1: The instruction is executed

[7] (BZE Cache Block Zero instruction Enable
Enables the execution of the cache block zero instruction, CB0.ZERO, in a lower privilege mode:
- 0: The instruction raises an illegal instruction or virtual instruction exception

- 1: The instruction is executed

The xenvcfg registers control CBO instruction execution based on the current privilege mode and the
state of the appropriate CSRs, as detailed below.

A CBO.INVAL instruction executes or raises either an illegal instruction exception or a virtual
instruction exception based on the state of the xenvefg. CBIE fields:

// illegal instruction exceptions

if (((priv_mode != M) && (menvcfg.CBIE == 00)) ||
((priv_mode == U) && (senvcfg.CBIE == 00)))

{
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<raise illegal instruction exception>
}
// virtual instruction exceptions
else if (((priv_mode == VS) && (henvcfq.CBIE == 00)) ||
((priv_mode == VU) && ((henvcfg.CBIE == 00) || (senvcfg.CBIE == 00))))
{

<raise virtual instruction exception>

}

// execute instruction
else

{
if (((priv_mode !'= M) && (menvcfq.CBIE == 01)) ||
((priv_mode == U) && (senvcfg.CBIE == 01)) ||
((priv_mode == VS) && (henvcfg.CBIE == 01)) ||
((priv_mode == VU) && ((henvcfg.CBIE == 01) || (senvcfg.CBIE == 01))))
{

<execute CBO.INVAL and perform flush operation>

}

else

{

<execute CBO.INVAL and perform invalidate operation>

}
}

Until a modified cache block has updated memory, a CBO.INVAL instruction may expose
stale data values in memory if the CSRs are programmed to perform an invalidate
operation. This behavior may result in a security hole if lower privileged level software
performs an invalidate operation and accesses sensitive information in memory.

Dy To avoid such holes, higher privileged level software must perform either a clean or flush
operation on the cache block before permitting lower privileged level software to perform
an invalidate operation on the block. Alternatively, higher privileged level software may
program the CSRs so that CBO. INVAL either traps or performs a flush operation in a lower
privileged level.

A CBO.CLEAN or CBO.FLUSH instruction executes or raises an illegal instruction or virtual instruction
exception based on the state of the xenvefg. CBCFE bits:

// illegal instruction exceptions
if (((priv_mode != M) && !menvcfg.CBCFE) ||
((priv_mode == U) && !senvcfqg.CBCFE))
{
<raise illegal instruction exception>
}
// virtual instruction exceptions
else if (((priv_mode == VS) && 'henvcfg.CBCFE) ||
((priv_mode == VU) && !(henvcfg.CBCFE && senvcfg.CBCFE)))
{

<raise virtual instruction exception>

}

// execute instruction
else

{
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<execute CBO.CLEAN or CBO.FLUSH>
}

Finally, a CBO.ZERO instruction executes or raises an illegal instruction or virtual instruction exception
based on the state of the xenvefg. CBZE bits:

// illegal instruction exceptions

if (((priv_mode !'= M) && !menvcfq.CBZE) ||
((priv_mode == U) && !senvcfg.CBZE))

{

<raise illegal instruction exception>

}

// virtual instruction exceptions
else if (((priv_mode == VS) && !henvcfq.CBZE) ||

((priv_mode == VU) && !(henvcfg.CBZE && senvcfg.CBZE)))
{

<raise virtual instruction exception>

}
// execute instruction
else

{
<execute CBO.ZERO>

}

Each xenvcfg register is WARL; however, software should determine the legal values from the
execution environment discovery mechanism.

19.6. Extensions
CMO instructions are defined in the following extensions:

- Cache-Block Management Instructions
- Cache-Block Zero Instructions

- Cache-Block Prefetch Instructions

19.6.1. Cache-Block Management Instructions

Cache-block management instructions enable software running on a set of coherent agents to
communicate with a set of non-coherent agents by performing one of the following operations:

- An invalidate operation makes data from store operations performed by a set of non-coherent
agents visible to the set of coherent agents at a point common to both sets by deallocating all
copies of a cache block from the set of coherent caches up to that point

- A clean operation makes data from store operations performed by the set of coherent agents visible
to a set of non-coherent agents at a point common to both sets by performing a write transfer of a
copy of a cache block to that point provided a coherent agent performed a store operation that
modified the data in the cache block since the previous invalidate, clean, or flush operation on the
cache block
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- A flush operation atomically performs a clean operation followed by an invalidate operation

In the Zicbom extension, the instructions operate to a point common to all agents in the system. In
other words, an invalidate operation ensures that store operations from all non-coherent agents visible
to agents in the set of coherent agents, and a clean operation ensures that store operations from
coherent agents visible to all non-coherent agents.

The Zichom extension does not prohibit agents that fall outside of the above architectural
definition; however, software cannot rely on the defined cache operations to have the

Df desired effects with respect to those agents.

Future extensions may define different sets of agents for the purposes of performance
optimization.

These instructions operate on the cache block whose effective address is specified in rsl. The effective
address is translated into a corresponding physical address by the appropriate translation
mechanisms.

The following instructions comprise the Zicbom extension:

RV32 RV64 Mnemonic Instruction
v v cbo.clean base Cache Block Clean
v 4 cbo.flush base Cache Block Flush
v v cbo.inval base Cache Block Invalidate

19.6.2. Cache-Block Zero Instructions

Cache-block zero instructions store zeros to the set of bytes corresponding to a cache block. An
implementation may update the bytes in any order and with any granularity and atomicity, including
individual bytes.

Cache-block zero instructions store zeros independently of whether data from the
|y underlying memory locations are cacheable. In addition, this specification does not
constrain how the bytes are written.

These instructions operate on the cache block, or the memory locations corresponding to the cache
block, whose effective address is specified in rsl. The effective address is translated into a
corresponding physical address by the appropriate translation mechanisms.

The following instructions comprise the Zicboz extension:

RV32 RV64 Mnemonic Instruction

v v cbo.zero base Cache Block Zero

19.6.3. Cache-Block Prefetch Instructions

Cache-block prefetch instructions are HINTs to the hardware to indicate that software intends to
perform a particular type of memory access in the near future. The types of memory accesses are
instruction fetch, data read (i.e. load), and data write (i.e. store).

These instructions operate on the cache block whose effective address is the sum of the base address
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specified in rsI and the sign-extended offset encoded in imm/[11:0], where imm[4:0] shall equal 0b00@00.
The effective address is translated into a corresponding physical address by the appropriate
translation mechanisms.

Cache-block prefetch instructions are encoded as ORI instructions with rd equal to
| y 0b00000; however, for the purposes of effective address calculation, this field is also
interpreted as imm[4:0] like a store instruction.

The following instructions comprise the Zicbop extension:

RV32 RV64 Mnemonic Instruction
v v prefetch.i offset(base) Cache Block Prefetch for Instruction Fetch
v v prefetch.r offset(base) Cache Block Prefetch for Data Read
v v prefetch.w offset(base) Cache Block Prefetch for Data Write

19.7. Instructions

19.7.1. cbo.clean

Synopsis

Perform a clean operation on a cache block

Mnemonic
cbo.clean offset(base)

Encoding

31 20 19 15 14 12 11 7 6 0

0 00 00O O0OO0OO0OO0ODO0OTO 0" rsi 601 0|0 O OOOC|]OOCO1T 1T 11
CBO.CLEAN base CBO MISC-MEM

Description

A cbo.clean instruction performs a clean operation on the cache block whose effective address is
the base address specified in rsl. The offset operand may be omitted; otherwise, any expression that
computes the offset shall evaluate to zero. The instruction operates on the set of coherent caches
accessed by the agent executing the instruction.

Operation

TODO

19.7.2. cbo.flush

Synopsis

Perform a flush operation on a cache block

Mnemonic

cbo.flush offset(base)
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Encoding

31 20 19 15 14 12 11 7 6 0

0 00O0OOO0OODOTODOSTITO rs1 61 0|0 OO OO0 O0CO01T 1T 11
CBO.FLUSH base CBO MISC-MEM

Description

A cbo.flush instruction performs a flush operation on the cache block whose effective address is
the base address specified in rsl. The offset operand may be omitted; otherwise, any expression that
computes the offset shall evaluate to zero. The instruction operates on the set of coherent caches
accessed by the agent executing the instruction.

Operation

TODO

19.7.3. cbo.inval

Synopsis

Perform an invalidate operation on a cache block

Mnemonic
cbo.inval offset(base)

Encoding

31 20 19 15 14 12 11 7 6 0

60 00 00 O0OO0OO0OO0ODO0OO0OO rs1 61 0|0 OO OO0OC|0OO0CO01T 1T 11
CBO.INVAL base CBO MISC-MEM

Description

A cbo.inval instruction performs an invalidate operation on the cache block whose effective
address is the base address specified in rsl. The offset operand may be omitted; otherwise, any
expression that computes the offset shall evaluate to zero. The instruction operates on the set of
coherent caches accessed by the agent executing the instruction. Depending on CSR programming,
the instruction may perform a flush operation instead of an invalidate operation.

Operation

TODO

19.7.4. cbo.zero

Synopsis

Store zeros to the full set of bytes corresponding to a cache block

Mnemonic

cbo.zero offset(base)
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Encoding

31 20 19 15 14 12 11 7 6 0

000 O0OOO0OOOTORTTO0O rs1 61 0|0 OO OO0 O0CO01T 1T 11
CBO.ZERO base CBO MISC-MEM

Description

A cbo.zero instruction performs stores of zeros to the full set of bytes corresponding to the cache
block whose effective address is the base address specified in rsl. The offset operand may be
omitted; otherwise, any expression that computes the offset shall evaluate to zero. An
implementation may or may not update the entire set of bytes atomically.

Operation

TODO

19.7.5. prefetch.i

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by an instruction fetch in the
near future

Mnemonic

prefetch.i offset(base)

Encoding

31 25 24 20 19 15 14 12 1 7 6 0
imm[11:5] 0O 0 0 0O rs1 7 170/0 0 0000 01T 00 11
offset[11:5] PREFETCH.I base ORI offset[4:0] OP-IMM

Description

A prefetch.i instruction indicates to hardware that the cache block whose effective address is the
sum of the base address specified in rsI and the sign-extended offset encoded in imm[11:0], where
imm[4:0] equals 8b@000W, is likely to be accessed by an instruction fetch in the near future.

An implementation may opt to cache a copy of the cache block in a cache accessed by an

| y instruction fetch in order to improve memory access latency, but this behavior is not
required.
Operation
TODO

19.7.6. prefetch.r

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by a data read in the near
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future

Mnemonic

prefetch.r offset(base)

Encoding

31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] 0O 0 0 0 1 rs1 71 0f0 O OO OfO0O O 1 O O 11
offset[11:5] PREFETCH.R base ORI offset[4:0] OP-IMM

Description

A prefetch.r instruction indicates to hardware that the cache block whose effective address is the
sum of the base address specified in rsI and the sign-extended offset encoded in imm[11:0], where
imm[4:0] equals 0b0000W, is likely to be accessed by a data read (i.e. load) in the near future.

—y An implementation may opt to cache a copy of the cache block in a cache accessed by a
J data read in order to improve memory access latency, but this behavior is not required.
Operation
TODO

19.7.7. prefetch.w

Synopsis
Provide a HINT to hardware that a cache block is likely to be accessed by a data write in the near
future

Mnemonic
prefetch.w offset(base)

Encoding

31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] 0O 0 0 11 rs1 71 0{0 0O OO O[O O 1 O O 11
offset[11:5] PREFETCH.W base ORI offset[4:0] OP-IMM

Description

A prefetch.w instruction indicates to hardware that the cache block whose effective address is the
sum of the base address specified in rsI and the sign-extended offset encoded in imm[11:0], where
imm[4:0] equals 0b0000W, is likely to be accessed by a data write (i.e. store) in the near future.

y An implementation may opt to cache a copy of the cache block in a cache accessed by a
EI data write in order to improve memory access latency, but this behavior is not required.

Operation

TODO
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Chapter 20. "F" Extension for Single-Precision Floating-Point, Version 2.2

This chapter describes the standard instruction-set extension for single-precision floating-point,
which is named "F" and adds single-precision floating-point computational instructions compliant
with the IEEE 754-2008 arithmetic standard (ANSI/IEEE Std 754-2008, IEEE Standard for Floating-
Point Arithmetic, 2008). The F extension depends on the "Zicsr" extension for control and status
register access.

20.1. F Register State

The F extension adds 32 floating-point registers, f@-f31, each 32 bits wide, and a floating-point
control and status register fesr, which contains the operating mode and exception status of the
floating-point unit. This additional state is shown in Table 24. We use the term FLEN to describe the
width of the floating-point registers in the RISC-V ISA, and FLEN=32 for the F single-precision
floating-point extension. Most floating-point instructions operate on values in the floating-point
register file. Floating-point load and store instructions transfer floating-point values between registers
and memory. Instructions to transfer values to and from the integer register file are also provided.

We considered a unified register file for both integer and floating-point values as this
simplifies software register allocation and calling conventions, and reduces total user
state. However, a split organization increases the total number of registers accessible with
a given instruction width, simplifies provision of enough regfile ports for wide superscalar

Q issue, supports decoupled floating-point-unit architectures, and simplifies use of internal
floating-point encoding techniques. Compiler support and calling conventions for split
register file architectures are well understood, and using dirty bits on floating-point
register file state can reduce context-switch overhead.

Table 24. RISC-V standard F extension single-precision floating-point state

FLEN-1 (0]
fo
fl
2
3
4
f5
f6
7
8
9
f10
f11
f12
13
f14
15
f16
f17
f18
f19

20
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FLEN-1 (0]
21
22
23
24
25
26
27
28
29
30
31
FLEN
31 0
fesr

32

20.2. Floating-Point Control and Status Register

The floating-point control and status register, fesr, is a RISC-V control and status register (CSR). It is a
32-bit read/write register that selects the dynamic rounding mode for floating-point arithmetic
operations and holds the accrued exception flags, as shown in Floating-Point Control and Status
Register.

31 8 7 5 4 3 2 1.0
| ) ) ) ) ) ) ) ) ) ) .Rese.rved. ) ) ) ) ) ) ) ) ) ) |R0un.ding Mode| NV | Dz | OF | UF | NX |
24 3 1 1 1 1

Figure 2. Floating-point control and status register

The fesr register can be read and written with the FRCSR and FSCSR instructions, which are
assembler pseudoinstructions built on the underlying CSR access instructions. FRCSR reads fcsr by
copying it into integer register rd. FSCSR swaps the value in fesr by copying the original value into
integer register rd, and then writing a new value obtained from integer register rsI into fcsr.

The fields within the fcsr can also be accessed individually through different CSR addresses, and
separate assembler pseudoinstructions are defined for these accesses. The FRRM instruction reads the
Rounding Mode field frm (fcsr bits 7—5) and copies it into the least-significant three bits of integer
register rd, with zero in all other bits. FSRM swaps the value in frm by copying the original value into
integer register rd, and then writing a new value obtained from the three least-significant bits of
integer register rsI into frm. FRFLAGS and FSFLAGS are defined analogously for the Accrued
Exception Flags field fflags (fesr bits 4—0).

Bits 31—8 of the fcsr are reserved for other standard extensions. If these extensions are not present,
implementations shall ignore writes to these bits and supply a zero value when read. Standard
software should preserve the contents of these bits.

Floating-point operations use either a static rounding mode encoded in the instruction, or a dynamic
rounding mode held in frm. Rounding modes are encoded as shown in Table 25. A value of 111 in the
instruction’s rm field selects the dynamic rounding mode held in frm. The behavior of floating-point
instructions that depend on rounding mode when executed with a reserved rounding mode is reserved,
including both static reserved rounding modes (101-110) and dynamic reserved rounding modes (101-
111). Some instructions, including widening conversions, have the rm field but are nevertheless
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mathematically unaffected by the rounding mode; software should set their rm field to RNE (000) but
implementations must treat the rm field as usual (in particular, with regard to decoding legal vs.
reserved encodings).

Table 25. Rounding mode encoding.

Rounding Mode Mnemonic Meaning

000 RNE Round to Nearest, ties to Even

001 RTZ Round towards Zero

010 RDN Round Down (towards -e)

011 RUP Round Up (towards +eo)

100 RMM Round to Nearest, ties to Max Magnitude

101 Reserved for future use.

110 Reserved for future use.

111 DYN In instruction’s rm field, selects dynamic rounding mode; In Rounding Mode register, reserved.

The C99 language standard effectively mandates the provision of a dynamic rounding
mode register. In typical implementations, writes to the dynamic rounding mode CSR state
will serialize the pipeline. Static rounding modes are used to implement specialized
arithmetic operations that often have to switch frequently between different rounding
modes.

Dy The ratified version of the F spec mandated that an illegal-instruction exception was
raised when an instruction was executed with a reserved dynamic rounding mode. This
has been weakened to reserved, which matches the behavior of static rounding-mode
instructions. Raising an illegal-instruction exception is still valid behavior when
encountering a reserved encoding, so implementations compatible with the ratified spec
are compatible with the weakened spec.

The accrued exception flags indicate the exception conditions that have arisen on any floating-point
arithmetic instruction since the field was last reset by software, as shown in Table 26. The base RISC-V
ISA does not support generating a trap on the setting of a floating-point exception flag.

Table 26. Accrued exception flag encoding.

Flag Mnemonic  Flag Meaning

NV Invalid Operation
DZ Divide by Zero
OF Overflow

UF Underflow

NX Inexact

As allowed by the standard, we do not support traps on floating-point exceptions in the F

y extension, but instead require explicit checks of the flags in software. We considered

EI adding branches controlled directly by the contents of the floating-point accrued exception
flags, but ultimately chose to omit these instructions to keep the ISA simple.

20.3. NaN Generation and Propagation

Except when otherwise stated, if the result of a floating-point operation is NaN, it is the canonical
NaN. The canonical NaN has a positive sign and all significand bits clear except the MSB, a.k.a. the
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quiet bit. For single-precision floating-point, this corresponds to the pattern 0x7fc00000.

We considered propagating NaN payloads, as is recommended by the standard, but this
decision would have increased hardware cost. Moreover, since this feature is optional in
the standard, it cannot be used in portable code.

(2

Implementors are free to provide a NaN payload propagation scheme as a nonstandard
extension enabled by a nonstandard operating mode. However, the canonical NaN scheme
described above must always be supported and should be the default mode.

We require implementations to return the standard-mandated default values in the case
of exceptional conditions, without any further intervention on the part of user-level
y software (unlike the Alpha ISA floating-point trap barriers). We believe full hardware
EI handling of exceptional cases will become more common, and so wish to avoid
complicating the user-level ISA to optimize other approaches. Implementations can

always trap to machine-mode software handlers to provide exceptional default values.

20.4. Subnormal Arithmetic
Operations on subnormal numbers are handled in accordance with the IEEE 754-2008 standard.

In the parlance of the IEEE standard, tininess is detected after rounding.

Df Detecting tininess after rounding results in fewer spurious underflow signals.

20.5. Single-Precision Load and Store Instructions

Floating-point loads and stores use the same base+offset addressing mode as the integer base ISAs,
with a base address in register rsI and a 12-bit signed byte offset. The FLW instruction loads a single-
precision floating-point value from memory into floating-point register rd. FSW stores a single-
precision value from floating-point register rs2 to memory.

31 20 19 15 14 12 11 7 6 0
imm[11:0] rsi width rd opcode
12 5 3 5 7
offset[11:0] base W dest LOAD-FP
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] rs2 rsi width imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base W offset[4:0] STORE-FP

FLW and FSW are only guaranteed to execute atomically if the effective address is naturally aligned.

FLW and FSW do not modify the bits being transferred; in particular, the payloads of non-canonical
NaNs are preserved.

As described in Section 2.6, the execution environment defines whether misaligned floating-point
loads and stores are handled invisibly or raise a contained or fatal trap.

20.6. Single-Precision Floating-Point Computational Instructions
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Floating-point arithmetic instructions with one or two source operands use the R-type format with the
OP-FP major opcode. FADD.S and FMUL.S perform single-precision floating-point addition and
multiplication respectively, between rsl and rs2. FSUB.S performs the single-precision floating-point
subtraction of rs2 from rsl. FDIV.S performs the single-precision floating-point division of rsI by rs2.
FSQRT.S computes the square root of rsl. In each case, the result is written to rd.

The 2-bit floating-point format field fmt is encoded as shown in Table 27. It is set to S (00) for all
instructions in the F extension.

Table 27. Format field encoding

fmtfield =~ Mnemonic Meaning

00 S 32-bit single-precision
01 D 64-bit double-precision
10 H 16-bit half-precision

1 Q 128-bit quad-precision

All floating-point operations that perform rounding can select the rounding mode using the rm field
with the encoding shown in Table 25.

Floating-point minimum-number and maximum-number instructions FMIN.S and FMAX.S write,
respectively, the smaller or larger of rsI and rs2 to rd. For the purposes of these instructions only, the
value -0.0 is considered to be less than the value +0.0. If both inputs are NaNs, the result is the
canonical NaN. If only one operand is a NaN, the result is the non-NaN operand. Signaling NaN
inputs set the invalid operation exception flag, even when the result is not NaN.

Note that in version 2.2 of the F extension, the FMIN.S and FMAX.S instructions were

y amended to implement the proposed IEEE 754-201x minimumNumber and

EI maximumNumber operations, rather than the IEEE 754-2008 minNum and maxNum
operations. These operations differ in their handling of signaling NaNss.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FADD/FSUB S src2 src RM dest OP-FP
FMUL/FDIV S src2 srcf RM dest OP-FP
FSQRT S 0 src RM dest OP-FP
FMIN-MAX S src2 src MIN/MAX dest OP-FP

Floating-point fused multiply-add instructions require a new standard instruction format. R4-type
instructions specify three source registers (rsl, rs2, and rs3) and a destination register (rd). This format
is only used by the floating-point fused multiply-add instructions.

FMADD.S multiplies the values in rsI and rs2, adds the value in rs3, and writes the final result to rd.
FMADD.S computes (rs] x rs2) + rs3.

FMSUB.S multiplies the values in rsI and rs2, subtracts the value in rs3, and writes the final result to
rd. FMSUB.S computes (rs] x rs2) - rs3.

FNMSUB.S multiplies the values in rsI and rs2, negates the product, adds the value in rs3, and writes
the final result to rd. FNMSUB.S computes -(rs] x rs2) + rs3.

FNMADD.S multiplies the values in rsI and rs2, negates the product, subtracts the value in rs3, and
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writes the final result to rd. FNMADD.S computes -(rs] x rs2) - rs3.

The FNMSUB and FNMADD instructions are counterintuitively named, owing to the
naming of the corresponding instructions in MIPS-IV. The MIPS instructions were defined
to negate the sum, rather than negating the product as the RISC-V instructions do, so the

Dy naming scheme was more rational at the time. The two definitions differ with respect to
signed-zero results. The RISC-V definition matches the behavior of the x86 and ARM
fused multiply-add instructions, but unfortunately the RISC-V FNMSUB and FNMADD
instruction names are swapped compared to x86 and ARM.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
rs3 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
src3 S src2 src RM dest FINIJMADD/F[N]MSUB

The fused multiply-add (FMA) instructions consume a large part of the 32-bit instruction
encoding space. Some alternatives considered were to restrict FMA to only use dynamic
rounding modes, but static rounding modes are useful in code that exploits the lack of

Ely product rounding. Another alternative would have been to use rd to provide rs3, but this
would require additional move instructions in some common sequences. The current
design still leaves a large portion of the 32-bit encoding space open while avoiding having
FMA be non-orthogonal.

The fused multiply-add instructions must set the invalid operation exception flag when the
multiplicands are « and zero, even when the addend is a quiet NaN.

y The IEEE 754-2008 standard permits, but does not require, raising the invalid exception
EI for the operation « x 0 + gNaN.

20.7. Single-Precision Floating-Point Conversion and Move Instructions

Floating-point-to-integer and integer-to-floating-point conversion instructions are encoded in the OP-
FP major opcode space. FCVT.W.S or FCVT.L.S converts a floating-point number in floating-point
register rsl to a signed 32-bit or 64-bit integer, respectively, in integer register rd. FCVT.SW or
FCVT.S.L converts a 32-bit or 64-bit signed integer, respectively, in integer register rsI into a floating-
point number in floating-point register rd. FCVT.WU.S, FCVT.LU.S, FCVT.SWU, and FCVT.S.LU
variants convert to or from unsigned integer values. For XLEN>32, FCVT.W[U].S sign-extends the 32-
bit result to the destination register width. FCVT.L[U].S and FCVT.S.L[U] are RV64-only instructions. If
the rounded result is not representable in the destination format, it is clipped to the nearest value and
the invalid flag is set. Table 28 gives the range of valid inputs for FCVT.int.S and the behavior for
invalid inputs.

All floating-point to integer and integer to floating-point conversion instructions round according to
the rm field. A floating-point register can be initialized to floating-point positive zero using FCVT.S.W
rd, X0, which will never set any exception flags.

Table 28. Domains of float-to-integer conversions and behavior for invalid inputs

FCVT.W.S FCVT.WU.S FCVT.L.S FCVT.LU.S

Minimum valid input (after rounding) 231 0 263 0
Maximum valid input (after rounding) 2311 2321 2031 2641
Output for out-of-range negative input -231 0 -263 0
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FCVT.W.S FCVT.WU.S FCVT.L.S FCVT.LU.S

Output for -eo 2% 0 -263 0
Output for out-of-range positive input 2311 2321 2631 2641
Output for +eo or NaN 2311 232.1 2831 2641

All floating-point conversion instructions set the Inexact exception flag if the rounded result differs
from the operand value and the Invalid exception flag is not set.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FCVT.int.fmt S WI[U]/L[UID src RM dest OP-FP
FCVT.fmt.int S W[U]/L[U] src RM dest OP-FP

Floating-point to floating-point sign-injection instructions, FSGN]J.S, FSGNJN.S, and FSGNJX.S,
produce a result that takes all bits except the sign bit from rsl. For FSGNJ, the result’s sign bit is rs2's
sign bit; for FSGNJN, the result’s sign bit is the opposite of rs2's sign bit; and for FSGNJX, the sign bit is
the XOR of the sign bits of rsI and rs2. Sign-injection instructions do not set floating-point exception
flags, nor do they canonicalize NaNs. Note, FSGNJ.S rx, ry, ry moves ry to rx (assembler
pseudoinstruction FMV.S rx, ry); FSGNJN.S rx, ry, ry moves the negation of ry to rx (assembler
pseudoinstruction FNEG.S rx, ry); and FSGNJX.S rx, 1y, ry moves the absolute value of ry to rx
(assembler pseudoinstruction FABS.S rx, ry).

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FSGNJ S src2 src JINT/JX dest OP-FP

The sign-injection instructions provide floating-point MV, ABS, and NEG, as well as

supporting a few other operations, including the IEEE copySign operation and sign

manipulation in transcendental math function libraries. Although MV, ABS, and NEG only

y need a single register operand, whereas FSGN]J instructions need two, it is unlikely most

EI microarchitectures would add optimizations to benefit from the reduced number of

register reads for these relatively infrequent instructions. Even in this case, a

microarchitecture can simply detect when both source registers are the same for FSGNJ
instructions and only read a single copy.

Instructions are provided to move bit patterns between the floating-point and integer registers.
FMV.X.W moves the single-precision value in floating-point register rsI represented in IEEE 754-2008
encoding to the lower 32 bits of integer register rd. The bits are not modified in the transfer, and in
particular, the payloads of non-canonical NaNs are preserved. For RV64, the higher 32 bits of the
destination register are filled with copies of the floating-point number’s sign bit.

FMV.W.X moves the single-precision value encoded in IEEE 754-2008 standard encoding from the
lower 32 bits of integer register rsl to the floating-point register rd. The bits are not modified in the
transfer, and in particular, the payloads of non-canonical NaNs are preserved.

The FMV.W.X and FMV.X.W instructions were previously called FMV.S.X and FMV.X.S.

y The use of W is more consistent with their semantics as an instruction that moves 32 bits

EI without interpreting them. This became clearer after defining NaN-boxing. To avoid
disturbing existing code, both the W and S versions will be supported by tools.
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31 27 26 25 24 20 19 15 14 12 11 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FMV.X.W S 0 src 000 dest OP-FP
FMV.W.X S 0 src 000 dest OP-FP

The base floating-point ISA was defined so as to allow implementations to employ an
internal recoding of the floating-point format in registers to simplify handling of
subnormal values and possibly to reduce functional unit latency. To this end, the F
extension avoids representing integer values in the floating-point registers by defining
conversion and comparison operations that read and write the integer register file directly.
This also removes many of the common cases where explicit moves between integer and
floating-point registers are required, reducing instruction count and critical paths for
common mixed-format code sequences.

(R

20.8. Single-Precision Floating-Point Compare Instructions

Floating-point compare instructions (FEQ.S, FLT.S, FLE.S) perform the specified comparison between
floating-point registers (=, <, s) writing 1 to the integer register rd if the condition holds, and O
otherwise.

FLT.S and FLE.S perform what the IEEE 754-2008 standard refers to as signaling comparisons: that is,
they set the invalid operation exception flag if either input is NaN. FEQ.S performs a quiet comparison:
it only sets the invalid operation exception flag if either input is a signaling NaN. For all three
instructions, the result is O if either operand is NaN.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FCMP S src2 src EQ dest OP-FP
LT
LE

The F extension provides a < comparison, whereas the base ISAs provide a > branch
comparison. Because < can be synthesized from > and vice-versa, there is no
performance implication to this inconsistency, but it is nevertheless an unfortunate
incongruity in the ISA.

/4

20.9. Single-Precision Floating-Point Classify Instruction

The FCLASS.S instruction examines the value in floating-point register rsI and writes to integer
register rd a 10-bit mask that indicates the class of the floating-point number. The format of the mask
is described in Table 29. The corresponding bit in rd will be set if the property is true and clear
otherwise. All other bits in rd are cleared. Note that exactly one bit in rd will be set. FCLASS.S does not
set the floating-point exception flags.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FCLASS S 0 src 001 dest OP-FP

Table 29. Format of result of FCLASS instruction.
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rd bit Meaning
O rslis -ee,
1 rslisanegative normal number.
2 rslisanegative subnormal number.
3 rslis -0.
4 rslis +0.
5 rslisa positive subnormal number.
6 rslisa positive normal number.
7 rS1is +eo.
8  rslisasignaling NaN.

9 rslis a quiet NaN.
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Chapter 21. "D" Extension for Double-Precision Floating-Point, Version 2.2

This chapter describes the standard double-precision floating-point instruction-set extension, which
is named "D" and adds double-precision floating-point computational instructions compliant with the
IEEE 754-2008 arithmetic standard. The D extension depends on the base single-precision
instruction subset F.

21.1. D Register State

The D extension widens the 32 floating-point registers, f8-31, to 64 bits (FLEN=64 in Table 24. The f
registers can now hold either 32-bit or 64-bit floating-point values as described below in Section 21.2.

FLEN can be 32, 64, or 128 depending on which of the F, D, and Q extensions are
| yl supported. There can be up to four different floating-point precisions supported, including
H, F D, and Q.

21.2. NaN Boxing of Narrower Values

When multiple floating-point precisions are supported, then valid values of narrower n-bit types,
n<FLEN, are represented in the lower n bits of an FLEN-bit NaN value, in a process termed NaN-
boxing. The upper bits of a valid NaN-boxed value must be all 1s. Valid NaN-boxed n-bit values
therefore appear as negative quiet NaNs (qNaNs) when viewed as any wider m-bit value, n < m <
FLEN. Any operation that writes a narrower result to an 'f register must write all 1s to the uppermost
FLEN-n bits to yield a legal NaN-boxedvalue.

Software might not know the current type of data stored in a floating-point register but
has to be able to save and restore the register values, hence the result of using wider

Dy operations to transfer narrower values has to be defined. A common case is for callee-
saved registers, but a standard convention is also desirable for features including varargs,
user-level threading libraries, virtual machine migration, and debugging.

Floating-point n-bit transfer operations move external values held in IEEE standard formats into and
out of the f registers, and comprise floating-point loads and stores (FLn/FSn) and floating-point move
instructions (FMV.n.X/FMV.X.n). A narrower n-bit transfer, n<FLEN, into the f registers will create a
valid NaN-boxed value. A narrower n-bit transfer out of the floating-point registers will transfer the
lower n bits of the register ignoring the upper FLEN-n bits.

Apart from transfer operations described in the previous paragraph, all other floating-point operations
on narrower n-bit operations, n<FLEN, check if the input operands are correctly NaN-boxed, i.e., all
upper FLEN-n bits are 1. If so, the n least-significant bits of the input are used as the input value,
otherwise the input value is treated as an n-bit canonical NaN.

Earlier versions of this document did not define the behavior of feeding the results of
narrower or wider operands into an operation, except to require that wider saves and
restores would preserve the value of a narrower operand. The new definition removes this
implementation-specific behavior, while still accommodating both non-recoded and

Q recoded implementations of the floating-point unit. The new definition also helps catch
software errors by propagating NaNs if values are used incorrectly.

Non-recoded implementations unpack and pack the operands to IEEE standard format on
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the input and output of every floating-point operation. The NaN-boxing cost to a non-
recoded implementation is primarily in checking if the upper bits of a narrower operation
represent a legal NaN-boxed value, and in writing all Is to the upper bits of a result.

Recoded implementations use a more convenient internal format to represent floating-
point values, with an added exponent bit to allow all values to be held normalized. The cost
to the recoded implementation is primarily the extra tagging needed to track the internal
types and sign bits, but this can be done without adding new state bits by recoding NaNs
internally in the exponent field. Small modifications are needed to the pipelines used to
transfer values in and out of the recoded format, but the datapath and latency costs are
minimal. The recoding process has to handle shifting of input subnormal values for wide
operands in any case, and extracting the NaN-boxed value is a similar process to
normalization except for skipping over leading-1 bits instead of skipping over leading-O
bits, allowing the datapath muxing to be shared.

21.3. Double-Precision Load and Store Instructions

The FLD instruction loads a double-precision floating-point value from memory into floating-point
register rd. FSD stores a double-precision value from the floating-point registers to memory.

74 The double-precision value may be a NaN-boxed single-precision value.
31 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 width rd opcode
12 5 3 5 7
offset[11:0] base D dest LOAD-FP
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] rs2 rsi width imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base D offset[4:0] STORE-FP

FLD and FSD are only guaranteed to execute atomically if the effective address is naturally aligned
and XLEN=64.

FLD and FSD do not modify the bits being transferred; in particular, the payloads of non-canonical
NaNs are preserved.
21.4. Double-Precision Floating-Point Computational Instructions

The double-precision floating-point computational instructions are defined analogously to their
single-precision counterparts, but operate on double-precision operands and produce double-
precision results.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FADD/FSUB D src2 src RM dest OP-FP
FMUL/FDIV D src2 src RM dest OP-FP
FMIN-MAX D src2 src MIN/MAX dest OP-FP
FSQRT D 0 src RM dest OP-FP
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31 27 26 25 24 20 19 15 14 12 11 7 6 0
rs3 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
src3 D src2 src RM dest FINIMADD/F[NIMSUB

21.5. Double-Precision Floating-Point Conversion and Move Instructions

Floating-point-to-integer and integer-to-floating-point conversion instructions are encoded in the OP-
FP major opcode space. FCVT.W.D or FCVT.L.D converts a double-precision floating-point number in
floating-point register rsI to a signed 32-bit or 64-bit integer, respectively, in integer register rd.
FCVT.D.W or FCVT.D.L converts a 32-bit or 64-bit signed integer, respectively, in integer register rsl
into a double-precision floating-point number in floating-point register rd. FCVT.WU.D, FCVT.LU.D,
FCVT.D.WU, and FCVT.D.LU variants convert to or from unsigned integer values. For RV64,
FCVT.W[U].D sign-extends the 32-bit result. FCVT.L[U]D and FCVT.D.L[U] are RV64-only
instructions. The range of valid inputs for FCVT.int.D and the behavior for invalid inputs are the same
as for FCVT.int.S.

All floating-point to integer and integer to floating-point conversion instructions round according to
the rm field. Note FCVT.D.W[U] always produces an exact result and is unaffected by rounding mode.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FCVT.int.D D W[U]/L[U] src RM dest OP-FP
FCVT.D.int D W[U]/L[U] src RM dest OP-FP

The double-precision to single-precision and single-precision to double-precision conversion
instructions, FCVT.S.D and FCVT.D.S, are encoded in the OP-FP major opcode space and both the
source and destination are floating-point registers. The rs2 field encodes the datatype of the source,
and the fmt field encodes the datatype of the destination. FCVT.S.D rounds according to the RM field;
FCVT.D.S will never round.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCVT.S.D S D src RM dest OP-FP
FCVT.D.S D S src RM dest OP-FP

Floating-point to floating-point sign-injection instructions, FSGNJ.D, FSGNJN.D, and FSGNJX.D are

defined analogously to the single-precision sign-injection instruction.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 3 5 7
FSGNJ D src2 src JIN1/JX dest OP-FP

For XLEN>64 only, instructions are provided to move bit patterns between the floating-point and
integer registers. FMV.X.D moves the double-precision value in floating-point register rsl to a
representation in IEEE 754-2008 standard encoding in integer register rd. FMV.D.X moves the
double-precision value encoded in IEEE 754-2008 standard encoding from the integer register rsI to
the floating-point register rd.

FMV.X.D and FMV.D.X do not modify the bits being transferred; in particular, the payloads of non-
canonical NaNs are preserved.
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31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FMV.X.D D 0 src 000 dest OP-FP
FMV.D.X D 0 src 000 dest OP-FP

Early versions of the RISC-V ISA had additional instructions to allow RV32 systems to
transfer between the upper and lower portions of a 64-bit floating-point register and an
integer register. However, these would be the only instructions with partial register writes
and would add complexity in implementations with recoded floating-point or register
renaming, requiring a pipeline read-modify-write sequence. Scaling up to handling quad-
precision for RV32 and RV64 would also require additional instructions if they were to
follow this pattern. The ISA was defined to reduce the number of explicit int-float register

Q moves, by having conversions and comparisons write results to the appropriate register
file, so we expect the benefit of these instructions to be lower than for other ISAs.

We note that for systems that implement a 64-bit floating-point unit including fused
multiply-add support and 64-bit floating-point loads and stores, the marginal hardware
cost of moving from a 32-bit to a 64-bit integer datapath is low, and a software ABI
supporting 32-bit wide address-space and pointers can be used to avoid growth of static
data and dynamic memory traffic.

21.6. Double-Precision Floating-Point Compare Instructions

The double-precision floating-point compare instructions are defined analogously to their single-
precision counterparts, but operate on double-precision operands.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FCMP D src2 src EQ/LT/LE dest OP-FP

21.7. Double-Precision Floating-Point Classify Instruction

The double-precision floating-point classify instruction, FCLASS.D, is defined analogously to its
single-precision counterpart, but operates on double-precision operands.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCLASS D 0 src 1 dest OP-FP
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Chapter 22. "Q" Extension for Quad-Precision Floating-Point, Version 2.2

This chapter describes the Q standard extension for 128-bit quad-precision binary floating-point
instructions compliant with the IEEE 754-2008 arithmetic standard. The quad-precision binary
floating-point instruction-set extension is named "Q" it depends on the double-precision floating-
point extension D. The floating-point registers are now extended to hold either a single, double, or
quad-precision floating-point value (FLEN=128). The NaN-boxing scheme described in Section 21.2 is
now extended recursively to allow a single-precision value to be NaN-boxed inside a double-precision
value which is itself NaN-boxed inside a quad-precision value.

22.1. Quad-Precision Load and Store Instructions

New 128-bit variants of LOAD-FP and STORE-FP instructions are added, encoded with a new value for
the funct3 width field.

31 20 19 15 14 12 11 7 6 0
imm[11:0] rs1 width rd opcode
12 5 3 5 7
offset[11:0] base Q dest LOAD-FP
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] rs2 rsi width imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base Q offset[4:0] STORE-FP

FLQ and FSQ are only guaranteed to execute atomically if the effective address is naturally aligned
and XLEN=128.

FLQ and FSQ do not modify the bits being transferred; in particular, the payloads of non-canonical
NaNs are preserved.

22.2. Quad-Precision Computational Instructions

A new supported format is added to the format field of most instructions, as shown in Table 30

Table 30. Format field encoding.

fmtfield =~ Mnemonic Meaning

00 S 32-bit single-precision

01 D 64-bit double-precision
10 H 16-bit half-precision

11 Q 128-bit quad-precision

The quad-precision floating-point computational instructions are defined analogously to their double-
precision counterparts, but operate on quad-precision operands and produce quad-precision results.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FADD/FSUB Q src2 src RM dest OP-FP
FMUL/FDIV Q src2 src RM dest OP-FP
FMIN-MAX Q src2 src MIN/MAX dest OP-FP
FSQRT Q 0 src RM dest OP-FP
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31 27 26 25 24 20 19 15 14 12 11 7 6 0
rs3 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
src3 Q src2 src RM dest FINIJMADD/F[N]IMSUB

22.3. Quad-Precision Convert and Move Instructions

New floating-point-to-integer and integer-to-floating-point conversion instructions are added. These
instructions are defined analogously to the double-precision-to-integer and integer-to-double-
precision conversion instructions. FCVT.W.Q or FCVT.L.Q converts a quad-precision floating-point
number to a signed 32-bit or 64-bit integer, respectively. FCVT.Q.W or FCVT.Q.L converts a 32-bit or
64-bit signed integer, respectively, into a quad-precision floating-point number. FCVT.WU.Q,
FCVT.LU.Q, FCVT.QWU, and FCVT.Q.LU variants convert to or from unsigned integer values.
FCVT.L[U].Q and FCVT.Q.L[U] are RV64-only instructions. Note FCVT.Q.L[U] always produces an
exact result and is unaffected by rounding mode.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FCVT.int.Q Q W[U]/L[U] src RM dest OP-FP
FCVT.Q.int Q WLU]/L[U] src RM dest OP-FP

New floating-point-to-floating-point conversion instructions are added. These instructions are
defined analogously to the double-precision floating-point-to-floating-point conversion instructions.
FCVT.S.Q or FCVT.Q.S converts a quad-precision floating-point number to a single-precision floating-
point number, or vice-versa, respectively. FCVT.D.Q or FCVT.Q.D converts a quad-precision floating-
point number to a double-precision floating-point number, or vice-versa, respectively.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FCVT.S.Q S Q src RM dest OP-FP
FCVT.Q.S Q S src RM dest OP-FP
FCVT.D.Q D Q src RM dest OP-FP
FCVT.Q.D Q D src RM dest OP-FP

Floating-point to floating-point sign-injection instructions, FSGNJ.Q, FSGNJN.Q, and FSGNJX.Q are
defined analogously to the double-precision sign-injection instruction.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FSGNJ Q src2 src JIN]/JX dest OP-FP

FMV.X.Q and FMV.Q.X instructions are not provided in RV32 or RV64, so quad-precision bit patterns
must be moved to the integer registers via memory.

Df RV128 will support FMV.X.Q and FMV.Q.X in the Q extension.
22.4. Quad-Precision Floating-Point Compare Instructions

The quad-precision floating-point compare instructions are defined analogously to their double-
precision counterparts, but operate on quad-precision operands.
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31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FCMP Q src2 src EQ/LT/LE dest OP-FP

22.5. Quad-Precision Floating-Point Classify Instruction

The quad-precision floating-point classify instruction, FCLASS.Q, is defined analogously to its double-
precision counterpart, but operates on quad-precision operands.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FCLASS Q 0 src 001 dest OP-FP
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Chapter 23."zZfh" and "Zfhmin" Extensions for Half-Precision Floating-Point, Version
1.0

This chapter describes the Zfh standard extension for 16-bit half-precision binary floating-point
instructions compliant with the IEEE 754-2008 arithmetic standard. The Zth extension depends on
the single-precision floating-point extension, F. The NaN-boxing scheme described in Section 21.2 is
extended to allow a half-precision value to be NaN-boxed inside a single-precision value (which may
be recursively NaN-boxed inside a double- or quad-precision value when the D or Q extension is
present).

This extension primarily provides instructions that consume half-precision operands and
produce half-precision results. However, it is also common to compute on half-precision
data using higher intermediate precision. Although this extension provides explicit

Dy conversion instructions that suffice to implement that pattern, future extensions might
further accelerate such computation with additional instructions that implicitly widen
their operands—e.g., half x half +single - single—or implicitly narrow their
results—e.g., half +single - half.

23.1. Half-Precision Load and Store Instructions

New 16-bit variants of LOAD-FP and STORE-FP instructions are added, encoded with a new value for
the funct3 width field.

31 20 19 15 14 12 11 7 6 0
imm[11:0] rsi width rd opcode
12 5 3 5 7
offset[11:0] base H dest LOAD-FP
31 25 24 20 19 15 14 12 11 7 6 0
imm[11:5] rs2 rsi width imm[4:0] opcode
7 5 5 3 5 7
offset[11:5] src base H offset[4:0] STORE-FP

FLH and FSH are only guaranteed to execute atomically if the effective address is naturally aligned.

FLH and FSH do not modify the bits being transferred; in particular, the payloads of non-canonical
NaNs are preserved. FLH NaN-boxes the result written to rd, whereas FSH ignores all but the lower 16
bits in rs2.

23.2. Half-Precision Computational Instructions
A new supported format is added to the format field of most instructions, as shown in Table 31.

Table 31. Format field encoding.

fmt field ~ Mnemonic Meaning
00 S 32-bit single-precision
01 D 64-bit double-precision
10 H 16-bit half-precision
11 Q 128-bit quad-precision

The half-precision floating-point computational instructions are defined analogously to their single-
precision counterparts, but operate on half-precision operands and produce half-precision results.
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31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FADD/FSUB H src2 src RM dest OP-FP
FMUL/FDIV H src2 srci RM dest OP-FP
FMIN-MAX H src2 src MIN/MAX dest OP-FP
FSQRT H 0 src RM dest OP-FP
31 27 26 25 24 20 19 15 14 12 11 7 6 0
rs3 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
src3 H src2 src RM dest FINIMADD/F[NIMSUB

23.3. Half-Precision Conversion and Move Instructions

New floating-point-to-integer and integer-to-floating-point conversion instructions are added. These
instructions are defined analogously to the single-precision-to-integer and integer-to-single-precision
conversion instructions. FCVT.W.H or FCVT.L.H converts a half-precision floating-point number to a
signed 32-bit or 64-bit integer, respectively. FCVT.H.W or FCVT.H.L converts a 32-bit or 64-bit signed
integer, respectively, into a half-precision floating-point number. FCVT.WU.H, FCVT.LU.H,
FCVT.H.WU, and FCVT.H.LU variants convert to or from unsigned integer values. FCVT.L[U].H and
FCVT.H.L[U] are RV64-only instructions.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FCVT.int.H H W[U]/L[U] src RM dest OP-FP
FCVT.H.int H W[U]/L[V] src RM dest OP-FP

New floating-point-to-floating-point conversion instructions are added. These instructions are
defined analogously to the double-precision floating-point-to-floating-point conversion instructions.
FCVT.S.H or FCVT.H.S converts a half-precision floating-point number to a single-precision floating-
point number, or vice-versa, respectively. If the D extension is present, FCVT.D.H or FCVT.H.D
converts a half-precision floating-point number to a double-precision floating-point number, or vice-
versa, respectively. If the Q extension is present, FCVT.Q.H or FCVT.H.Q converts a half-precision
floating-point number to a quad-precision floating-point number, or vice-versa, respectively.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FCVT.S.H S H src RM dest OP-FP
FCVTH.S H S src RM dest OP-FP
FCVT.D.H D H src RM dest OP-FP
FCVTH.D H D src RM dest OP-FP
FCVT.QH Q H src RM dest OP-FP
FCVT.H.Q H Q SRC RM dest OP-FP

Floating-point to floating-point sign-injection instructions, FSGNJ.H, FSGNJN.H, and FSGNJX.H are
defined analogously to the single-precision sign-injection instruction.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
funct5 fmt rs2 rs1 funct3 rd opcode
5 2 5 5 3 5 7
FSGNJ H src2 src JINT/JX dest OP-FP

Instructions are provided to move bit patterns between the floating-point and integer registers.
FMV.X.H moves the half-precision value in floating-point register rsl to a representation in IEEE 754-
2008 standard encoding in integer register rd, filling the upper XLEN-16 bits with copies of the
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floating-point number’s sign bit.

FMV.H.X moves the half-precision value encoded in IEEE 754-2008 standard encoding from the
lower 16 bits of integer register rsI to the floating-point register rd, NaN-boxing the result.

FMV.X.H and FMV.H.X do not modify the bits being transferred; in particular, the payloads of non-
canonical NaNs are preserved.

31 27 26 25 24 20 19 15 14 12 11
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FMV.X.H H 0 src 000 dest OP-FP
FMV.H.X H 0 src 000 dest OP-FP

23.4. Half-Precision Floating-Point Compare Instructions

The half-precision floating-point compare instructions are defined analogously to their single-

precision counterparts, but operate on half-precision operands.

31 27 26 25 24 20 19 15 14 12 11
funct5 fmt rs2 rs1 rm rd opcode
5 2 5 5 3 5 7
FCMP H src2 src EQ/LT/LE dest OP-FP

23.5. Half-Precision Floating-Point Classify Instruction

The half-precision floating-point classify instruction, FCLASS.H, is defined analogously to its single-

precision counterpart, but operates on half-precision operands.

31 27 26 25 24 20 19 15 14 12 11
funct5 fmt rs2 rsi rm rd opcode
5 2 5 5 3 5 7
FCLASS H 0 src 001 dest OP-FP

23.6. "Zfhmin" Standard Extension for Minimal Half-Precision Floating-Point

This section describes the Zfthmin standard extension, which provides minimal support for 16-bit
half-precision binary floating-point instructions. The Zfhmin extension is a subset of the Zth
extension, consisting only of data transfer and conversion instructions. Like Zfh, the Zthmin
extension depends on the single-precision floating-point extension, F. The expectation is that Zthmin
software primarily uses the half-precision format for storage, performing most computation in higher
precision.

The Zfhmin extension includes the following instructions from the Zfh extension: FLH, FSH,
FMV.X.H, FMV.H.X, FCVT.S.H, and FCVT.H.S. If the D extension is present, the FCVT.D.H and
FCVT.H.D instructions are also included. If the Q extension is present, the FCVT.Q.H and FCVT.H.Q
instructions are additionally included.

Zfhmin does not include the FSGNJ.H instruction, because it suffices to instead use the
FSGNJ.S instruction to move half-precision values between floating-point registers.
Ely Half-precision addition, subtraction, multiplication, division, and square-root operations
can be faithfully emulated by converting the half-precision operands to single-precision,
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performing the operation using single-precision arithmetic, then converting back to half-
precision. (Roux, 2014) Performing half-precision fused multiply-addition using this
method incurs a I-ulp error on some inputs for the RNE and RMM rounding modes.

Conversion from 8- or 16-bit integers to half-precision can be emulated by first converting
to single-precision, then converting to half-precision. Conversion from 32-bit integer can
be emulated by first converting to double-precision. If the D extension is not present and a
I-ulp error under RNE or RMM is tolerable, 32-bit integers can be first converted to
single-precision instead. The same remark applies to conversions from 64-bit integers
without the Q extension.
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Chapter 24. "Zfa" Extension for Additional Floating-Point Instructions, Version 1.0

This chapter describes the Zfa standard extension, which adds instructions for immediate loads, [EEE
754-2019 minimum and maximum operations, round-to-integer operations, and quiet floating-point
comparisons. For RV32D, the Zfa extension also adds instructions to transfer double-precision
floating-point values to and from integer registers, and for RV64Q, it adds analogous instructions for
quad-precision floating-point values. The Zfa extension depends on the F extension.

24.1. Load-Immediate Instructions

The FLLS instruction loads one of 32 single-precision floating-point constants, encoded in the rsI
field, into floating-point register rd. The correspondence of rsI field values and single-precision
floating-point values is shown in Table 37. FLLS is encoded like FMV.W.X, but with rs2=1.

Table 32. Immediate values loaded by the FLLS instruction.

rsl Value Sign Exponent  Significand
0 -1.0 1 01111111 000---000
1 Minimum positive normal @ 00000001 000---000
2 1.0x216 0 01101111 000---000
3 1.0x215 0 01110000 000---000
4 1.0x2% @ 21110111 000---000
5 1.0x27 0 01111000 000---000
6 0.0625(24) @ 21111011 000---000
7 0.125(23) @ 01111100 000---000
8 025 0 01111101 000---000
9 03125 @ 01111101 010---000
10 0375 0 01111101 100---000
1 04375 0 01111101 110---000
12 05 0 01111110 000---000
13 0.625 0 01111110 010---000
14 075 0 01111110 100---000
15 0.875 @ 01111110 110---000
16 10 0 01111111 000---000
17 125 @ 211111M 010---000
18 15 0 211111M 100---000
19 L7509 01111111 110---000
20 20 0 10000000 000---000
21 25 0 10000000 010---000
22 3 0 10000000 100---000
23 4 0 10000001 000---000
24 8 0 10000010 000---000
25 6 0 10000011 000---000
26 128(27) @ 10000110 000---000
27 256(28) @ 10000111 000---000
28 215 @ 10001110 000---000
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rsl Value Sign Exponent  Significand
29 2160 10001111 000---000
30 +eo 0 11111111 000---000
31 Canonical NaN @ 11111111 100---000

The preferred assembly syntax for entries 1, 30, and 31 is min, inf, and nan, respectively.
Q For entries O through 29 (including entry 1), the assembler will accept decimal constants
in C-like syntax.

The set of 32 constants was chosen by examining floating-point libraries, including the C
standard math library, and to optimize fixed-point to floating-point conversion.

(N

Entries 8-22 follow a regular encoding pattern. No entry sets mantissa bits other than the
two most significant ones.

If the D extension is implemented, FLLD performs the analogous operation, but loads a double-
precision value into floating-point register rd. Note that entry 1 (corresponding to the minimum
positive normal value) has a numerically different value for double-precision than for single-
precision. FLL.D is encoded like FLLS, but with fmt=D.

If the Q extension is implemented, FLI.Q performs the analogous operation, but loads a quad-
precision value into floating-point register rd. Note that entry 1 (corresponding to the minimum
positive normal value) has a numerically different value for quad-precision. FLL.Q is encoded like
FLLS, but with fmt=Q.

If the Zth or Zvfh extension is implemented, FLL.H performs the analogous operation, but loads a half-
precision floating-point value into register rd. Note that entry 1 (corresponding to the minimum
positive normal value) has a numerically different value for half-precision. Furthermore, since 216 is
not representable in half-precision floating-point, entry 29 in the table instead loads positive
infinity—i.e,, it is redundant with entry 30. FLLH is encoded like FLL.S, but with fmt=H.

y Additionally, since 2% and 2715 are subnormal in half-precision, entry 1 is numerically
EI greater than entries 2 and 3 for FLLH.

The FLILfmt instructions never set any floating-point exception flags.

24.2. Minimum and Maximum Instructions

The FMINM.S and FMAXM.S instructions are defined like the FMIN.S and FMAX.S instructions,
except that if either input is NaN, the result is the canonical NaN.

If the D extension is implemented, FMINM.D and FMAXM.D instructions are analogously defined to
operate on double-precision numbers.

If the Zfh extension is implemented, FMINM.H and FMAXM.H instructions are analogously defined
to operate on half-precision numbers.

If the Q extension is implemented, FMINM.Q and FMAXM.Q instructions are analogously defined to
operate on quad-precision numbers.

These instructions are encoded like their FMIN and FMAX counterparts, but with instruction bit 13 set
to L.
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Df These instructions implement the IEEE 754-2019 minimum and maximum operations.

24.3. Round-to-Integer Instructions

The FROUND.S instruction rounds the single-precision floating-point number in floating-point
register rsl to an integer, according to the rounding mode specified in the instruction’s rm field. It then
writes that integer, represented as a single-precision floating-point number, to floating-point register
rd. Zero and infinite inputs are copied to rd unmodified. Signaling NaN inputs cause the invalid
operation exception flag to be set; no other exception flags are set. FROUND.S is encoded like
FCVT.S.D, but with rs2=4.

The FROUNDNX.S instruction is defined similarly, but it also sets the inexact exception flag if the
input differs from the rounded result and is not NaN. FROUNDNX.S is encoded like FCVT.S.D, but
with rs2=5.

If the D extension is implemented, FROUND.D and FROUNDNX.D instructions are analogously
defined to operate on double-precision numbers. They are encoded like FCVT.D.S, but with rs2=4 and
5, respectively,

If the Zfh extension is implemented, FROUND.H and FROUNDNX.H instructions are analogously
defined to operate on half-precision numbers. They are encoded like FCVT.H.S, but with rs2=4 and 5,
respectively,

If the Q extension is implemented, FROUND.Q and FROUNDNX.Q instructions are analogously
defined to operate on quad-precision numbers. They are encoded like FCVT.Q.S, but with rs2=4 and 5,
respectively,

. The FROUNDNX fmt instructions implement the IEEE 754-2019 roundTolntegralExact
y; operation, and the FROUND.fmt instructions implement the other operations in the
roundTolntegral family.

24.4. Modular Convert-to-Integer Instruction

The FCVTMOD.W.D instruction is defined similarly to the FCVT.W.D instruction, with the following
differences. FCVTMOD.W.D always rounds towards zero. Bits 31:0 are taken from the rounded,
unbounded two’s complement result, then sign-extended to XLEN bits and written to integer register
rd. = and NaN are converted to zero.

Floating-point exception flags are raised the same as they would be for FCVT.W.D with the same input
operand.

This instruction is only provided if the D extension is implemented. It is encoded like FCVT.W.D, but
with the rs2 field set to 8 and the rm field set to 1 (RTZ). Other rm values are reserved.

The assembly syntax requires the RTZ rounding mode to be explicitly specified, i.e.
fevtmod.w.d rd, rs1, rtz.

Q The FCVIMOD.W.D instruction was added principally to accelerate the processing of
JavaScript Numbers. Numbers are double-precision values, but some operators implicitly
truncate them to signed integers mod 232

24.5. Move Instructions
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For RV32 only, if the D extension is implemented, the FMVH.X.D instruction moves bits 63:32 of
floating-point register rsl into integer register rd. It is encoded in the OP-FP major opcode with
funct3=0, rs2=1, and funct7=1110001.

y FMVH.X.D is used in conjunction with the existing FMV.X.W instruction to move a double-
EI precision floating-point number to a pair of x-registers.

For RV32 only, if the D extension is implemented, the FMVP.D.X instruction moves a double-precision
number from a pair of integer registers into a floating-point register. Integer registers rsl and rs2
supply bits 31:0 and 63:32, respectively; the result is written to floating-point register rd. FMVP.D.X is
encoded in the OP-FP major opcode with funct3=0 and funct7=1011001.

For RV64 only, if the Q extension is implemented, the FMVH.X.Q instruction moves bits 127:64 of
floating-point register rsl into integer register rd. It is encoded in the OP-FP major opcode with
funct3=0, rs2=1, and funct7=1110011.

y FMVH.X.Q is used in conjunction with the existing FMV.X.D instruction to move a quad-
EI precision floating-point number to a pair of x-registers.

For RV64 only, if the Q extension is implemented, the FMVP.Q.X instruction moves a double-
precision number from a pair of integer registers into a floating-point register. Integer registers rsI and
rs2 supply bits 63:0 and 127:64, respectively; the result is written to floating-point register rd.
FMVP.Q.X is encoded in the OP-FP major opcode with funct3=0 and funct7=1011011.

24.6. Comparison Instructions

The FLEQ.S and FLTQ.S instructions are defined like the FLE.S and FLT.S instructions, except that
quiet NaN inputs do not cause the invalid operation exception flag to be set.

If the D extension is implemented, FLEQ.D and FLTQ.D instructions are analogously defined to
operate on double-precision numbers.

If the Zth extension is implemented, FLEQ.H and FLTQ.H instructions are analogously defined to
operate on half-precision numbers.

If the Q extension is implemented, FLEQ.Q and FLTQ.Q instructions are analogously defined to
operate on quad-precision numbers.

These instructions are encoded like their FLE and FLT counterparts, but with instruction bit 14 set to 1.

y We do not expect analogous comparison instructions will be added to the vector ISA, since
EI they can be reasonably efficiently emulated using masking.

The RISC-V Instruction Set Manual Volume I | © RISC-V



25.1. Processing of Narrower Values | Page 135

Chapter 25. "Zfinx", "Zdinx", "Zhinx", "Zhinxmin" Extensions for Floating-Point in
Integer Registers, Version 1.0

This chapter defines the "Zfinx" extension (pronounced "z-f-in-x") that provides instructions similar to
those in the standard floating-point F extension for single-precision floating-point instructions but
which operate on the x registers instead of the f registers. This chapter also defines the "Zdinx’,
"Zhinx", and "Zhinxmin" extensions that provide similar instructions for other floating-point
precisions.

The F extension uses separate f registers for floating-point computation, to reduce
register pressure and simplify the provision of register-file ports for wide superscalars.
However, the additional of architectural state increases the minimal implementation cost.
By eliminating the f registers, the Zfinx extension substantially reduces the cost of simple

Df RISC-V implementations with floating-point instruction-set support. Zfinx also reduces
context-switch cost.

In general, software that assumes the presence of the F extension is incompatible with
software that assumes the presence of the Zfinx extension, and vice versa.

The Zfinx extension adds all of the instructions that the F extension adds, except for the transfer
instructions FLW, FSW, FMV.W.X, FMV.X.W, C.FLW[SP], and C.FSW[SP].

Zfinx software uses integer loads and stores to transfer floating-point values from and to
| y memory. Transfers between registers use either integer arithmetic or floating-point sign-
injection instructions.

The Zfinx variants of these F-extension instructions have the same semantics, except that whenever
such an instruction would have accessed an f register, it instead accesses the x register with the same
number.

The Zfinx extension depends on the "Zicsr" extension for control and status register access.

25.1. Processing of Narrower Values

Floating-point operands of width w < XLEN bits occupy bits w-1:0 of an x register. Floating-point
operations on w-bit operands ignore operand bits XLEN-1: w.

Floating-point operations that produce w < XLEN-bit results fill bits XLEN-1: w with copies of bit w-1
(the sign bit).

The NaN-boxing scheme employed in the T registers was designed to efficiently support
recoded floating-point formats. Recoding is less practical for Zfinx, though, since the same
registers hold both floating-point and integer operands. Hence, the need for NaN boxing is
y diminished.

E’ Sign-extending 32-bit floating-point numbers when held in RV64 X registers is compatible
with the existing RV64 calling conventions, which leave bits 63-32 undefined when
passing a 32-bit floating point value in X registers. To keep the architecture more regular,
we extend this pattern to 16-bit floating-point numbers in both RV32 and RV64.
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25.2. Zdinx

The Zdinx extension provides analogous double-precision floating-point instructions. The Zdinx
extension requires the Zfinx extension.

The Zdinx extension adds all of the instructions that the D extension adds, except for the transfer
instructions FLD, FSD, FMV.D.X, FMV.X.D, C.FLD[SP], and C.FSD[SP].

The Zdinx variants of these D-extension instructions have the same semantics, except that whenever
such an instruction would have accessed an f register, it instead accesses the x register with the same
number.

25.3. Processing of Wider Values

Double-precision operands in RV32Zdinx are held in aligned x-register pairs, i.e., register numbers
must be even. Use of misaligned (odd-numbered) registers for double-width floating-point operands is
reserved.

Regardless of endianness, the lower-numbered register holds the low-order bits, and the higher-
numbered register holds the high-order bits: e.g, bits 31:0 of a double-precision operand in
RV32Zdinx might be held in register x14, with bits 63:32 of that operand held in x15.

When a double-width floating-point result is written to x@, the entire write takes no effect: e.g., for
RV32Zdinx, writing a double-precision result to X0 does not cause x1 to be written.

When x0 is used as a double-width floating-point operand, the entire operand is zero—i.e., x1 is not
accessed.

Load-pair and store-pair instructions are not provided, so transferring double-precision
| y operands in RV32Zdinx from or to memory requires two loads or stores. Register moves
need only a single FSGNJ.D instruction, however.

25.4. Zhinx

The Zhinx extension provides analogous half-precision floating-point instructions. The Zhinx
extension requires the Zfinx extension.

The Zhinx extension adds all of the instructions that the Zfh extension adds, except for the transfer
instructions FLH, FSH, FMV.H.X, and FMV.X H.

The Zhinx variants of these Zfh-extension instructions have the same semantics, except that
whenever such an instruction would have accessed an f register, it instead accesses the X register with
the same number.

25.5. Zhinxmin

The Zhinxmin extension provides minimal support for 16-bit half-precision floating-point
instructions that operate on the X registers. The Zhinxmin extension requires the Zfinx extension.

The Zhinxmin extension includes the following instructions from the Zhinx extension: FCVT.S.H and
FCVT.H.S. If the Zdinx extension is present, the FCVT.D.H and FCVT.H.D instructions are also
included.
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In the future, an RV64Zqinx quad-precision extension could be defined analogously to
| yl RV32Zdinx. An RV32Zqinx extension could also be defined but would require quad-register
groups.

25.6. Privileged Architecture Implications

In the standard privileged architecture defined in Volume II, the mstatus field FS is hardwired to O if
the Zfinx extension is implemented, and FS no longer affects the trapping behavior of floating-point
instructions or fesr accesses.

The misa bits F, D, and Q are hardwired to O when the Zfinx extension is implemented.

y A future discoverability mechanism might be used to probe the existence of the Zfinx,
EI Zhinx, and Zdinx extensions.
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Chapter 26. "C" Extension for Compressed Instructions, Version 2.0

This chapter describes the RISC-V standard compressed instruction-set extension, named "C", which
reduces static and dynamic code size by adding short 16-bit instruction encodings for common
operations. The C extension can be added to any of the base ISAs (RV32, RV64, RV128), and we use the
generic term "RVC" to cover any of these. Typically, 50%-60% of the RISC-V instructions in a program
can be replaced with RVC instructions, resulting in a 25%-30% code-size reduction.

26.1. Overview

RVC uses a simple compression scheme that offers shorter 16-bit versions of common 32-bit RISC-V
instructions when:

- the immediate or address offset is small, or

- one of the registers is the zero register (x@), the ABI link register (x1), or the ABI stack pointer (x2),
or

- the destination register and the first source register are identical, or

- the registers used are the 8 most popular ones.

The C extension is compatible with all other standard instruction extensions. The C extension allows
16-bit instructions to be freely intermixed with 32-bit instructions, with the latter now able to start on
any 16-bit boundary, i.e, IALIGN=16. With the addition of the C extension, no instructions can raise
instruction-address-misaligned exceptions.

y Removing the 32-bit alignment constraint on the original 32-bit instructions allows
EI significantly greater code density.

The compressed instruction encodings are mostly common across RV32C, RV64C, and RV128C, but as
shown in Table 34, a few opcodes are used for different purposes depending on base ISA. For example,
the wider address-space RV64C and RV128C variants require additional opcodes to compress loads
and stores of 64-bit integer values, while RV32C uses the same opcodes to compress loads and stores of
single-precision floating-point values. Similarly, RV128C requires additional opcodes to capture loads
and stores of 128-bit integer values, while these same opcodes are used for loads and stores of double-
precision floating-point values in RV32C and RV64C. If the C extension is implemented, the
appropriate compressed floating-point load and store instructions must be provided whenever the
relevant standard floating-point extension (F and/or D) is also implemented. In addition, RV32C
includes a compressed jump and link instruction to compress short-range subroutine calls, where the
same opcode is used to compress ADDIW for RV64C and RV128C.

Double-precision loads and stores are a significant fraction of static and dynamic
instructions, hence the motivation to include them in the RV32C and RV64C encoding.

Although single-precision loads and stores are not a significant source of static or
dynamic compression for benchmarks compiled for the currently supported ABIs, for
microcontrollers that only provide hardware single-precision floating-point units and have

Q an ABI that only supports single-precision floating-point numbers, the single-precision
loads and stores will be used at least as frequently as double-precision loads and stores in
the measured benchmarks. Hence, the motivation to provide compressed support for these
in RV32C.

Short-range subroutine calls are more likely in small binaries for microcontrollers, hence
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the motivation to include these in RV32C.

Although reusing opcodes for different purposes for different base ISAs adds some
complexity to documentation, the impact on implementation complexity is small even for
designs that support multiple base ISAs. The compressed floating-point load and store
variants use the same instruction format with the same register specifiers as the wider
integer loads and stores.

RVC was designed under the constraint that each RVC instruction expands into a single 32-bit
instruction in either the base ISA (RV32I/E, RV64I/E, or RV128I) or the F and D standard extensions
where present. Adopting this constraint has two main benefits:

- Hardware designs can simply expand RVC instructions during decode, simplifying verification
and minimizing modifications to existing microarchitectures.

- Compilers can be unaware of the RVC extension and leave code compression to the assembler and
linker, although a compression-aware compiler will generally be able to produce better results.

We felt the multiple complexity reductions of a simple one-one mapping between C and

y base IFD instructions far outweighed the potential gains of a slightly denser encoding that

EI added additional instructions only supported in the C extension, or that allowed encoding
of multiple IFD instructions in one C instruction.

It is important to note that the C extension is not designed to be a stand-alone ISA, and is meant to be
used alongside a base ISA.

Variable-length instruction sets have long been used to improve code density. For example,
the IBM Stretch (Buchholz, 1962), developed in the late 1950s, had an ISA with 32-bit and
64-bit instructions, where some of the 32-bit instructions were compressed versions of the
full 64-bit instructions. Stretch also employed the concept of limiting the set of registers
that were addressable in some of the shorter instruction formats, with short branch
instructions that could only refer to one of the index registers. The later IBM 360
architecture (Amdahl et al., 1964) supported a simple variable-length instruction encoding
with 16-bit, 32-bit, or 48-bit instruction formats.

In 1963, CDC introduced the Cray-designed CDC 6600 (Thornton, 1965), a precursor to
RISC architectures, that introduced a register-rich load-store architecture with
instructions of two lengths, 15-bits and 30-bits. The later Cray-1 design used a very similar
instruction format, with 16-bit and 32-bit instruction lengths.

Q The initial RISC ISAs from the 1980s all picked performance over code size, which was
reasonable for a workstation environment, but not for embedded systems. Hence, both
ARM and MIPS subsequently made versions of the ISAs that offered smaller code size by
offering an alternative 16-bit wide instruction set instead of the standard 32-bit wide
instructions. The compressed RISC ISAs reduced code size relative to their starting points
by about 25-30%, yielding code that was significantly smaller than 80x86. This result
surprised some, as their intuition was that the variable-length CISC ISA should be smaller
than RISC ISAs that offered only 16-bit and 32-bit formats.

Since the original RISC ISAs did not leave sufficient opcode space free to include these
unplanned compressed instructions, they were instead developed as complete new ISAs.
This meant compilers needed different code generators for the separate compressed ISAs.
The first compressed RISC ISA extensions (e.g., ARM Thumb and MIPS16) used only a
fixed 16-bit instruction size, which gave good reductions in static code size but caused an
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increase in dynamic instruction count, which led to lower performance compared to the
original fixed-width 32-bit instruction size. This led to the development of a second
generation of compressed RISC ISA designs with mixed 16-bit and 32-bit instruction
lengths (e.g., ARM Thumb?2, microMIPS, PowerPC VLE), so that performance was similar
to pure 32-bit instructions but with significant code size savings. Unfortunately, these
different generations of compressed ISAs are incompatible with each other and with the
original uncompressed ISA, leading to significant complexity in documentation,
implementations, and software tools support.

Of the commonly used 64-bit ISAs, only PowerPC and microMIPS currently supports a
compressed instruction format. It is surprising that the most popular 64-bit ISA for mobile
platforms (ARM v8) does not include a compressed instruction format given that static
code size and dynamic instruction fetch bandwidth are important metrics. Although static
code size is not a major concern in larger systems, instruction fetch bandwidth can be a
major bottleneck in servers running commercial workloads, which often have a large
instruction working set.

Benefiting from 25 years of hindsight, RISC-V was designed to support compressed
instructions from the outset, leaving enough opcode space for RVC to be added as a simple
extension on top of the base ISA (along with many other extensions). The philosophy of
RVC is to reduce code size for embedded applications and to improve performance and
energy-efficiency for all applications due to fewer misses in the instruction cache.
Waterman shows that RVC fetches 25%-30% fewer instruction bits, which reduces
instruction cache misses by 20%-25%, or roughly the same performance impact as
doubling the instruction cache size. (Waterman, 2011)

26.2. Compressed Instruction Formats

Table 33 shows the nine compressed instruction formats. CR, CI, and CSS can use any of the 32 RVI
registers, but CIW, CL, CS, CA, and CB are limited to just 8 of them. Table 34 lists these popular
registers, which correspond to registers x8 to x15. Note that there is a separate version of load and
store instructions that use the stack pointer as the base address register, since saving to and restoring
from the stack are so prevalent, and that they use the CI and CSS formats to allow access to all 32 data
registers. CIW supplies an 8-bit immediate for the ADDI4SPN instruction.

The RISC-V ABI was changed to make the frequently used registers map to registers x8-

y x15" This simplifies the decompression decoder by having a contiguous naturally aligned

EI set of register numbers, and is also compatible with the RV32E and RV64E base ISAs,
which only have 16 integer registers.

Compressed register-based floating-point loads and stores also use the CL and CS formats
respectively, with the eight registers mapping to f8 to f15.

The standard RISC-V calling convention maps the most frequently used floating-point
| yl registers to registers f8 to T15, which allows the same register decompression decoding as
for integer register numbers.

The formats were designed to keep bits for the two register source specifiers in the same place in all
instructions, while the destination register field can move. When the full 5-bit destination register
specifier is present, it is in the same place as in the 32-bit RISC-V encoding. Where immediates are
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sign-extended, the sign-extension is always from bit 12. Immediate fields have been scrambled, as in
the base specification, to reduce the number of immediate muxes required.

The immediate fields are scrambled in the instruction formats instead of in sequential
| y order so that as many bits as possible are in the same position in every instruction, thereby
simplifying implementations.

For many RVC instructions, zero-valued immediates are disallowed and x@ is not a valid 5-bit register
specifier. These restrictions free up encoding space for other instructions requiring fewer operand bits.

Table 33. Compressed 16-bit RVC instruction formats

Format Meaning 15141312 1110987 65432 10
CR Register funct4 rd/rsl rs2 op
CI Immediate funct3 imm rd/rs1 imm op
CSS  Stack-relative Store funct3 imm rs2 op

CIW  Wide Immediate funct3 imm rd’ op
CL Load funct3 imm rsl' imm rd’ op
Cs Store funct3 imm rsl’ imm rs2’ op
CA Arithmetic funct6 rd'/rs!’ funct2 rs2' op
CB  Branch/Arithmetic funct3 offset rd'/rsl' offset op
qJ Jump funct3 jump target op

Table 34. Registers specified by the three-bit rsI', rs2', and rd' fields of the CIW, CL, CS, CA, and CB formats.

RVC Register Number 000 001 010 011 100 101 110 111
Integer Register Number x8 x9 x10 x11 x12 x13 x14 x15
Integer Register ABI Name s@ s1 a@ al a2 a3 a4 a5
Floating-Point Register Number f8 f9 10 11 f12 f13 14 15
Floating-Point Register ABI Name fs@ fs1 fa@ fal fa2 fa3 fa4 fab

26.3. Load and Store Instructions

To increase the reach of 16-bit instructions, data-transfer instructions use zero-extended immediates
that are scaled by the size of the data in bytes: x4 for words, x8 for double words, and x16 for quad
words.

RVC provides two variants of loads and stores. One uses the ABI stack pointer, x2, as the base address
and can target any data register. The other can reference one of 8 base address registers and one of 8
data registers.

26.3.1. Stack-Pointer-Based Loads and Stores

15 13 12 11 7 6 2 1 0

funct3 imm rd imm op

3 1 5 5 2
C.LWSP offset[5] dest#0 offset[4:2|7:6] C2
C.LDSP offset[5] dest=0 offset[4:3(8:6] C2
C.LQSP offset[5] dest+0 offset[4]9:6] C2
C.FLWSP offset[5] dest offset[4:2’7:6] C2
C.FLDSP offset[5] dest offset[4:3|8:6] C2
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These instructions use the CI format.

C.LWSP loads a 32-bit value from memory into register rd. It computes an effective address by adding
the zero-extended offset, scaled by 4, to the stack pointer, x2. It expands to lw rd, offset(x2).
C.LWSP is only valid when rd#x0 the code points with rd=x0 are reserved.

C.LDSP is an RV64C/RV128C-only instruction that loads a 64-bit value from memory into register rd.
It computes its effective address by adding the zero-extended offset, scaled by 8, to the stack pointer,
x2. Itexpands to 1d rd, offset(x2). C.LDSP is only valid when rd#x0 the code points with rd=x0 are
reserved.

C.LQSP is an RV128C-only instruction that loads a 128-bit value from memory into register rd. It
computes its effective address by adding the zero-extended offset, scaled by 16, to the stack pointer, x2.
It expands to 1q rd, offset(x2). C.LQSP is only valid when rd#x0 the code points with rd=x0 are
reserved.

C.FLWSP is an RV32FC-only instruction that loads a single-precision floating-point value from
memory into floating-point register rd. It computes its effective address by adding the zero-extended
offset, scaled by 4, to the stack pointer, x2. It expands to flw rd, offset(x2).

C.FLDSP is an RV32DC/RV64DC-only instruction that loads a double-precision floating-point value
from memory into floating-point register rd. It computes its effective address by adding the zero
-extended offset, scaled by 8, to the stack pointer, x2. It expands to f1d rd, offset(x2).

15 13 12 7 6 2 1 0

funct3 imm rs2 op

3 6 5 2
C.SWSP offset[5:2(7:6] src C2
C.SDSP offset[5:3|8:6] src C2
C.SQSP offset[5:4]|9:6] src C2
C.FSWSP offset[5:2|7:6] src C2
C.FSDSP offset[5:3(8:6] src C2

These instructions use the CSS format.

C.SWSP stores a 32-bit value in register rs2 to memory. It computes an effective address by adding the
zero-extended offset, scaled by 4, to the stack pointer, x2. It expands to sw rs2, offset(x2).

C.SDSP is an RV64C/RV128C-only instruction that stores a 64-bit value in register rs2 to memory. It
computes an effective address by adding the zero-extended offset, scaled by 8, to the stack pointer, x2.
It expands to sd rs2, offset(x2).

C.SQSP is an RV128C-only instruction that stores a 128-bit value in register rs2 to memory. It
computes an effective address by adding the zero-extended offset, scaled by 16, to the stack pointer, x2.
It expands to sq rs2, offset(x2).

C.FSWSP is an RV32FC-only instruction that stores a single-precision floating-point value in floating-
point register rs2 to memory. It computes an effective address by adding the zero-extended offset,
scaled by 4, to the stack pointer, x2. [t expands to fsw rs2, offset(x2).

C.FSDSP is an RV32DC/RV64DC-only instruction that stores a double-precision floating-point value
in floating-point register rs2 to memory. It computes an effective address by adding the zero-extended
offset, scaled by 8, to the stack pointer, x2. It expands to fsd rs2, offset(x2).

y Register save/restore code at function entry/exit represents a significant portion of static
| f code size. The stack-pointer-based compressed loads and stores in RVC are effective at
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reducing the save/restore static code size by a factor of 2 while improving performance by
reducing dynamic instruction bandwidth.

A common mechanism used in other ISAs to further reduce save/restore code size is load-
multiple and store-multiple instructions. We considered adopting these for RISC-V but
noted the following drawbacks to these instructions:

- These instructions complicate processor implementations.

- For virtual memory systems, some data accesses could be resident in physical memory
and some could not, which requires a new restart mechanism for partially executed
instructions.

- Unlike the rest of the RVC instructions, there is no IFD equivalent to Load Multiple
and Store Multiple.

- Unlike the rest of the RVC instructions, the compiler would have to be aware of these
instructions to both generate the instructions and to allocate registers in an order to
maximize the chances of the them being saved and stored, since they would be saved
and restored in sequential order.

- Simple microarchitectural implementations will constrain how other instructions can
be scheduled around the load and store multiple instructions, leading to a potential
performance loss.

- The desire for sequential register allocation might conflict with the featured registers
selected for the CIW, CL, CS, CA, and CB formats.

Furthermore, much of the gains can be realized in software by replacing prologue and
epilogue code with subroutine calls to common prologue and epilogue code, a technique
described in Section 5.6 of (Waterman, 2016).

While reasonable architects might come to different conclusions, we decided to omit load
and store multiple and instead use the software-only approach of calling save/restore
millicode routines to attain the greatest code size reduction.

26.3.2. Register-Based Loads and Stores

15 13 12 10 9 7 6 5 4 2 1 0
funct3 imm rs1’ imm rd op
3 3 3 2 3 2
C.Lw offset[5:3] base offset[2]6] dest Co
C.LD offset[5:3] base offset[7:6] dest Co
C.LQ offset[5]4|8] base offset[7:6] dest Co
C.FLW offset[5:3] base offset[2]6] dest CO
C.FLD offset[5:3] base offset[7:6] dest Cco

These instructions use the CL format.

C.LW loads a 32-bit value from memory into register rd’. It computes an effective address by adding
the zero-extended offset, scaled by 4, to the base address in register rs1’. It expands to lw rd’,
offset(rs1”).

C.LD is an RV64C/RV128C-only instruction that loads a 64-bit value from memory into register rd". It
computes an effective address by adding the zero-extended offset, scaled by 8, to the base address in
register rs1’. Itexpands to 1d rd”, offset(rs1”).
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C.LQ is an RVI28C-only instruction that loads a 128-bit value from memory into register rd’. It
computes an effective address by adding the zero-extended offset, scaled by 16, to the base address in
register rs1’. Itexpandsto 1q rd”, offset(rs1”).

C.FLW is an RV32FC-only instruction that loads a single-precision floating-point value from memory
into floating-point register rd”. It computes an effective address by adding the zero-extended offset,
scaled by 4, to the base address in register rs1’. It expands to flw rd”, offset(rs1”).

C.FLD is an RV32DC/RV64DC-only instruction that loads a double-precision floating-point value
from memory into floating-point register rd’. It computes an effective address by adding the zero

-extended offset, scaled by 8, to the base address in register rs1’. It expands to fld rd’,
offset(rs1’).

15 13 12 10 9 7 6 5 4 2 1 0
funct3 imm rs1 imm rs2' op
3 3 3 2 3 2
C.SW offset[5:3] base offset[2]6] src (@[0]
C.SD offset[5:3] base offset[7:6] src Cco
C.SQ offset[5]4|8] base offset[7:6] src Cco
C.FSwW offset[5:3] base offset[2]6] src (@[0]
C.FSD offset[5:3] base offset[7:6] src (@0]

These instructions use the CS format.

C.SW stores a 32-bit value in register rs2” to memory. It computes an effective address by adding the
zero-extended offset, scaled by 4, to the base address in register rs1’. It expands to sw rs2’,
offset(rs1”).

C.SD is an RV64C/RV128C-only instruction that stores a 64-bit value in register rs2’ to memory. It
computes an effective address by adding the zero-extended offset, scaled by 8, to the base address in
register rs1’. Itexpands to sd rs2”, offset(rs1”).

C.SQ is an RV128C-only instruction that stores a 128-bit value in register rs2" to memory. It computes
an effective address by adding the zero-extended offset, scaled by 16, to the base address in register
rs1’. Itexpandstosq rs2”, offset(rs1”).

C.FSW is an RV32FC-only instruction that stores a single-precision floating-point value in floating-
point register rs2” to memory. It computes an effective address by adding the zero-extended offset,
scaled by 4, to the base address in register rs1’. It expands to fsw rs2”, offset(rs1”).

C.FSD is an RV32DC/RV64DC-only instruction that stores a double-precision floating-point value in
floating-point register rs2” to memory. It computes an effective address by adding the zero-extended
offset, scaled by 8, to the base address in register rs1”. It expands to fsd rs2”, offset(rs1”).

26.4. Control Transfer Instructions

RVC provides unconditional jump instructions and conditional branch instructions. As with base RVI
instructions, the offsets of all RVC control transfer instructions are in multiples of 2 bytes.

15 13 12 2 1 0
funct3 imm op
3 2
C.J offset[11 4 713:1|51] C1
C.JAL offset[11]4 713:1|51] C1
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These instructions use the CJ format.

CJ performs an unconditional control transfer. The offset is sign-extended and added to the pc to
form the jump target address. C.J can therefore target a =2 KiB range. CJ expands to jal x@, offset.

CJAL is an RV32C-only instruction that performs the same operation as CJ, but additionally writes
the address of the instruction following the jump (pc+2) to the link register, x1. CJAL expands to jal
x1, offset.

15 12 11 7 6 2 1 0
funct4 rs1 rs2 op
4 5 5 2
C.JR src#0 0 C2
C.JALR src+0 0 C2

These instructions use the CR format.

CJR (jump register) performs an unconditional control transfer to the address in register rsl. CJR
expands to jalr x@, 0(rs1). CJR is only valid when rsi1 # x@; the code point with rs1 = x@ is reserved.

CJALR (jump and link register) performs the same operation as CJR, but additionally writes the
address of the instruction following the jump (pc+2) to the link register, x1. CJALR expands to jalr
x1, @(rs1). CJALR is only valid when rsi1#xe; the code point with rs1=x@ corresponds to the
C.EBREAK instruction.

Strictly speaking, CJALR does not expand exactly to a base RVI instruction as the value
added to the PC to form the link address is 2 rather than 4 as in the base ISA, but

Q supporting both offsets of 2 and 4 bytes is only a very minor change to the base
microarchitecture.

15 13 12 10 9 7 6 2 1 0
funct3 imm rs1’ imm op
3 3 3 5 2
C.BEQZ offset[8|4:3] src offset[7:6]2:1|5] C1
C.BNEZ offset[8|4:3] src offset[7:6]2:1|5] Cc1

These instructions use the CB format.

C.BEQZ performs conditional control transfers. The offset is sign-extended and added to the pc to
form the branch target address. It can therefore target a 256 B range. C.BEQZ takes the branch if the
value in register rs' is zero. It expands to beq rs1’, x@, offset.

C.BNEZ is defined analogously, but it takes the branch if rsI' contains a nonzero value. It expands to
bne rs1”, x0, offset.

26.5. Integer Computational Instructions

RVC provides several instructions for integer arithmetic and constant generation.
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26.5.1. Integer Constant-Generation Instructions

The two constant-generation instructions both use the CI instruction format and can target any
integer register.

15 13 12 11 7 6 2 1 0
funct3 imm[5] rd imm[4:0] op
3 1 5 5 2
C.LI imm[5] dest =0 imm[4:0] C1
C.LUI nzimm[17] dest = {0, 2} imm[16:12] C1

C.LI loads the sign-extended 6-bit immediate, imm, into register rd. C.LI expands into addi rd, x@,
imm. C.LI is only valid when rd#x®; the code points with rd=x@ encode HINTs.

C.LUI loads the non-zero 6-bit immediate field into bits 1712 of the destination register, clears the
bottom 12 bits, and sign-extends bit 17 into all higher bits of the destination. C.LUI expands into lui
rd, imm. C.LUI is only valid when rd # {x0, x2}, and when the immediate is not equal to zero. The code
points with imm=0 are reserved; the remaining code points with rd=x@ are HINTs; and the remaining
code points with rd=x2 correspond to the C. ADDI16SP instruction.

26.5.2. Integer Register-lImmediate Operations

These integer register-immediate operations are encoded in the CI format and perform operations on
an integer register and a 6-bit immediate.

15 13 12 11 7 6 2 1 0
funct3 imm[5] rd/rs1 imm[4:] op
3 1 5 5 2
C.ADDI nzimm{5] dest =0 nzimm[4:0] c1
C.ADDIW imm[5] dest =0 imm[4:0] C1
C.ADDI16SP  nzimm[9] 2 nzimm[4]6|8:7|5] C1

C.ADDI adds the non-zero sign-extended 6-bit immediate to the value in register rd then writes the
result to rd. CADDI expands into addi rd, rd, imm. C.ADDI is only valid when rd#x@ and imm=0.
The code points with rd=x@ encode the C.NOP instruction; the remaining code points with imm=0
encode HINTSs.

C.ADDIW is an RV64C/RV128C-only instruction that performs the same computation but produces a
32-bit result, then sign-extends result to 64 bits. CADDIW expands into addiw rd, rd, imm. The
immediate can be zero for C.ADDIW, where this corresponds to sext.w rd. CADDIW is only valid
when rd#x0; the code points with rd=x@ are reserved.

C.ADDI16SP shares the opcode with C.LUI, but has a destination field of x2. C ADDII6SP adds the
non-zero sign-extended 6-bit immediate to the value in the stack pointer (sp=x2), where the
immediate is scaled to represent multiples of 16 in the range (-512,496). C.ADDI16SP is used to adjust
the stack pointer in procedure prologues and epilogues. It expands into addi x2, x2, nzimm[9:4].
C.ADDII6SP is only valid when nzimm=#0; the code point with nzimm=0 is reserved.

Df In the standard RISC-V calling convention, the stack pointer sp is always 16-byte aligned.
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15 13 12 5 4 2 1 0
funct3 imm rd’ op
3 8 3 2
C.ADDI4SPN nzuimm[5:4|9:6]2|3] dest co

C.ADDI4SPN is a CIW-format instruction that adds a zero-extended non-zero immediate, scaled by
4, to the stack pointer, x2, and writes the result to rd”. This instruction is used to generate pointers to
stack-allocated variables, and expands to addi rd”, x2, nzuimm[9:2]. CADDI4SPN is only valid
when nzuimm#0; the code points with nzuimm=0 are reserved.

15 13 12 11 7 6 2 1 0
funct3 ghamt[ 5] rd/rs1 shamt[4:0] op
3 1 5 5 2
C.SLLI shamt[5] dest =0 shamt[4:0] C2

C.SLLI is a CI-format instruction that performs a logical left shift of the value in register rd then writes
the result to rd. The shift amount is encoded in the shamt field. For RV128C, a shift amount of zero is
used to encode a shift of 64. C.SLLI expands into s11i rd, rd, shamt[5:0], except for RV128C with
shamt=0, which expands to s111 rd, rd, 64.

For RV32C, shamt[5] must be zero; the code points with shamt[5]=1 are designated for custom
extensions. For RV32C and RV64C, the shift amount must be non-zero; the code points with shamt=0
are HINTs. For all base ISAs, the code points with rd=x@ are HINTs, except those with shamt[5[=1 in
RV32C.

15 13 12 11 10 9 7 6 2 1 0
funct3 ghamt[5]] funct2 rd’/rs1’ shamt[4:0] op
3 1 2 3 5 2
C.SRLI shamt[5] C.SRLI dest shamt[4:0] Cc1
C.SRAI shamt[5] C.SRAI dest shamt[4:0] C1

C.SRLI is a CB-format instruction that performs a logical right shift of the value in register rd' then
writes the result to rd'. The shift amount is encoded in the shamt field. For RV128C, a shift amount of
zero is used to encode a shift of 64. Furthermore, the shift amount is sign-extended for RV128C, and so
the legal shift amounts are 1-31, 64, and 96-127. C.SRLI expands into sr1i rd”, rd", shamt, except
for RV128C with shamt=0, which expands tosrli rd", rd", 64

For RV32C, shamt[5] must be zero; the code points with shamt[5]=1 are designated for custom
extensions. For RV32C and RV64C, the shift amount must be non-zero; the code points with shamt=0
are HINTSs.

C.SRAI is defined analogously to C.SRLI, but instead performs an arithmetic right shift. C.SRAI
expandstosrai rd’, rd", shamt.

Left shifts are usually more frequent than right shifts, as left shifts are frequently used to
scale address values. Right shifts have therefore been granted less encoding space and are
placed in an encoding quadrant where all other immediates are sign-extended. For RVI28,
Ely the decision was made to have the 6-bit shift-amount immediate also be sign-extended.
Apart from reducing the decode complexity, we believe right-shift amounts of 96-127 will
be more useful than 64-95, to allow extraction of tags located in the high portions of 128-
bit address pointers. We note that RVI128C will not be frozen at the same point as RV32C
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and RV64C, to allow evaluation of typical usage of 128-bit address-space codes.

15 13 12 1 10 9 7 6 2 1 0
funct3 imm[5] funct2 rd’/rs1’ imm[4:0] op
3 1 2 3 5 2
C.ANDI imm[5] C.ANDI dest imm[4:0] C1

C.ANDI is a CB-format instruction that computes the bitwise AND of the value in register rd' and the
sign-extended 6-bit immediate, then writes the result to rd. C.ANDI expands to andi rd”", rd”, imm.

26.5.3. Integer Register-Register Operations

15 12 11 7 6 2 1 0
funct4 rd/rs1 rs2 op
4 5 5 2
C.MV dest+0 src+0 C2
C.ADD dest+0 src+0 C2

These instructions use the CR format.

C.MV copies the value in register rs2 into register rd. C.MV expands into add rd, x0, rs2. CMV is
only valid when rs2#x0 the code points with rs2=x@ correspond to the CJR instruction. The code
points with rs2#x0 and rd=x@ are HINTs.

C.MV expands to a different instruction than the canonical MV pseudoinstruction, which
instead uses ADDI. Implementations that handle MV specially, e.g. using register-

Q renaming hardware, may find it more convenient to expand C.MV to MV instead of ADD,
at slight additional hardware cost.

C.ADD adds the values in registers rd and rs2 and writes the result to register rd. C.ADD expands into
add rd, rd, rs2. CADD is only valid when rs2#x0 the code points with rs2=x@ correspond to the
CJALR and C.EBREAK instructions. The code points with rs2#x0 and rd=x0 are HINTs.

15 10 9 7 6 5 4 2 1 0

funct6é rd’/rs1’ funct2 rs2’ op

6 3 2 3 2

C.AND dest C.AND src C1

C.OR dest C.OR src Cc1

C.XOR dest C.XOR src Cc1

C.SUB dest C.SUB src C1

C.ADDW dest C.ADDW src c1

C.SUBW dest C.SUBW src Cc1

These instructions use the CA format.

C.AND computes the bitwise AND of the values in registers rd' and rs2', then writes the result to register
rd'. C.AND expands intoand rd", rd’, rs2’.

C.0R computes the bitwise OR of the values in registers rd' and rs2', then writes the result to register rd'.
C.OR expands intoor rd”, rd”, rs2’.

C.XOR computes the bitwise XOR of the values in registers rd' and rs2', then writes the result to register
rd'. C.XOR expands into xor rd”, rd", rs2’.
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C.SUB subtracts the value in register rs2' from the value in register rd', then writes the result to register
rd'. C.SUB expands into sub rd”, rd", rs2’.

C.ADDW is an RV64C/RV128C-only instruction that adds the values in registers rd' and rs2', then sign-
extends the lower 32 bits of the sum before writing the result to register rd'. C. ADDW expands into addw

rd’, rd’, rs2’.

C.SUBW is an RV64C/RV128C-only instruction that subtracts the value in register rs2' from the value in
register rd', then sign-extends the lower 32 bits of the difference before writing the result to register rd'.
C.SUBW expands into subw rd”, rd", rs2’.

This group of six instructions do not provide large savings individually, but do not occupy
| y much encoding space and are straightforward to implement, and as a group provide a
worthwhile improvement in static and dynamic compression.

26.5.4. Defined lllegal Instruction

15 13 12 11 7 6 2 1 0
0 0 0 0
3 1 5 5 2
0 0 0 0 0

A 16-bit instruction with all bits zero is permanently reserved as an illegal instruction.

We reserve all-zero instructions to be illegal instructions to help trap attempts to execute
zero-ed or non-existent portions of the memory space. The all-zero value should not be
Dy redefined in any non-standard extension. Similarly, we reserve instructions with all bits set
to 1 (corresponding to very long instructions in the RISC-V variable-length encoding
scheme) as illegal to capture another common value seen in non-existent memory regions.

26.5.5. NOP Instruction

15 13 12 11 7 6 2 1 0
funct3 imm[5] rd/rs1 imm[4:0] op
3 1 5 5 2
C.NOP 0 0 0 C1

C.NOP is a CI-format instruction that does not change any user-visible state, except for advancing the
pc and incrementing any applicable performance counters. C.NOP expands to nop. C.NOP is only valid
when imm=0; the code points with imm#0 encode HINTS.

26.5.6. Breakpoint Instruction

15 12 11 2 1 0
funct4 0 op
4 10 2
C.EBREAK 0 C2
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Debuggers can use the C.EBREAK instruction, which expands to ebreak, to cause control to be
transferred back to the debugging environment. C.EBREAK shares the opcode with the C.ADD
instruction, but with rd and rs2 both zero, thus can also use the CR format.

26.6. Usage of C Instructions in LR/SC Sequences

On implementations that support the C extension, compressed forms of the I instructions permitted
inside constrained LR/SC sequences, as described in Section 14.3, are also permitted inside
constrained LR/SC sequences.

The implication is that any implementation that claims to support both the A and C
|y extensions must ensure that LR/SC sequences containing valid C instructions will
eventually complete.

26.7. HINT Instructions

A portion of the RVC encoding space is reserved for microarchitectural HINTs. Like the HINTSs in the
RV32I base ISA (see HINT Instructions), these instructions do not modify any architectural state,
except for advancing the pc and any applicable performance counters. HINTs are executed as no-ops
on implementations that ignore them.

RVC HINTs are encoded as computational instructions that do not modify the architectural state,
either because rd=x0 (e.g. C.ADD x@, t@), or because rd is overwritten with a copy of itself (e.g. C.ADDI

t0, ).

This HINT encoding has been chosen so that simple implementations can ignore HINTs
|y altogether, and instead execute a HINT as a regular computational instruction that
happens not to mutate the architectural state.

RVC HINTs do not necessarily expand to their RVI HINT counterparts. For example, C.ADD x0, a0
might not encode the same HINT as ADD xO, x0, aO.

The primary reason to not require an RVC HINT to expand to an RVI HINT is that HINTs
are unlikely to be compressible in the same manner as the underlying computational

Dy instruction. Also, decoupling the RVC and RVI HINT mappings allows the scarce RVC
HINT space to be allocated to the most popular HINTs, and in particular, to HINTs that
are amenable to macro-op fusion.

Table 32 lists all RVC HINT code points. For RV32C, 78% of the HINT space is reserved for standard
HINTs. The remainder of the HINT space is designated for custom HINTSs; no standard HINTs will
ever be defined in this subspace.

Table 35. RVC HINT instructions.

Instruction Constraints Code Points Purpose

C.NOP imm#0 63

C.ADDI rd#x0, imm=0 31

CLI rd=x@ 64 Designated for future standard
C.LUI rd=x0, imm#0 63 use

C.MV rd=x0, rs2#Xx0 31

C.ADD rd=x0, rs2#x0, rs2#x2-x5 27
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Instruction Constraints Code Points Purpose

C.ADD rd=x0, rs2#x2-x5 4 (rs2=x2) C.NTL.P1 (rs2=x3)
C.NTL.PALL (rs2=x4) C.NTL.S1
(rs2=x5) C.NTL.ALL

C.SLLI rd=x0, imm=0 31 (RV32), 63 (RV64/128)
C.SLLI64 rd=x0 1
C.SLLI64 rd#x0, RV32 and RV64 only 31 Designated for custom use
C.SRLI64 RV32 and RV64 only 8
C.SRAI64 RV32 and RV64 only 8

26.8. RVC Instruction Set Listings

Table 36 shows a map of the major opcodes for RVC. Each row of the table corresponds to one
quadrant of the encoding space. The last quadrant, which has the two least-significant bits set,
corresponds to instructions wider than 16 bits, including those in the base ISAs. Several instructions
are only valid for certain operands; when invalid, they are marked either RES to indicate that the
opcode is reserved for future standard extensions; Custom to indicate that the opcode is designated for
custom extensions; or HINT to indicate that the opcode is reserved for microarchitectural hints (see
Section 18.7).
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Table 36. RVC opcode map instructions.

m'st[15:13] 000 001 010 011 100 101 110 111
inst[1:0]
FLD FLW FSD FSW
00 ADDI4SPN FLD LW LD Reserved FSD SW SD
LQ LD SQ SD
JAL
01 ADDI ADDIW LI LUI/ADDHGSP MISC-ALU ] BEQZ BNEZ
ADDIW
FLDSP FLWSP FSDSP FSWSP
10 SLLI FLDSP LWSP LDSP J[AL]R/MV/ADD FSDSP  SWSP SDSP
LQSP LDSP SQSP SDSP
11 >16b

Figure 3, Figure 4, and Figure 5 list the RVC instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000 0 0 00 Illegal instruction
000 uimm[5:4|9:6|2|3] rd’ 00 C.ADDI4SPN _
RES uimm=0

001 uimm[5:3] rs1 uimm[7:6] rd 00 C.FLD(RV32/64)
001 uimm[5:4|8] rs1’ uimm[7:6] rd’ 00 C'LQ(R\/128)
010 uimm[5:3] rs1’ uimm[2|6] rd’ 00 C.LW
011 uimm[5:3] rs1’ uimm[2]6] rd’ 00 C.FLW

(RV32)
011 uimm[5:3] rs1’ uimm[7:6] rd’ 00 C'LD(RV64J128)
100 --- 00 Reserved
101 uimm[5:3] rs1’ uimm[7:6] rs2’ 00 C'FSD(R\/32/64)
101 uimm[5:4|8] rsi uimm[7:6] rs2 00 C&D(szs)
110 uimm[5:3] rs1’ uimm[2|6] rs2’ 00 C.SW
111 uimm[5:3] rs1’ uimm[2|6] rs2’ 00 C.Fsw

(RV32)
111 uimm[5:3] rs1’ uimm[7:6] rs2’ 00 C'S:)(R\/64J128)

Figure 3. Instruction listing for RVC, Quadrant O
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14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
000 imm[5] 0 imm[4:0] 01 C'NOP(HINT.irm:O)

000 imm[5] rs1/rd+0 imm([4:0] 01 C'ADDI(HINT. imm=0)

001 imm[11]4/9:8]10]6|7|3:1|5] 01 CIAL

001 imm[5] rs1/rd=0 imm[4:0] 01 C.ADDIW(R\Mm RES rd=0)
010 imm[5] rd#0 imm[4:0] 01 C'Ll(mm, 1@=0)

011 imm[9] 2 imm[4]6]8:7|5] 01 CADDIZSP
011 imm[17] rd#{0, 2} imm[16:12] 01 C.LUI(RESi"m:O; HINT. rd=0)
100 uimm[5] 00 rs1'/rd’ uimm[4:0] 01 C'SRLl(wszcuom wmi5l=1)
100 0 00 rs1'/rd’ 0 01 C.SRLI64(R\/128: RVEZIBAHINT)
100 uimm([5] 01 rs1'/rd’ uimm[4:0] 01 C'SQAI(RVaZCustom, (5=
100 0 01 rs1’/rd’ 0 01 C.S?AIM(WQB; RVa64 HINT)
100 imm[5] 10 rs1'/rd’ imm[4:0] 01 C.ANDI

100 0 11 rs1'/rd’ 00 rs2’ 01 C.SUB

100 0 11 rs1'/rd’ 01 rs2’ 01 C.XOR

100 0 11 rs1'/rd’ 10 rs2’ 01 C.OR

100 0 11 rs1'/rd’ 11 rs2’ 01 C.AND

100 1 11 rs1'/rd’ 00 rs2’ 01 C.SUBW(RVMQS: RvazRES
100 1 11 rs1'/rd’ 01 rs2’ 01 C.ADDW(FMWH& vz RES
100 1 11 --- 10 --- 01 Reserved

100 1 1M1 --- 11 --- 01 Reserved

101 imm[11]4/9:8]106|7|3:1|5] 01 c.J

110 imm[84:3] rs1’ imm[7:6]2:1]5] 01 C.BEQZ

111 imm[84:3] rs1’ imm[7:6]2:1]5] 01 C.BNEZ

Figure 4. Instruction listing for RVC, Quadrant 1
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1 14 1 11 10 9 4
000 uimm[5] rs1/rd+#0 uimm[4:0] 10
000 0 rs1/rd+0 0 10
001 uimm([5] rd uimm([4:3|8:6] 10
001 uimm([5] rd+0 uimm([4]9:6] 10
010 uimm[5] rd=0 uimm[4:2|7:6] 10
011 uimm[5] rd uimm[4:2|7:6] 10
011 uimm([5] rd=0 uimm[4:3]8:6] 10
100 0 rs1+0 0 10
100 0 rd=0 rs2+0 10
100 1 0 0 10
100 1 rs1+0 0 10
100 1 rs1/rd+0 rs2+0 10
101 uimm([5:3|8:6] rs2 10
101 uimm[5:4]9:6] rs2 10
110 uimm[5:2|7:6] rs2 10
111 uimm([5:2|7:6] rs2 10
111 uimm([5:3|8:6] rs2 10

Figure 5. Instruction listing for RVC, Quadrant 2
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C'S‘LI(MNT, rd=0; Rv32 Custom, uimm{5]=1)

C‘S-le(wua RV32/64 HINT; HINT, rd=0)

CFLDSD(RVS%A)

C'LQSD(FMZ& RES rd=0)

CLWS (RES; rd=0)

C.FLWSP
(RV32)

C.LDSD(WMH& RES, 1d=0)

CIR s o)

C'MV(HINT, 1d=0)

C.EBREAK

C.JALR

C'ADD(HlN'E rd=0)

C.FSDSD(WM)

c ws:(rmzs)

C.SWsP

CFSWsP
R32)

Csjsp(wewua)
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Chapter 27. "Zc*" Extension for Code Size Reduction, Version 1.0.0

27.1. Zc* Overview

Zc* is a group of extensions that define subsets of the existing C extension (Zca, Zcd, Zcf) and new
extensions which only contain 16-bit encodings.

Zcm™ all reuse the encodings for c.fld, c.fsd, c.fldsp, c.fsdsp.

Table 37. Zc* extension overview

Instruction Zca Zcf Zcd Zcb Zcmp Zcmt

The Zca extension is added as way to refer to instructions in the C extension that do not include the floating-point loads and
stores

Cexcl. c.f* yes

The Zcf extension is added as a way to refer to compressed single-precision floating-point load/stores

c.flw rv32
cflwsp rv32
c.fsw rv32
c.fswsp rv32

The Zcd extension is added as a way to refer to compressed double-precision floating-point load/stores

c.fld yes

c.fldsp yes

c.fsd yes

c.fsdsp yes

Simple operations for use on all architectures

clbu yes
clh yes
c.lhu yes
c.sb yes
c.sh yes
c.zextb yes
c.sextb yes
c.zexth yes
c.sexth yes
c.zext.w yes
c.mul yes
c.not yes

PUSH/POP and double move which overlap with c.fsdsp. Complex operations intended for embedded CPUs

cm.push yes
cm.pop yes
cm.popret yes
cm.popretz yes
cm.mvaOls yes
cm.mvsaOl yes

Table jump which overlaps with c.fsdsp. Complex operations intended for embedded CPUs
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Instruction Zca Zcf Zcd Zcb Zcmp Zcmt

cm.jt yes

cm jalt yes
27.2.C

The C extension is the superset of the following extensions:
- Zca
- Zcfif F is specified (RV32 only)
- Zcd if D is specified
As C defines the same instructions as Zca, Zcf and Zcd, the rule is that:

- Calways implies Zca

- C+F implies Zcf (RV32 only)
- C+D implies Zcd

27.3.Zce

The Zce extension is intended to be used for microcontrollers, and includes all relevant Zc extensions.

- Specifying Zce on RV32 without F includes Zca, Zcb, Zcmp, Zemt
- Specifying Zce on RV32 with F includes Zca, Zcb, Zcmp, Zecmt and Zcef

- Specifying Zce on RV64 always includes Zca, Zcb, Zemp, Zemt
o Zcf doesn'’t exist for RV64

Therefore common ISA strings can be updated as follows to include the relevant Zc extensions, for
example:

- RV32IMC becomes RV32IM _Zce
- RV32IMCF becomes RV32IMF _Zce

27.4. MISA.C

MISA.C is set if the following extensions are selected:
- Zcaand not F

- Zca, Zcf and F is specified (RV32 only)

- Zca, Zcfand Zced if D is specified (RV32 only)
> this configuration excludes Zcmp, Zcmt

- Zca, Zcd if D is specified (RV64 only)

> this configuration excludes Zcmp, Zcmt

27.5.Zca
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The Zca extension is added as way to refer to instructions in the C extension that do not include the
floating-point loads and stores.

Therefore it excluded all 16-bit floating point loads and stores: c.flw, c.flwsp, c.fsw, c.fswsp, c.fld, c.fldsp,
c.fsd, c.fsdsp.

/4 the C extension only includes F/D instructions when D and F are also specified

27.6. Zcf (RV32 only)

Zct is the existing set of compressed single precision floating point loads and stores: c.flw, c.flwsp, c.fsw,
c.fswsp.

Zcf is only relevant to RV32, it cannot be specified for RV64.

The Zcf extension depends on the Zca and F extensions.

27.7. Zcd

Zcd is the existing set of compressed double precision floating point loads and stores: c.fld, c.fldsp, c.fsd,
c.fsdsp.

The Zcd extension depends on the Zca and D extensions.

27.8.Zcb
Zcb has simple code-size saving instructions which are easy to implement on all CPUs.

All encodings are currently reserved for all architectures, and have no conflicts with any existing
extensions.

y Zcb can be implemented on any CPU as the instructions are 16-bit versions of existing 32-
EI bit instructions from the application class profile.

The Zcb extension depends on the Zca extension.

As shown on the individual instruction pages, many of the instructions in Zcb depend upon another
extension being implemented. For example, c.mul is only implemented if M or Zmmul is
implemented, and c.sext.b is only implemented if Zbb is implemented.

The c.mul encoding uses the CA register format along with other instructions such as c.sub, c.xor etc.

/4 c.sext.w is a pseudo-instruction for c.addiw rd, O (RV64)
RV32 RV64 Mnemonic Instruction
yes yes  clburd, uimm(rsI) Load unsigned byte, 16-bit encoding
yes yes  clhurd, uimm(rsI) Load unsigned halfword, 16-bit encoding
yes yes  clhrd, uimm(rsI) Load signed halfword, 16-bit encoding
yes yes  c.sbrs2, uimm(rsl) Store byte, 16-bit encoding
yes yes  c.shrs2), uimm(rsI) Store halfword, 16-bit encoding
yes yes  czextbrsd' Zero extend byte, 16-bit encoding
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RV32
yes
yes

yes

yes

yes

RV64 Mnemonic

yes
yes
yes
yes
yes

yes

c.sextb rsd'
czexth rsd'
c.sext.h rsd'
c.zextw rsd'
cnot rsd'

cmul rsd’, rs2'

Instruction

Sign extend byte, 16-bit encoding
Zero extend halfword, 16-bit encoding
Sign extend halfword, 16-bit encoding
Zero extend word, 16-bit encoding
Bitwise not, 16-bit encoding

Multiply, 16-bit encoding
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27.9. Zcmp

The Zcmp extension is a set of instructions which may be executed as a series of existing 32-bit RISC-
V instructions.

This extension reuses some encodings from c.fsdsp. Therefore it is incompatible with Zcd, which is
included when C and D extensions are both present.

y Zcmp is primarily targeted at embedded class CPUs due to implementation complexity.
EI Additionally, it is not compatible with architecture class profiles.

The Zcmp extension depends on the Zca extension.
The PUSH/POP assembly syntax uses several variables, the meaning of which are:

- reg_list is a list containing 1 to 13 registers (ra and O to 12 s registers)
> valid values: {ra}, {ra, sO}, {ra, sO-s1}, {ra, sO-s2}, .., {ra, sO-s8}, {ra, sO-s9}, {ra, sO-sl1}
> note that {ra, sO-s10} is not valid, giving 12 lists not 13 for better encoding

- stack_adj is the total size of the stack frame.

> valid values vary with register list length and the specific encoding, see the instruction pages
for details.

RV32 RV64 Mnemonic Instruction
yes yes  cm.push {reg_list}, -stack_adj cm.push
yes yes  cm.pop {reg_list}, stack_adj cm.pop
yes yes  cm.popret {reg_list}, stack_adj cm.popret
yes yes  cm.popretz {reg_list}, stack_adj cm.popretz
yes yes  cm.mvaOls rsl; rs2' Move two sO-s7 registers into aO-al
yes yes  cm.mvsaOlrls) r2s' Move a0-al into two different sO-s7 registers
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27.10. Zcmt

Zcmt adds the table jump instructions and also adds the jvt CSR. The jvt CSR requires a state enable if
Smstateen is implemented. See jvt CSR, table jump base vector and control register for details.

This extension reuses some encodings from c.fsdsp. Therefore it is incompatible with Zcd, which is
included when C and D extensions are both present.

y Zemt is primarily targeted at embedded class CPUs due to implementation complexity.
EI Additionally, it is not compatible with RVA profiles.

The Zemt extension depends on the Zca and Zicsr extensions.

RV32 RV64 Mnemonic Instruction
yes yes  cm.jtindex Jump via table
yes yes  cm.jaltindex Jump and link via table

27.11. Zc instruction formats

Several instructions in this specification use the following new instruction formats.

Format instructions 15:10 9 8 7 6 5 4 3 2 1 0
CLB clbu funct6 rsl' uimm rd' op
CSB c.sb funct6 rs!' uimm rs2' op
CLH clhuy, clh funct6 rsl’ functl uimm rd' op
CSH c.sh funct6 rsl' functl uimm  rs2' op
Cu c[sz]ext.*, c.not funct6 rd'/rs1 funct5 op
CMMV cm.mvsa0l funct6 rls' funct2 r2s' op
cm.mvaOls
CMJT cm.jt cm.jalt funct6 index op
CMPP cm.push®, cm.pop™  funct6 funct2 urlist spimm op
Df c.mul uses the existing CA format.
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27.12. Zcb instructions

27.12.1. c.lbu

Synopsis:

Load unsigned byte, 16-bit encoding
Mnemonic:

c.lbu rd’, uimm(rs1)

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1
1 0 0 0 0 0 rs1' uimm[0]1] rd' 0
FUNCT3 CcO

The immediate offset is formed as follows:

uimm[31:2] = @;

uimm[1] = encoding[5];

uimm[ 0] = encoding[6];
Description:

This instruction loads a byte from the memory address formed by adding rsl' to the zero extended
immediate uimm. The resulting byte is zero extended to XLEN bits and is written to rd'"

Df rd'and rs1' are from the standard 8-register set x8-x15.
Prerequisites:
None

Operation:

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

X(rdc) = EXTZ(mem[X(rs1c)+EXTZ(uimm)][7..0]);
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27.12.2.c.lhu

Synopsis:

Load unsigned halfword, 16-bit encoding
Mnemonic:

c.lhu rd’, uimm(rs1)

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1
1 0 0 0 0 1 rs1' 0 +imm[1 rd' 0
FUNCT3 Cco

The immediate offset is formed as follows:

uimm[31:2] = 0;

uimm[1] = encoding[5];

uimm[@] = 0;
Description:

This instruction loads a halfword from the memory address formed by adding rsI' to the zero extended
immediate uimm. The resulting halfword is zero extended to XLEN bits and is written to rd"

/4 rd'and rs1' are from the standard 8-register set x8-x15.
Prerequisites:
None

Operation:

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

X(rdc) = EXTZ(load_mem[X(rs1c)+EXTZ(uimm)][15..0]);
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27.023.c.lh

Synopsis:

Load signed halfword, 16-bit encoding
Mnemonic:

c.lh rd’, uimm(rs1)

Encoding (RV32, RV64):

15 13 12 10 9
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1 0 0 0 0 1 rs1'

1 +imm[1 rd' 0

FUNCT3

The immediate offset is formed as follows:

uimm[31:2] = 0;

uimm[1] = encoding[5];

uimm[@] = 0;
Description:

co

This instruction loads a halfword from the memory address formed by adding rsI' to the zero extended
immediate uimm. The resulting halfword is sign extended to XLEN bits and is written to rd"

/4 rd'and rs1' are from the standard 8-register set x8-x15.

Prerequisites:
None

Operation:

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

X(rdc) = EXTS(load _mem[X(rs1c)+EXTZ(uimm)][15..0]);
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27.12.4.csb

Synopsis:

Store byte, 16-bit encoding
Mnemonic:

c.sb rs2, uimm(rs1)
Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1
1 0 0 0 1 0 rs1' uimm[0]1] rs2' 0
FUNCT3 co

The immediate offset is formed as follows:

uimm[31:2] = 0;

uimm[1] = encoding[5];

uimm[@] = encoding[6];
Description:

This instruction stores the least significant byte of rs2'to the memory address formed by adding rsI' to
the zero extended immediate uimm.

/4 rsl'and rs2'are from the standard 8-register set x8-x15.
Prerequisites:
None

Operation:

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

mem[X(rs1c)+EXTZ(uimm)][7..0] = X(rs2c)
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27.2.5. c.sh

Synopsis:

Store halfword, 16-bit encoding
Mnemonic:

c.sh rs2', uimm(rs1)

Encoding (RV32, RV64):

15 13 12 10 9
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1 0 0 0 1 1 rs1'

0 +imm[1 rs2' 0

FUNCT3

The immediate offset is formed as follows:

uimm[31:2] = 0;

uimm[1] = encoding[5];

uimm[@] = 0;
Description:

co

This instruction stores the least significant halfword of rs2'to the memory address formed by adding

rsl'to the zero extended immediate uimm.

/4 rsl'and rs2'are from the standard 8-register set x8-x15.

Prerequisites:
None

Operation:

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

mem[X(rs1c)+EXTZ(uimm)][15..0] = X(rs2c)
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27.12.6. c.zext.b

Synopsis:

Zero extend byte, 16-bit encoding
Mnemonic:

c.zextb rd'/rsI'

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1 0
1 0 0 1 1 1 rd’/rs1' 1 1 0 0 0 0 1
FUNCT3 SRCDST FUNCT?2 C.ZEXT.B C1
Description:

This instruction takes a single source/destination operand. It zero-extends the least-significant byte of
the operand to XLEN bits by inserting zeros into all of the bits more significant than 7.

Df rd'/rs1'is from the standard 8-register set x8-x15.
Prerequisites:
None

32-bit equivalent:

andi rd'/rs1', rd'/rs1', Oxff

/4 The SAIL module variable for rd'/rs1'is called rsdc.

Operation:

X(rsdc) = EXTZ(X(rsdc)[7..0]);
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27.2.7. c.sext.b
Synopsis:
Sign extend byte, 16-bit encoding
Mnemonic:
c.sext.b rd'/rsI'

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1 0
1 0 0 1 1 1 rd"/rs1' 1 1 0 0 1 0 1
FUNCT3 SRCDST FUNCT?2 C.SEXT.B C1
Description:

This instruction takes a single source/destination operand. It sign-extends the least-significant byte in
the operand to XLEN bits by copying the most-significant bit in the byte (i.e,, bit 7) to all of the more-
significant bits.

Df rd'/rsl'is from the standard 8-register set x8-x15.
Prerequisites:
Zbb is also required.

Df The SAIL module variable for rd'/rs1'is called rsdc.

Operation:

X(rsdc) = EXTS(X(rsdc)[7..0]);

Prerequisites:
Zbb is also required.
Df The SAIL module variable for rd'/rs1"is called rsdc.

Operation:

X(rsde) = EXTZ(X(rsdc)[15..0]);
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27.12.8. c.zext.h

Synopsis:

Zero extend halfword, 16-bit encoding
Mnemonic:

c.zexth rd'/rsI'

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1 0
1 0 0 1 1 1 rd"/rs1' 1 1 0 1 0 0 1
FUNCT3 SRCDST FUNCT?2 C.ZEXTH C1
Description:

This instruction takes a single source/destination operand. It zero-extends the least-significant
halfword of the operand to XLEN bits by inserting zeros into all of the bits more significant than 15.

Df rd'/rs1'is from the standard 8-register set x8-x15.
Prerequisites:
Zbb is also required.

Df The SAIL module variable for rd'/rs1'is called rsdc.

Operation:

X(rsdc) = EXTZ(X(rsdc)[15..0]);
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27.12.9. c.sext.h
Synopsis:
Sign extend halfword, 16-bit encoding
Mnemonic:
c.sexth rd'/rsl'

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1 0
1 0 0 1 1 1 rd"/rs1' 1 1 0 1 1 0 1
FUNCT3 SRCDST FUNCT?2 C.SEXT.H C1
Description:

This instruction takes a single source/destination operand. It sign-extends the least-significant
halfword in the operand to XLEN bits by copying the most-significant bit in the halfword (i.e, bit 15)
to all of the more-significant bits.

Df rd'/rsl'is from the standard 8-register set x8-x15.
Prerequisites:
Zbb is also required.

Df The SAIL module variable for rd'/rs1'is called rsdc.

Operation:

X(rsdc) = EXTS(X(rsdc)[15..0]);
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27.12.10. c.zext.w

Synopsis:

Zero extend word, 16-bit encoding
Mnemonic:

c.zext.w rd'/rsl’

Encoding (RV64):
15 13 12 10 9 7 6 5 4 2 1 0
1 0 0 1 1 1 rd"/rs1' 1 1 1 0 0 0 1
FUNCT3 SRCDST FUNCT?2 C.ZEXTW C1
Description:

This instruction takes a single source/destination operand. It zero-extends the least-significant word
of the operand to XLEN bits by inserting zeros into all of the bits more significant than 31.

Df rd'/rs1'is from the standard 8-register set x8-x15.
Prerequisites:
Zba is also required.

32-bit equivalent:

add.uw rd'/rs1', rd'/rs1', zero

/4 The SAIL module variable for rd'/rs1'is called rsdc.

Operation:

X(rsde) = EXTZ(X(rsdc)[31..0]);
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27.12.11. c.not
Synopsis:
Bitwise not, 16-bit encoding
Mnemonic:
cnot rd'/rsl’

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1 0
1 0 0 1 1 1 rd"/rs1' 1 1 1 0 1 0 1
FUNCT3 SRCDST FUNCT?2 C.NOT C1
Description:

This instruction takes the one’s complement of rd'/rsI'and writes the result to the same register.
[,&’ rd'/rs1'is from the standard 8-register set x8-x15.

Prerequisites:

None

32-bit equivalent:

xori rd'/rs1', rd'/rs1', -1

/4 The SAIL module variable for rd'/rs1'is called rsdc.

Operation:

X(rsde) = X(rsdec) XOR -1;
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27.12.12. c.mul

Synopsis:

Multiply, 16-bit encoding
Mnemonic:

c.mul rsd, rs2'

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1 0
1 0 0 1 1 1 rd"/rs1' 1 0 rs2' 0 1
FUNCT3 SRCDST FUNCT?2 SRC2 C1
Description:

This instruction multiplies XLEN bits of the source operands from rsd' and rs2' and writes the lowest
XLEN bits of the result to rsd"

Df rd'/rsI'and rs2' are from the standard 8-register set x8-x15.
Prerequisites:
M or Zmmul must be configured.
Df The SAIL module variable for rd'/rs1'is called rsdc, and for rs2'is called rs2c.

Operation:

let result_wide = to_bits(2 * sizeof(xlen), signed(X(rsdc)) * signed(X(rs2c)));
X(rsde) = result_wide[(sizeof(xlen) - 1) .. 0];
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27.13. PUSH/POP register instructions
These instructions are collectively referred to as PUSH/POP:

- cm.push
- cm.pop
- cm.popret

- cm.popretz
The term PUSH refers to cm.push.
The term POP refers to cm.pop.
The term POPRET refers to cm.popret and cm.popretz.

Common details for these instructions are in this section.

27.13.1. PUSH/POP functional overview
PUSH, POP, POPRET are used to reduce the size of function prologues and epilogues.

1. The PUSH instruction

> adjusts the stack pointer to create the stack frame

> pushes (stores) the registers specified in the register list to the stack frame
2. The POP instruction

> pops (loads) the registers in the register list from the stack frame

> adjusts the stack pointer to destroy the stack frame
3. The POPRET instructions

> pop (load) the registers in the register list from the stack frame

° cm.popretz also moves zero into a0 as the return value

> adjust the stack pointer to destroy the stack frame

° execute a ret instruction to return from the function
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27.13.2. Example usage

This example gives an illustration of the use of PUSH and POPRET.

The function processMarkers in the EMBench benchmark picojpeg in

libpicojpeg.c

The prologue and epilogue compile with GCCI10 to:

00010983 <processMarkers>:
1098a:
1098c:
1098e:
10990:
10992:
10994:
10996:
10998:
1099a:
1099c:
1099%e:
10930:
109a2:
109a4:

109f4:
109f6:
109f8:
109fa:
109fc:
109fe:
10a00:
10a02:
10a04:
10a06:
10a08:
10a0a:
10a0c:
10a0e:
10a10:
10a12:

711d
c8ca
cbce
c4d?
ce86
cca?
caab
c2d6
c0da
debe
dc62
dabb
d86a
d6be

4501
406
4466
44d6
4946
49b6
4326
4396
4b06
5bf2
5¢62
5cd?
5d42
5db2
6125
8082

addi
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sp,sp,-96
s2,80(sp)
s3,76(sp)
s4,72(sp)
ra,92(sp)
s0,88(sp)
s1,84(sp)
s5,68(sp)
s6,64(sp)
s7,60(sp)
s8,56(sp)
s9,52(sp)

al,0

ra,92(sp)
s0,88(sp)
s1,84(sp)
s2,80(sp)
s3,76(sp)
s4,72(sp)
s5,68(sp)
s6,64(sp)
s7,60(sp)
s8,56(sp)
s9,52(sp)

sp,sp,96

;iem,
JHem.
J#em.,
J#em.,
;#em.,
;em.,
;em,
e,
J#em.,
J#em.,
;fem.,
;em.,
s10,48(sp);#cm.
s11,44(sp);#cm.

J#em.,
;#em.,
;em.,
;iem,
e,
J#em.,
J#em.,
;#em.,
;#em.,
.popretz(10)
e,
J#em.,
s10,48(sp);#cm.
s11,44(sp);#cm.
;#em.,
;iem,

;fem

the following file on github:

push(1)
push(2)
push(3)
push(4)
push(5)
push(6)
push(7)
push(8)
push(9)
push(10)
push(11)
push(12)
push(13)
push(14)

popretz(1)
popretz(2)
popretz(3)
popretz(4)
popretz(5)
popretz(6)
popretz(7)
popretz(8)
popretz(9)

popretz(11)
popretz(12)
popretz(13)
popretz(14)
popretz(15)
popretz(16)


https://github.com/embench/embench-iot/blob/master/src/picojpeg/libpicojpeg.c
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with the GCC option -msave-restore the output is the following:

0001080e <processMarkers>:

1080e: 733012ef jal 10,1148 <__riscv_save_12>
10812: 1101 addi sp,sp,-32

10862: 4501 1i al,0

10864: 6105 addi sp,sp,32

10866: 71e0106f j 1184 <__riscv_restore_12>

with PUSH/POPRET this reduces to

0001080e <processMarkers>:
1080e: b8fa cm. push {ra,s0-s11},-96

10866: befa cm.popretz {ra,s0-s11}, 96
The prologue / epilogue reduce from 60-bytes in the original code, to 14-bytes with -msave-restore, and

to 4-bytes with PUSH and POPRET. As well as reducing the code-size PUSH and POPRET eliminate
the branches from calling the millicode save/restore routines and so may also perform better.

—y The calls to <riscv_save_ 0>/<riscv_restore_ 0> become 64-bit when the target functions
B are out of the *IMB range, increasing the prologue/epilogue size to 22-bytes.

—y POP is typically used in tail-calling sequences where ret is not used to return to ra after
] destroying the stack frame.

Stack pointer adjustment handling

The instructions all automatically adjust the stack pointer by enough to cover the memory required
for the registers being saved or restored. Additionally the spimm field in the encoding allows the stack
pointer to be adjusted in additional increments of 16-bytes. There is only a small restricted range
available in the encoding; if the range is insufficient then a separate c.addil6sp can be used to increase
the range.

Register list handling
There is no support for the {ra, s0-s10} register list without also adding s11. Therefore the {ra, sO-s11}
register list must be used in this case.

27.13.3. PUSH/POP Fault handling

Correct execution requires that sp refers to idempotent memory (also see Non-idempotent memory
handling), because the core must be able to handle traps detected during the sequence. The entire
PUSH/POP sequence is re-executed after returning from the trap handler, and multiple traps are
possible during the sequence.

If a trap occurs during the sequence then xEPC is updated with the PC of the instruction, xTVAL (if not
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read-only-zero) updated with the bad address if it was an access fault and xCAUSE updated with the
type of trap.

Df It is implementation defined whether interrupts can also be taken during the sequence
execution.

27.13.4. Software view of execution

Software view of the PUSH sequence
From a software perspective the PUSH sequence appears as:

- A sequence of stores writing the bytes required by the pseudo-code
> The bytes may be written in any order.
> The bytes may be grouped into larger accesses.
> Any of the bytes may be written multiple times.
- A stack pointer adjustment
If an implementation allows interrupts during the sequence, and the interrupt handler
Dy uses sp to allocate stack memory, then any stores which were executed before the interrupt

may be overwritten by the handler. This is safe because the memory is idempotent and the
stores will be re-executed when execution resumes.

The stack pointer adjustment must only be committed only when it is certain that the entire PUSH
instruction will commit.

Stores may also return imprecise faults from the bus. It is platform defined whether the core
implementation waits for the bus responses before continuing to the final stage of the sequence, or
handles errors responses after completing the PUSH instruction.
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For example:

cm.push {ra, s@-s5}, -64

Appears to software as:

# any bytes from sp-1 to sp-28 may be written multiple times before

# the instruction completes therefore these updates may be visible in
# the interrupt/exception handler below the stack pointer

sw s5, -4(sp)

sw s4, -8(sp)

sw s3,-12(sp)

sw s2,-16(sp)

sw s1,-20(sp)

sw s0@,-24(sp)

sw ra,-28(sp)

# this must only execute once, and will only execute after all stores
# completed without any precise faults, therefore this update is only
# visible in the interrupt/exception handler if cm.push has completed
addi sp, sp, -64

Software view of the POP/POPRET sequence
From a software perspective the POP/POPRET sequence appears as:

- A sequence of loads reading the bytes required by the pseudo-code.
> The bytes may be loaded in any order.
> The bytes may be grouped into larger accesses.
> Any of the bytes may be loaded multiple times.
- A stack pointer adjustment
- Anoptional 11 a@, 0
- An optional ret
If a trap occurs during the sequence, then any loads which were executed before the trap may update
architectural state. The loads will be re-executed once the trap handler completes, so the values will be

overwritten. Therefore it is permitted for an implementation to update some of the destination
registers before taking a fault.

The optional 11 a@, 0, stack pointer adjustment and optional ret must only be committed only when
it is certain that the entire POP/POPRET instruction will commit.

For POPRET once the stack pointer adjustment has been committed the ret must execute.
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For example:

cm.popretz {ra, s@-s3}, 32;

Appears to software as:

# any or all of these load instructions may execute multiple times

# therefore these updates may be visible in the interrupt/exception handler
w s3, 28(sp)

w  s2, 24(sp)

w  s1, 20(sp)

w  s@, 16(sp)

w ra, 12(sp)

# these must only execute once, will only execute after all loads

# complete successfully all instructions must execute atomically

# therefore these updates are not visible in the interrupt/exception handler
11 a0, 0

addi sp, sp, 32

ret

27.13.5. Non-idempotent memory handling

An implementation may have a requirement to issue a PUSH/POP instruction to non-idempotent
memory.

If the core implementation does not support PUSH/POP to non-idempotent memories, the core may
use an idempotency PMA to detect it and take a load (POP/POPRET) or store (PUSH) access fault
exception in order to avoid unpredictable results.

Software should only use these instructions on non-idempotent memory regions when software can
tolerate the required memory accesses being issued repeatedly in the case that they cause exceptions.
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27.13.6. Example RV32l PUSH/POP sequences

The examples are included show the load/store series expansion and the stack adjustment. Examples
of cm.popret and cm.popretz are not included, as the difference in the expanded sequence from cm.pop
is trivial in all cases.

cm.push {ra, sO-s2}, -64
Encoding: rlist="7, spimm=3

expands to:

sw s2, -4(sp);
sw s1, -8(sp);
sw s@, -12(sp);
sw ra, -16(sp);
addi sp, sp, -64;

cm.push {ra, sO-s11}, -112
Encoding: rlist=15, spimm=3

expands to

sw s11, -4(sp);
sw s10, -8(sp);
sw s9, -12(sp);
sw s8, -16(sp);
sw s7, -20(sp);
sw sb, -24(sp);
sw sh, -28(sp);
sw s4, -32(sp);
sw s3, -36(sp);
sw s2, -40(sp);
sw s1, -44(sp);
sw s@, -48(sp);
sw ra, -52(sp);
addi sp, sp, -112;
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cm.pop {ra}, 16

Encoding: rlist=4, spimm=0

expands to:

w ra, 12(sp);
addi sp, sp, 16;

cm.pop {ra, s0-s3}, 48
Encoding: rlist=8, spimm=1

expands to

lw  s3, 44(sp);
lw  s2, 40(sp);
w  s1, 36(sp);
w s@, 32(sp);
w ra, 28(sp);
addi sp, sp, 48;

cm.pop {ra, sO-s4}, 64
Encoding: rlist=9, spimm=2

expands to:

v s4, 60(sp);
Iw  s3, 56(sp);
w  s2, 52(sp);
w s1, 48(sp);
w s@, 44(sp);
lw ra, 40(sp);
addi sp, sp, 64;
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27.13.7. cm.push
Synopsis:

Create stack frame: store ra and O to 12 saved registers to the stack frame, optionally allocate
additional stack space.

Mnemonic:
cm.push {reg_ list}, -stack_adj

Encoding (RV32, RV64):

15 13 12 8 7 4 3 2 1
1 0 1 1 1 0 0 0 rlist spimm[5:4] 1
FUNCT3 c2
[Z? rlist values O to 3 are reserved for a future EABI variant called cm.push.e
Assembly Syntax:

cm.push {reg_list}, -stack_adj
cm.push {xreg_list}, -stack_adj

The variables used in the assembly syntax are defined below.

RV32E:

switch (rlist){
case 4: {reg_list="ra"; xreg_list="x1";}
case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}

case 6: {reg_list="ra, s@-s1"; xreg_list="x1, x8-x9";}
default: reserved();

}
stack_adj = stack_adj_base + spimm[5:4] * 16;

RV32I, RVb4:

switch (rlist){
case 4: {reg_list="ra"; xreg_list="x1";}

case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}

case 6: {reg_list="ra, s0-s1"; xreg_list="x1, x8-x9";}

case 7: {reg_list="ra, s@-s2"; xreg_list="x1, x8-x9, x18";}
case 8: {reg_list="ra, s0-s3"; xreg_list="x1, x8-x9, x18-x19";}

case 9: {reg_list="ra, s0-s4"; xreg_list="x1, x8-x9, x18-x20";}
case 10: {reg_list="ra, s0@-s5"; xreg_list="x1, x8-x9, x18-x21";}
case 11: {reg_list="ra, s0-s6"; xreg_list="x1, x8-x9, x18-x22";}
case 12: {reg_list="ra, s@-s7"; xreg_list="x1, x8-x9, x18-x23";}
case 13: {reg_list="ra, s0-s8"; xreg_list="x1, x8-x9, x18-x24";}
case 14: {reg_list="ra, s0-s9"; xreg_list="x1, x8-x9, x18-x25";}
//note - to include s1@, s11 must also be included

The RISC-V Instruction Set Manual Volume I | © RISC-V



27.13. PUSH/POP register instructions | Page 182

case 15: {reg_list="ra, s0-s11"; xreg_list="x1, x8-x9, x18-x27";}
default: reserved();

}
stack_adj

stack_adj_base + spimm[5:4] * 16;

RV32E:

stack_adj_base = 16;
Valid values:

stack_adj

[16]32]48|641;

RV32I:

switch (rlist) {

case 4.. 7: stack_adj_base = 16;

case 8..11: stack_adj_base = 32;

case 12..14: stack_adj_base = 48;

case 15: stack_adj_base = 64;
}

Valid values:

switch (rlist) {
case 4.. 7: stack_adj
case 8..11: stack_adj
case 12..14: stack_adj
case 15: stack_adj

}

[16]32]48| 641;
[32]48]64| 801;
[48|64]|80| 961;
[64]80|96]112];

RvV64:

switch (rlist) {
case 4.. 5: stack_adj_base = 16;
case 6.. 7: stack_adj_base = 32;
case 8.. 9: stack_adj_base = 48;
case 10..11: stack_adj_base = 64;
case 12..13: stack_adj_base = 80;
case 14: stack_adj_base = 96;
case 15: stack_adj_base = 112;

}

Valid values:
switch (rlist) {

case 4.. 5: stack_adj = [ 16| 32| 48| 64];
case 6.. 7: stack_adj = [ 32| 48| 64| 80];
case 8.. 9: stack_adj = [ 48| 64| 80| 96];
case 10..11: stack_adj = [ 64| 80| 96|112];
case 12..13: stack_adj = [ 80| 96]112|128];
case 14: stack_adj = [ 96]112|128|144];
case 15: stack_adj = [112]128]|144]|160];
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Description:

This instruction pushes (stores) the registers in reg_list to the memory below the stack pointer, and
then creates the stack frame by decrementing the stack pointer by stack_ adj, including any additional
stack space requested by the value of spimm.

—y All ABI register mappings are for the UABI. An EABI version is planned once the EABI is
J frozen.

For further information see PUSH/POP Register Instructions.
Stack Adjustment Calculation:

stack_adj_base is the minimum number of bytes, in multiples of 16-byte address increments, required
to cover the registers in the list.

spimm is the number of additional 16-byte address increments allocated for the stack frame.

The total stack adjustment represents the total size of the stack frame, which is stack_adj_base added
to spimm scaled by 16, as defined above.

Prerequisites:

None

32-bit equivalent:

No direct equivalent encoding exists
Operation:

The first section of pseudo-code may be executed multiple times before the instruction successfully
completes.

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.
if (XLEN==32) bytes=4; else bytes=8;

addr=sp-bytes;
for(i in 27,26,25,24,23,22,21,20,19,18,9,8,1) {
//if register i is in xreg_list
if (xreg_list[i]) {
switch(bytes) {
4: asm("sw x[i], @(addr)");
8: asm("sd x[i], 0(addr)");
}
addr-=bytes;
}
}

The final section of pseudo-code executes atomically, and only executes if the section above completes
without any exceptions or interrupts.
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//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

sp-=stack_adj;
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27.13.8. cm.pop
Synopsis:

Destroy stack frame: load ra and O to 12 saved registers from the stack frame, deallocate the stack
frame.

Mnemonic:
cm.pop {reg_list}, stack_ adj

Encoding (RV32, RV64):

15 13 12 8 7 4 3 2 1
1 0 1 1 1 0 1 0 rlist spimm[5:4] 1
FUNCT3 c2
[Z? rlist values O to 3 are reserved for a future EABI variant called cm.pop.e
Assembly Syntax:

cm.pop {reg_list}, stack_adj
cm.pop {xreg_list}, stack_adj

The variables used in the assembly syntax are defined below.

RV32E:

switch (rlist){
case 4: {reg_list="ra"; xreg_list="x1";}
case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}

case 6: {reg_list="ra, s@-s1"; xreg_list="x1, x8-x9";}
default: reserved();

}
stack_adj = stack_adj_base + spimm[5:4] * 16;

RV32I, RVb4:

switch (rlist){
case 4: {reg_list="ra"; xreg_list="x1";}

case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}

case 6: {reg_list="ra, s0-s1"; xreg_list="x1, x8-x9";}

case 7: {reg_list="ra, s@-s2"; xreg_list="x1, x8-x9, x18";}
case 8: {reg_list="ra, s0-s3"; xreg_list="x1, x8-x9, x18-x19";}

case 9: {reg_list="ra, s0-s4"; xreg_list="x1, x8-x9, x18-x20";}
case 10: {reg_list="ra, s0@-s5"; xreg_list="x1, x8-x9, x18-x21";}
case 11: {reg_list="ra, s0-s6"; xreg_list="x1, x8-x9, x18-x22";}
case 12: {reg_list="ra, s@-s7"; xreg_list="x1, x8-x9, x18-x23";}
case 13: {reg_list="ra, s0-s8"; xreg_list="x1, x8-x9, x18-x24";}
case 14: {reg_list="ra, s0-s9"; xreg_list="x1, x8-x9, x18-x25";}
//note - to include s1@, s11 must also be included
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case 15:
default:

}

stack_adj

RV32E:

stack_adj_base

reserved();

Valid values:
stack_adj

RV32I:

switch
case
case
case
case

}

(rlist)
4..
8.

12.

7:

1
.14

15:

Valid values:

switch
case
case
case
case

}

RvV64:

switch
case
case
case
case
case
case
case

}

(rlist)
4.,
8.

12.

(rlist)
4.,
6..
8..

10.

12.

7:

1
.14

15:

5:
7:
9.

1
.13

14:
15:

Valid values:

switch
case
case
case
case
case
case
case

(rlist)
4..
0..
8..

10.

12.

5:
7:
9:

1
.13

14:
15:

16;

{

stack_adj_
stack_adj_
stack_adj_
stack_adj_

{

stack_adj
stack_adj
stack_adj
stack_adj

{

stack_adj_
stack_adj_
stack_adj_
stack_adj_
stack_adj_
stack_adj_
stack_adj_

{
stack_adj

stack_adj
stack_adj
stack_adj
stack_adj
stack_adj
stack_adj

base
base
base
base

base
base
base
base
base
base
base

1

[
[
[
[
[
[
[

[16]32]48|641;

16
32
48
64
80
96
12

16;
32;
48;
04;

[16]32]48| 641;
[32]48]64| 801;
[48|64]|80| 961;
[64]80|96]112];

16;
32;
48;
04;
80;
96;
112;

| 32| 48] 64];
| 48| 64| 80];
| 64| 80| 96];
| 80| 96/112];
| 96(112]128];
1112|128 144];
|128|144|160];
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{reg_list="ra, s0-s11"; xreg_list="x1, x8-x9, x18-x27";}

stack_adj_base + spimm[5:4] * 16;
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}
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Description:

This instruction pops (loads) the registers in reg_list from stack memory, and then adjusts the stack
pointer by stack_ ad,j.

Df All ABI register mappings are for the UABI. An EABI version is planned once the EABI is
frozen.

For further information see PUSH/POP Register Instructions.
Stack Adjustment Calculation:

stack_adj_ base is the minimum number of bytes, in multiples of 16-byte address increments, required
to cover the registers in the list.

spimm is the number of additional 16-byte address increments allocated for the stack frame.

The total stack adjustment represents the total size of the stack frame, which is stack_adj_base added
to spimm scaled by 16, as defined above.

Prerequisites:
None
32-bit equivalent:
No direct equivalent encoding exists
Operation:
The first section of pseudo-code may be executed multiple times before the instruction successfully
completes.
//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.
if (XLEN==32) bytes=4; else bytes=8;
addr=sp+stack_adj-bytes;
for(i in 27,26,25,24,23,22,21,20,19,18,9,8,1) {
//if register i is in xreg_list
if (xreg_list[i]) {
switch(bytes) {
4: asm("lw x[i], @(addr)");
8: asm("ld x[i], @(addr)");
}
addr-=bytes;

}
}

The final section of pseudo-code executes atomically, and only executes if the section above completes
without any exceptions or interrupts.

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.
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sp+=stack_adj;
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27.13.9. cm.popretz
Synopsis:

Destroy stack frame: load ra and O to 12 saved registers from the stack frame, deallocate the stack
frame, move zero into a0, return to ra.

Mnemonic:
cm.popretz {reg_ list}, stack_ adj

Encoding (RV32, RV64):

15 13 12 8 7 4 3 2 1
1 0 1 1 1 1 0 0 rlist spimm[5:4] 1
FUNCT3 c2
Df rlist values O to 3 are reserved for a future EABI variant called cm.popretz.e
Assembly Syntax:

cm.popretz {reg_list}, stack_adj
cm.popretz {xreg_list}, stack_adj

RV32E:

switch (rlist){
case 4: {reg_list="ra"; xreg_list="x1";}
case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}

case 6: {reg_list="ra, s0@-s1"; xreg_list="x1, x8-x9";}
default: reserved();

}
stack_adj = stack_adj_base + spimm[5:4] * 16;

RV32I, RVb4:

switch (rlist){
case 4: {reg_list="ra"; xreg_list="x1";}

case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}

case 6: {reg_list="ra, s0-s1"; xreg_list="x1, x8-x9";}

case 7: {reg_list="ra, s@-s2"; xreg_list="x1, x8-x9, x18";}
case 8: {reg_list="ra, s0-s3"; xreg_list="x1, x8-x9, x18-x19";}

case 9: {reg_list="ra, s0-s4"; xreg_list="x1, x8-x9, x18-x20";}
case 10: {reg_list="ra, s0@-s5"; xreg_list="x1, x8-x9, x18-x21";}
case 11: {reg_list="ra, s0@-s6"; xreg_list="x1, x8-x9, x18-x22";}
case 12: {reg_list="ra, s@-s7"; xreg_list="x1, x8-x9, x18-x23";}
case 13: {reg_list="ra, s0-s8"; xreg_list="x1, x8-x9, x18-x24";}
case 14: {reg_list="ra, s0-s9"; xreg_list="x1, x8-x9, x18-x25";}
//note - to include s1@, s11 must also be included

case 15: {reg_list="ra, s0-s11"; xreg_list="x1, x8-x9, x18-x27";}
default: reserved();
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}
stack_adj

stack_adj_base + spimm[5:4] * 16;

RV32E:

stack_adj_base = 16;

Valid values:

stack_adj = [16]32]48|64]1;
RV32I:
switch (rlist) {
case 4.. 7: stack_adj_base = 16;
case 8..11: stack_adj_base = 32;
case 12..14: stack_adj_base = 48;
case 15: stack_adj_base = 64;
}

Valid values:

switch (rlist) {
case 4.. 7: stack_adj
case 8..11: stack_adj
case 12..14: stack_adj
case 15: stack_adj

}

[16]32]48| 641;
[32]48|64| 80];
[48|64]|80| 961;
[64]80]|96]112];

RVb4:

switch (rlist) {
case 4.. 5: stack_adj_base = 16;
case 6.. 7: stack_adj_base = 32;
case 8.. 9: stack_adj_base = 48;
case 10..11: stack_adj_base = 64;
case 12..13: stack_adj_base = 80;
case 14: stack_adj_base = 96;
case 15: stack_adj_base = 112;

}

Valid values:
switch (rlist) {

case 4.. 5: stack_adj = [ 16| 32| 48| 64];
case 6.. 7: stack_adj = [ 32| 48| 64| 80];
case 8.. 9: stack_adj = [ 48| 64| 80| 96];
case 10..11: stack_adj = [ 64| 80| 96|112];
case 12..13: stack_adj = [ 80| 96]112|128];
case 14: stack_adj = [ 96]112|128|144];
case 15: stack_adj = [112]128]|144]|160];
}
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Description:

This instruction pops (loads) the registers in reg_list from stack memory, adjusts the stack pointer by
stack_ adj, moves zero into a0 and then returns to ra.

Dy All ABI register mappings are for the UABI. An EABI version is planned once the EABI is
frozen.

For further information see PUSH/POP Register Instructions.
Stack Adjustment Calculation:

stack_adj_ base is the minimum number of bytes, in multiples of 16-byte address increments, required
to cover the registers in the list.

spimm is the number of additional 16-byte address increments allocated for the stack frame.

The total stack adjustment represents the total size of the stack frame, which is stack_adj_base added
to spimm scaled by 16, as defined above.

Prerequisites:

None

32-bit equivalent:

No direct equivalent encoding exists

Operation:

The first section of pseudo-code may be executed multiple times before the instruction successfully

completes.

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.
if (XLEN==32) bytes=4; else bytes=8;

addr=sp+stack_adj-bytes;
for(i in 27,26,25,24,23,22,21,20,19,18,9,8,1) {
//if register i is in xreg_list
if (xreg_list[i]) {
switch(bytes) {
4: asm("lw x[i], 0(addr)");
8: asm("ld x[i], @(addr)");
}
addr-=bytes;
}
}

The final section of pseudo-code executes atomically, and only executes if the section above completes
without any exceptions or interrupts.

Dy The li a0, O could be executed more than once, but is included in the atomic section for
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convenience.

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.
asm("1li a0, 0");

sp+=stack_adj;
asm("ret");
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27.13.10. cm.popret
Synopsis:

Destroy stack frame: load ra and O to 12 saved registers from the stack frame, deallocate the stack
frame, return to ra.

Mnemonic:
cm.popret {reg_ list}, stack_ adj

Encoding (RV32, RV64):

15 13 12 8 7 4 3 2 1
1 0 1 1 1 1 1 0 rlist spimm[5:4] 1
FUNCT3 c2
Df rlist values O to 3 are reserved for a future EABI variant called cm.popret.e
Assembly Syntax:

cm.popret {reg_list}, stack_adj
cm.popret {xreg_list}, stack_adj

The variables used in the assembly syntax are defined below.

RV32E:

switch (rlist){
case 4: {reg_list="ra"; xreg_list="x1";}
case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}

case 6: {reg_list="ra, s@-s1"; xreg_list="x1, x8-x9";}
default: reserved();

}
stack_adj = stack_adj_base + spimm[5:4] * 16;

RV32I, RVb4:

switch (rlist){
case 4: {reg_list="ra"; xreg_list="x1";}

case 5: {reg_list="ra, s0"; xreg_list="x1, x8";}

case 6: {reg_list="ra, s0-s1"; xreg_list="x1, x8-x9";}

case 7: {reg_list="ra, s@-s2"; xreg_list="x1, x8-x9, x18";}
case 8: {reg_list="ra, s0-s3"; xreg_list="x1, x8-x9, x18-x19";}

case 9: {reg_list="ra, s0-s4"; xreg_list="x1, x8-x9, x18-x20";}
case 10: {reg_list="ra, s0@-s5"; xreg_list="x1, x8-x9, x18-x21";}
case 11: {reg_list="ra, s0-s6"; xreg_list="x1, x8-x9, x18-x22";}
case 12: {reg_list="ra, s@-s7"; xreg_list="x1, x8-x9, x18-x23";}
case 13: {reg_list="ra, s0-s8"; xreg_list="x1, x8-x9, x18-x24";}
case 14: {reg_list="ra, s0-s9"; xreg_list="x1, x8-x9, x18-x25";}
//note - to include s1@, s11 must also be included
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case 15: {reg_list="ra, s0-s11"; xreg_list="x1, x8-x9, x18-x27";}
default: reserved();

}
stack_adj

stack_adj_base + spimm[5:4] * 16;

RV32E:

stack_adj_base = 16;
Valid values:

stack_adj

[16]32]48|641;

RV32I:

switch (rlist) {

case 4.. 7: stack_adj_base = 16;

case 8..11: stack_adj_base = 32;

case 12..14: stack_adj_base = 48;

case 15: stack_adj_base = 64;
}

Valid values:

switch (rlist) {
case 4.. 7: stack_adj
case 8..11: stack_adj
case 12..14: stack_adj
case 15: stack_adj

}

[16]32]48| 641;
[32]48]64| 801;
[48|64]|80| 961;
[64]80|96]112];

RvV64:

switch (rlist) {
case 4.. 5: stack_adj_base = 16;
case 6.. 7: stack_adj_base = 32;
case 8.. 9: stack_adj_base = 48;
case 10..11: stack_adj_base = 64;
case 12..13: stack_adj_base = 80;
case 14: stack_adj_base = 96;
case 15: stack_adj_base = 112;

}

Valid values:
switch (rlist) {

case 4.. 5: stack_adj = [ 16| 32| 48| 64];
case 6.. 7: stack_adj = [ 32| 48| 64| 80];
case 8.. 9: stack_adj = [ 48| 64| 80| 96];
case 10..11: stack_adj = [ 64| 80| 96|112];
case 12..13: stack_adj = [ 80| 96]112|128];
case 14: stack_adj = [ 96]112|128|144];
case 15: stack_adj = [112]128]|144]|160];
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Description:

This instruction pops (loads) the registers in reg_list from stack memory, adjusts the stack pointer by
stack_adj and then returns to ra.

Dy All ABI register mappings are for the UABI. An EABI version is planned once the EABI is
frozen.

For further information see PUSH/POP Register Instructions.
Stack Adjustment Calculation:

stack_adj_ base is the minimum number of bytes, in multiples of 16-byte address increments, required
to cover the registers in the list.

spimm is the number of additional 16-byte address increments allocated for the stack frame.

The total stack adjustment represents the total size of the stack frame, which is stack_adj_base added
to spimm scaled by 16, as defined above.

Prerequisites:
None
32-bit equivalent:
No direct equivalent encoding exists
Operation:
The first section of pseudo-code may be executed multiple times before the instruction successfully
completes.
//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.
if (XLEN==32) bytes=4; else bytes=8;
addr=sp+stack_adj-bytes;
for(i in 27,26,25,24,23,22,21,20,19,18,9,8,1) {
//if register i is in xreg_list
if (xreg_list[i]) {
switch(bytes) {
4: asm("lw x[i], @(addr)");
8: asm("ld x[i], @(addr)");

}
addr-=bytes;

}
}

The final section of pseudo-code executes atomically, and only executes if the section above completes
without any exceptions or interrupts.

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.
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sp+=stack_adj;
asm("ret");
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27.13.11. cm.mvsaO0l

Synopsis:

Move a0-al into two registers of sO-s7
Mnemonic:

cm.mvsaOl rls' r2s'

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1
1 0 1 0 1 1 r1s' 0 1 r2s' 1
FUNCT3 c2
/4 For the encoding to be legal r1s'I= r2s"
Assembly Syntax:

cm.mvsadl rls', r2s

Description: This instruction moves a0 into rls' and al into r2s' rls'and r2s’ must be different. The
execution is atomic, so it is not possible to observe state where only one of rls'or r2s"has been updated.

The encoding uses sreg number specifiers instead of xreg number specifiers to save encoding space.
The mapping between them is specified in the pseudo-code below.

y The s register mapping is taken from the UABI, and may not match the currently
EI unratified EABIL. cm.mvsaOl.e may be included in the future.

Prerequisites:

None

32-bit equivalent:

No direct equivalent encoding exists.

Operation:

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.
if (RV32E && (r1sc>1 || r2sc>1)) {
reserved();
}
xregl = {r1sc[2:1]>0,r1sc[2:1]==0,r1sc[2:0]};
xreg2 = {r2sc[2:1]>0,r2sc[2:1]==0,r2sc[2:0]};
X[xreg1] = X[10];
X[xreqg2] = X[11];
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27.13.12. cm.mvaOls
Synopsis:
Move two sO-s7 registers into aO-al
Mnemonic:
cm.mvaOls rls, r2s’

Encoding (RV32, RV64):

15 13 12 10 9 7 6 5 4 2 1
1 0 1 0 1 1 r1s' 1 1 r2s' 1
FUNCT3 C2
Assembly Syntax:

cm.mvadls rl1s', r2s'

Description: This instruction moves rls'into a0 and r2s" into al. The execution is atomic, so it is not
possible to observe state where only one of a0 or al have been updated.

The encoding uses sreg number specifiers instead of xreg number specifiers to save encoding space.
The mapping between them is specified in the pseudo-code below.

y The s register mapping is taken from the UABI, and may not match the currently
EI unratified EABI. cm.mvaOls.e may be included in the future.

Prerequisites:

None

32-bit equivalent:

No direct equivalent encoding exists.

Operation:

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.
if (RV32E && (r1sc>1 || r2se>1)) {

reserved();
}
xregl = {r1sc[2:1]>0,r1sc[2:1]==0,r1sc[2:0]};
xreg2 = {r2sc[2:1]>0,r2sc[2:1]==0,r2sc[2:0]};
X[10] = X[xreg1];
X[11] = X[xreg2];

The RISC-V Instruction Set Manual Volume I | © RISC-V



27.14. Table Jump Overview | Page 202
27.14. Table Jump Overview
cm.jt Jump via table) and cm.jalt (Jump and link via table) are referred to as table jump.

Table jump uses a 256-entry XLEN wide table in instruction memory to contain function addresses.
The table must be a minimum of 64-byte aligned.

Table entries follow the current data endianness. This is different from normal instruction fetch
which is always little-endian.

cm.jt and cmjalt encodings index the table, giving access to functions within the full XLEN wide
address space.

This is used as a form of dictionary compression to reduce the code size of jal / auipc+jalr / jr / auipc+jr
instructions.

Table jump allows the linker to replace the following instruction sequences with a cm.jt or cm.jalt
encoding, and an entry in the table:

- 32-bitjcalls

- 32-bitjal ra calls

- 64-bit auipc+jr calls to fixed locations

- 64-bit auipc+jalr ra calls to fixed locations

° The auipc+jr/jalr sequence is used because the offset from the PC is out of the *1MB range.

If a return address stack is implemented, then as cm.jalt is equivalent to jal ra, it pushes to the stack.

27.14.1. jvt

The base of the table is in the jvt CSR (see jvt CSR, table jump base vector and control register), each
table entry is XLEN bits.

If the same function is called with and without linking then it must have two entries in the table. This
is typically caused by the same function being called with and without tail calling.

27.14.2. Table Jump Fault handling

For a table jump instruction, the table entry that the instruction selects is considered an extension of
the instruction itself. Hence, the execution of a table jump instruction involves two instruction fetches,
the first to read the instruction (cm.jt/cm.jalt) and the second to read from the jump vector table (JVT).
Both instruction fetches are implicit reads, and both require execute permission; read permission is
irrelevant. It is recommended that the second fetch be ignored for hardware triggers and breakpoints.

Memory writes to the jump vector table require an instruction barrier (fence.i) to guarantee that they
are visible to the instruction fetch.

Multiple contexts may have different jump vector tables. JVT may be switched between them without
an instruction barrier if the tables have not been updated in memory since the last fence.i.

If an exception occurs on either instruction fetch, xEPC is set to the PC of the table jump instruction,
xCAUSE is set as expected for the type of fault and xTVAL (if not set to zero) contains the fetch address
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which caused the fault.
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27.14.3.jvt CSR
Synopsis:
Table jump base vector and control register
Address:
0x0017
Permissions:
URW
Format (RV32):
31 . - 6 5 . . 0

base[XLEN-1:6] (WARL) mode
XLEN-6 6

Format (RV64):
63 65 0
base[XLEN-1:6] (WARL) mode
XLEN-6 6

Description:

The jvt register is an XLEN-bit WARL read/write register that holds the jump table configuration,
consisting of the jump table base address (BASE) and the jump table mode (MODE).

If Section 27.10 is implemented then jvt must also be implemented, but can contain a read-only value.
If jvt is writable, the set of values the register may hold can vary by implementation. The value in the
BASE field must always be aligned on a 64-byte boundary.

jvt.base is a virtual address, whenever virtual memory is enabled.

The memory pointed to by jvt.base is treated as instruction memory for the purpose of executing table
jump instructions, implying execute access permission.

Table 38. jvt.mode definition

jvtmode Comment
000000 Jump table mode
others reserved for future standard use

jvt.mode is a WARL field, so can only be programmed to modes which are implemented. Therefore the
discovery mechanism is to attempt to program different modes and read back the values to see which
are available. Jump table mode must be implemented.

Df in future the RISC-V Unified Discovery method will report the available modes.
Architectural State:

jvt CSR adds architectural state to the system software context (such as an OS process), therefore must
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be saved/restored on context switches.

State Enable:

If the Smstateen extension is implemented, then bit 2 in mstateenO, sstateenO, and hstateenO is
implemented. If bit 2 of a controlling stateenO CSR is zero, then access to the jvt CSR and execution of

a cm.jalt or cm.jt instruction by a lower privilege level results in an Illegal Instruction trap (or, if
appropriate, a Virtual Instruction trap).
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27.14.4. cm.jt

Synopsis:

jump via table

Mnemonic:

cm.jt index

Encoding (RV32, RV64):

15 13 12 10 9 1
1 0 1 0 0 index 1
FUNCT3 c2
—y For this encoding to decode as cm.jt, index<32, otherwise it decodes as cm.jalt, see Jump
B and link via table.
. If jvt.mode = O (Jump Table Mode) then cm.jt behaves as specified here. If jvt.mode is a
y reserved value, then cm.jt is also reserved. In the future other defined values of jvt.mode
) . .
may change the behaviour of cm.jt.
Assembly Syntax:
cm.jt index
Description:

cm.jt reads an entry from the jump vector table in memory and jumps to the address that was read.

For further information see Table Jump Overview.

Prerequisites:
None
32-bit equivalent:

No direct equivalent encoding exists.
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Operation:

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

# target_address is temporary internal state, it doesn't represent a real register
# InstMemory is byte indexed

switch(XLEN) {
32: table_address[XLEN-1:0]
64: table_address[XLEN-1:0]

jvt.base + (index<<2);
jvt.base + (index<<3);

}

//fetch from the jump table
target_address[XLEN-1:0] = InstMemory[table_address][XLEN-1:0];

j target_address[XLEN-1:0]&~0x1;
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27.14.5. cm jalt

Synopsis:

jump via table with optional link
Mnemonic:

cm.jalt index

Encoding (RV32, RV64):

15 13 12 10 9 2 1
1 0 1 0 0 0 index 1
FUNCT3 2
—y For this encoding to decode as cm.jalt, index>=32, otherwise it decodes as cm.jt, see Jump

] via table.

. If jvt.mode = O (Jump Table Mode) then cm.jalt behaves as specified here. If jvt.mode is a
ﬁ reserved value, then cm.jalt is also reserved. In the future other defined values of jvt.mode
may change the behaviour of cm.jalt.

Assembly Syntax:

cm.jalt index

Description:

cm.jalt reads an entry from the jump vector table in memory and jumps to the address that was read,
linking to ra.

For further information see Table Jump Overview.
Prerequisites:

None

32-bit equivalent:

No direct equivalent encoding exists.
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Operation:

//This is not SAIL, it's pseudo-code. The SAIL hasn't been written yet.

# target_address is temporary internal state, it doesn't represent a real register
# InstMemory is byte indexed

switch(XLEN) {
32: table_address[XLEN-1:0]
64: table_address[XLEN-1:0]

jvt.base + (index<<2);
jvt.base + (index<<3);

}

//fetch from the jump table
target_address[XLEN-1:0] = InstMemory[table_address][XLEN-1:0];

jal ra, target_address[XLEN-1:0]&~0x1;
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Chapter 28. "B" Extension for Bit Manipulation, Version 1.0.0

The B standard extension comprises instructions provided by the Zba, Zbb, and Zbs extensions.

28.1. Bit-manipulation a, b, c and s extensions grouped for public review and
ratification

The bit-manipulation (bitmanip) extension collection is comprised of several component extensions
to the base RISC-V architecture that are intended to provide some combination of code size reduction,
performance improvement, and energy reduction. While the instructions are intended to have general
use, some instructions are more useful in some domains than others. Hence, several smaller bitmanip
extensions are provided, rather than one large extension. Each of these smaller extensions is grouped
by common function and use case, and each has its own Zb*-extension name.

Each bitmanip extension includes a group of several bitmanip instructions that have similar purposes
and that can often share the same logic. Some instructions are available in only one extension while
others are available in several. The instructions have mnemonics and encodings that are independent
of the extensions in which they appear. Thus, when implementing extensions with overlapping
instructions, there is no redundancy in logic or encoding.

The bitmanip extensions are defined for RV32 and RV64. Most of the instructions are expected to be
forward compatible with RV128. While the shift-immediate instructions are defined to have at most a
6-bit immediate field, a 7th bit is available in the encoding space should this be needed for RV128.

28.2. Word Instructions

The bitmanip extension follows the convention in RV64 that w-suffixed instructions (without a dot
before the w) ignore the upper 32 bits of their inputs, operate on the least-significant 32-bits as signed
values and produce a 32-bit signed result that is sign-extended to XLEN.

Bitmanip instructions with the suffix .uw have one operand that is an unsigned 32-bit value that is
extracted from the least significant 32 bits of the specified register. Other than that, these perform full
XLEN operations.

Bitmanip instructions with the suffix .b, .h and .w only look at the least significant 8-bits, 16-bits and
32-bits of the input (respectively) and produce an XLEN-wide result that is sign-extended or zero-
extended, based on the specific instruction.

28.3. Pseudocode for instruction semantics

The semantics of each instruction in Instructions is expressed in a SAIL-like syntax.

28.4. Extensions
The first group of bitmanip extensions to be released for Public Review are:

- Address generation instructions
- Basic bit-manipulation
- Carry-less multiplication

- Single-bit instructions
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Below is a list of all of the instructions that are included in these extensions along with their specific

mapping:
RV32  RV64 Mnemonic Instruction Zba Zbb Zbc Zbs
add.uw rd, rsl, rs2 Add unsigned word v
v v andn rd, rsl, rs2 AND with inverted operand v
v v clmulrd, rs1, rs2 Carry-less multiply (low-part)
v v clmulhrd, rsl, rs2 Carry-less multiply (high-part)
v v clmulrrd, rs1, rs2 Carry-less multiply (reversed)
v v clzrd s Count leading zero bits v
v clzwrd, rs Count leading zero bits in word v
v v cpop rd, 18 Count set bits v
v cpopwrd, s Count set bits in word v
v v ctzrd s Count trailing zero bits v
v ctzwrd, 18 Count trailing zero bits in word v
v v max rd, rsl, rs2 Maximum v
v v maxu rd, rsl, rs2 Unsigned maximum v
v v min rd, rsl, rs2 Minimum v
v4 v4 minu rd, rsl, rs2 Unsigned minimum v
v v orcbrd, rsl, rs2 Bitwise OR-Combine, byte granule v
v v ornrd, rsl, rs2 OR with inverted operand v
v v rev8rd, rs Byte-reverse register v
v v rolrd, rsl, rs2 Rotate left (Register) v
v rolwrd, rsl, rs2 Rotate Left Word (Register) v
v rorrd, rsl, rs2 Rotate right (Register) v
v rorird, rsl, shamt Rotate right (Immediate) v
v roriw rd, rsl, shamt Rotate right Word (Immediate) v
v rorw rd, rsl, rs2 Rotate right Word (Register) v
v v belrrd, rsl, rs2 Single-Bit Clear (Register) v
v v belrird, rs1, imm Single-Bit Clear (Immediate) v
v v bextrd, rsl, rs2 Single-Bit Extract (Register) v
v v bexti rd, rsl, imm Single-Bit Extract (Immediate) v
v v binvrd, rsl, rs2 Single-Bit Invert (Register) v
v v binvird, rsl, imm Single-Bit Invert (Immediate) v
v v bsetrd, rsl, rs2 Single-Bit Set (Register) v
v v bseti rd, rsl, imm Single-Bit Set (Immediate) v
v v sextbrd, rs Sign-extend byte
v v sexthrd, rs Sign-extend halfword
v V' shladd rd, rs1, rs2 Shift left by 1 and add v
v' shladd.uw rd, rsl, rs2 Shift unsigned word left by 1 and add v
v v sh2add rd, rsI, rs2 Shift left by 2 and add v
v sh2add.uw rd, rsI, rs2 Shift unsigned word left by 2 and add v
v v' sh3add rd, rsl, rs2 Shift left by 3 and add v
v sh3add.uw rd, rs1, rs2 Shift unsigned word left by 3 and add v
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RV32 RV64 Mnemonic Instruction Zba Zbb Zbc Zbs
4 slliuw rd, rs1, imm Shift-left unsigned word (Immediate) V4
v v xnor rd, rs1, rs2 Exclusive NOR
v v zexth rd, rs Zero-extend halfword

28.4.1. Zba: Address generation
Df The Zba extension is frozen.

The Zba instructions can be used to accelerate the generation of addresses that index into arrays of
basic types (halfword, word, doubleword) using both unsigned word-sized and XLEN-sized indices: a
shifted index is added to a base address.

The shift and add instructions do a left shift of 1, 2, or 3 because these are commonly found in real-
world code and because they can be implemented with a minimal amount of additional hardware
beyond that of the simple adder. This avoids lengthening the critical path in implementations.

While the shift and add instructions are limited to a maximum left shift of 3, the slli instruction (from
the base ISA) can be used to perform similar shifts for indexing into arrays of wider elements. The
slli.uw — added in this extension — can be used when the index is to be interpreted as an unsigned
word.

The following instructions (and pseudoinstructions) comprise the Zba extension:

RV32 RV64 Mnemonic Instruction
add.uw rd, rs, rs2 Add unsigned word
v v' shladd rd, rsI, rs2 Shift left by 1 and add
v shladd.uw rd, rsl, rs2 Shift unsigned word left by 1 and add
v V' sh2add rd, rsl, rs2 Shift left by 2 and add
v' sh2add.uw rd, rs1, rs2 Shift unsigned word left by 2 and add
v v sh3add rd, rs, rs2 Shift left by 3 and add
v sh3add.uw rd, rsl, rs2 Shift unsigned word left by 3 and add
v slliuw rd, rsl, imm Shift-left unsigned word (Immediate)
v zextwrd, s Add unsigned word

28.4.2. Zbb: Basic bit-manipulation

74 The Zbb extension is frozen.

Logical with negate

RV32 RV64 Mnemonic Instruction
v v andn rd, rs1, rs2 AND with inverted operand
v v ornrd, rsl, rs2 OR with inverted operand
4 4 xnor rd, rs1, rs2 Exclusive NOR

Dy Implementation Hint

The Logical with Negate instructions can be implemented by inverting the rs2 inputs to the
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base-required AND, OR, and XOR logic instructions. In some implementations, the inverter
on rs2 used for subtraction can be reused for this purpose.

Count leading/trailing zero bits

RV32 RV64 Mnemonic Instruction
v v clzrd, rs Count leading zero bits
v clzw rd, rs Count leading zero bits in word
v v ctzrd, s Count trailing zero bits
4 ctzw rd, rs Count trailing zero bits in word

Count population

These instructions count the number of set bits (1-bits). This is also commonly referred to as
population count.

RV32 RV64 Mnemonic Instruction
v v cpoprd, s Count set bits
v cpopwrd, s Count set bits in word

Integer minimum/maximum

The integer minimum/maximum instructions are arithmetic R-type instructions that return the
smaller/larger of two operands.

RV32 RV64 Mnemonic Instruction
4 max rd, rsl, rs2 Maximum
v v maxurd, s, rs2 Unsigned maximum
v 4 min rd, rsl, rs2 Minimum
V4 4 minu rd, rsl, rs2 Unsigned minimum

Sign- and zero-extension

These instructions perform the sign-extension or zero-extension of the least significant 8 bits or 16
bits of the source register.

These instructions replace the generalized idioms s11i rD,rS, (XLEN-<size>) + srli (for zero-
extension) or s11i + srai (for sign-extension) for the sign-extension of 8-bit and 16-bit quantities,
and for the zero-extension of 16-bit quantities.

RV32 RV64 Mnemonic Instruction
v v sextbrd, rs Sign-extend byte
v v sexthrd, rs Sign-extend halfword
4 v zexth rd, rs Zero-extend halfword
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Bitwise rotation

Bitwise rotation instructions are similar to the shift-logical operations from the base spec. However,
where the shift-logical instructions shift in zeros, the rotate instructions shift in the bits that were
shifted out of the other side of the value. Such operations are also referred to as ‘circular shifts’.

RV32 RV64 Mnemonic Instruction
v v rolrd, rsl, rs2 Rotate left (Register)
v rolwrd, rsl, rs2 Rotate Left Word (Register)
v rorrd, rsl, rs2 Rotate right (Register)
v rorird, rsl, shamt Rotate right (Immediate)
v roriw rd, rsl, shamt Rotate right Word (Immediate)
v rorw rd, rs1, rs2 Rotate right Word (Register)

Architecture Explanation

| é The rotate instructions were included to replace a common four-instruction sequence to
achieve the same effect (neg; sll/srl; srl/sll; or)

OR Combine

orc.b sets the bits of each byte in the result rd to all zeros if no bit within the respective byte of rs is set,
or to all ones if any bit within the respective byte of rs is set.

One use-case is string-processing functions, such as strlen and strepy, which can use orc.b to test for
the terminating zero byte by counting the set bits in leading non-zero bytes in a word.

RV32 RV64 Mnemonic Instruction

v v orcbrd s Bitwise OR-Combine, byte granule

Byte-reverse

rev8 reverses the byte-ordering of rs.

RV32 RV64 Mnemonic Instruction

V4 v rev8 rd, rs Byte-reverse register

28.4.3. Zbc: Carry-less multiplication
Df The Zbc extension is frozen.
Carry-less multiplication is the multiplication in the polynomial ring over GF(2).

clmul produces the lower half of the carry-less product and clmulh produces the upper half of the 2
X XLEN carry-less product.

clmulr produces bits 2 X XLEN-2:XLEN-1 of the 2 X XLEN carry-less product.

RV32 RV64 Mnemonic Instruction

v v clmulrd, rsl, rs2 Carry-less multiply (low-part)
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V4

28.4.4. Zbs: Single-bit instructions

/4

RV64
v4

v

Mnemonic

clmulh rd, rs1, rs2

clmulr rd, rs1, rs2

The Zbs extension is frozen.
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Instruction
Carry-less multiply (high-part)

Carry-less multiply (reversed)

The single-bit instructions provide a mechanism to set, clear, invert, or extract a single bit in a register.

The bit is specified by its index.

RV32

<< < < X

RV64

<< << < < X

Mnemonic

belr rd, rs1, rs2
belri rd, rs1, imm
bext rd, rsl, rs2
bexti rd, rsl, imm
binv rd, rsl, rs2
binvi rd, rs1, imm
bset rd, rs1, rs2

bseti rd, rs1, imm

Instruction

Single-Bit Clear (Register)
Single-Bit Clear (Immediate)
Single-Bit Extract (Register)
Single-Bit Extract (Immediate)
Single-Bit Invert (Register)
Single-Bit Invert (Immediate)
Single-Bit Set (Register)

Single-Bit Set (Immediate)

28.4.5. Zbkb: Bit-manipulation for Cryptography

/4

The Zbkb extension is frozen.

This extension contains instructions essential for implementing common operations in cryptographic

workloads.
RV32 RV64
v v
v
v
v
v
v
v v
v v
v v
v v
v v
v
v v
v v
v
v

Mnemonic
rol
rolw
ror
rori
roriw
rorw
andn
orn
xnor
pack
packh
packw
rev.b
rev8
zip

unzip

Instruction

Rotate left (Register)

Rotate Left Word (Register)
Rotate right (Register)

Rotate right (Immediate)
Rotate right Word (Immediate)
Rotate right Word (Register)
AND with inverted operand
OR with inverted operand
Exclusive NOR

Pack low halves of registers
Pack low bytes of registers
Pack low 16-bits of registers (RV64)
Reverse bits in bytes
Byte-reverse register

Bit interleave

Bit deinterleave
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28.4.6. Zbkc: Carry-less multiplication for Cryptography

Df The Zbkc extension is frozen.

Carry-less multiplication is the multiplication in the polynomial ring over GF(2). This is a critical
operation in some cryptographic workloads, particularly the AES-GCM authenticated encryption
scheme. This extension provides only the instructions needed to efficiently implement the GHASH
operation, which is part of this workload.

RV32 RV64 Mnemonic Instruction
v v clmulrd, rsl, rs2 Carry-less multiply (low-part)
v v clmulhrd, rsl, rs2 Carry-less multiply (high-part)

28.4.7. Zbkx: Crossbar permutations

E‘f The Zbkx extension is frozen.

These instructions implement a "lookup table" for 4 and 8 bit elements inside the general purpose
registers. rsl is used as a vector of N-bit words, and rs2 as a vector of N-bit indices into rsl. Elements in
rsl are replaced by the indexed element in rs2, or zero if the index into rs2 is out of bounds.

These instructions are useful for expressing N-bit to N-bit boolean operations, and implementing
cryptographic code with secret dependent memory accesses (particularly SBoxes) such that the
execution latency does not depend on the (secret) data being operated on.

RV32 RV64 Mnemonic Instruction
v v\ xperm.nrd, rsl, rs2 Crossbar permutation (nibbles)
v v xperm.b rd, rsl, rs2 Crossbar permutation (bytes)
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28.5. Instructions (in alphabetical order)

28.5.1. add.uw

Synopsis
Add unsigned word

Mnemonic

add.uw rd, rsl, rs2

Pseudoinstructions

zext.w rd, rs1 = add.uw rd, rsl, zero

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

0 00 01 0O rs2 rsi 0 0 O rd o111 0 11
ADD.UW ADD.UW OP-32

Description

This instruction performs an XLEN-wide addition between rs2 and the zero-extended least-
significant word of rsl.

Operation

let base = X(rs2);
let index = EXTZ(X(rs1)[31..0]);

X(rd) = base + index;

Included in

Extension Minimum version Lifecycle state

Zba (Address generation instructions) 0.93 Frozen
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28.5.2. andn

Synopsis
AND with inverted operand

Mnemonic

andn rd, rsl, rs2

Encoding
31 25 24 20 19 15 14 12 1 7 6 0
01 0 0O0O0O rs2 rs1 T 11 rd 011 00 11
ANDN ANDN OP
Description

This instruction performs the bitwise logical AND operation between rsI and the bitwise inversion
of rs2.

Operation

X(rd) = X(rs1) & ~X(rs2);

Included in

Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen
Zbkb (Bit-manipulation for Cryptography) v0.9.4 Frozen
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28.5.3. bclr

Synopsis
Single-Bit Clear (Register)

Mnemonic
belr rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 1 7 6 0

0100100 rs2 rs1 0 0 1 rd 011 00 11
BCLR/BEXT BCLR OP

Description

This instruction returns rsl with a single bit cleared at the index specified in rs2. The index is read
from the lower log2(XLEN) bits of rs2.

Operation

let index = X(rs2) & (XLEN - 1);
X(rd) = X(rs1) & ~(1 << index)

Included in

Extension Minimum version Lifecycle state

Zbs (Single-bit instructions) 0.93 Frozen
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28.5.4. bclri

Synopsis
Single-Bit Clear (Immediate)

Mnemonic

belri rd, rs1, shamt

Encoding (RV32)

31 25 24 20 19 15 14 12 1 7 0
0100100 shamt rs1 0 0 1 rd 001 00 11
BCLRI BCLRI OP-IMM

Encoding (RV64)

31 26 25 20 19 1514 12 1 7 0
01 0010 shamt rs1 0 0 1 rd 0 01 0 0 11
BCLRI BCLRI OP-IMM

Description

This instruction returns rsI with a single bit cleared at the index specified in shamt. The index is
read from the lower log2(XLEN) bits of shamt. For RV32, the encodings corresponding to

shamt[5]=1 are reserved.

Operation

let index = shamt & (XLEN - 1);
X(rd) = X(rs1) & ~(1 << 1index)

Included in

Extension

Zbs (Single-bit instructions)

The RISC-V Instruction Set Manual Volume I | © RISC-V

Minimum version

0.93

Lifecycle state

Frozen



28.5. Instructions (in alphabetical order) | Page 221
28.5.5. bext

Synopsis
Single-Bit Extract (Register)

Mnemonic

bext rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 1 7 6 0

601 001 0O rs2 rs1 17 0 1 rd 011 0 0 11
BCLR/BEXT BEXT OP

Description

This instruction returns a single bit extracted from rsI at the index specified in rs2. The index is
read from the lower log2(XLEN) bits of rs2.

Operation

let index = X(rs2) & (XLEN - 1);
X(rd) = (X(rs1) >> index) & 1;

Included in

Extension Minimum version Lifecycle state

Zbs (Single-bit instructions) 0.93 Frozen
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28.5.6. bexti

Synopsis

Single-Bit Extract (Immediate)

Mnemonic

bexti rd, rs1, shamt

Encoding (RV32)

31 25 24 20 19 15 14 12 1

0100100 shamt rs1 17 0 1 rd 0O 01 0 0 1
BEXTI/BCLRI BEXTI OP-IMM

Encoding (RV64)

31 26 25 20 19 1514 12 1

01 0010 shamt rs1 17 0 1 rd 0O 01 0 0 1
BEXTI/BCLRI BEXTI OP-IMM

Description

This instruction returns a single bit extracted from rsI at the index specified in rs2. The index is
read from the lower log2(XLEN) bits of shamt. For RV32, the encodings corresponding to

shamt[5]=1 are reserved.

Operation

let index = shamt & (XLEN - 1);
X(rd) = (X(rs1) >> index) & 1;

Included in

Extension

Zbs (Single-bit instructions)
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28.5.7. binv

Synopsis
Single-Bit Invert (Register)

Mnemonic

binv rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

611 01 00O rs2 rsi 0 0 1 rd 011 00 11
BINV BINV oP

Description

This instruction returns rsI with a single bit inverted at the index specified in rs2. The index is read
from the lower log2(XLEN) bits of rs2.

Operation

let index = X(rs2) & (XLEN - 1);
X(rd) = X(rs1) A (1 << index)

Included in

Extension Minimum version Lifecycle state

Zbs (Single-bit instructions) 0.93 Frozen
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28.5.8. binvi

Synopsis

Single-Bit Invert (Immediate)

Mnemonic

binvi rd, rs1, shamt

Encoding (RV32)

31 25 24 20 19 15 14 12 1

011 01 00 shamt rs1 0 0 1 rd 0O 01 0 0 1
BINVI BINV OP-IMM

Encoding (RV64)

31 26 25 20 19 1514 12 1

611 010 shamt rs1 0 0 1 rd 0O 01 0 0 1
BINVI BINV OP-IMM

Description

This instruction returns rsl with a single bit inverted at the index specified in shamt. The index is
read from the lower log2(XLEN) bits of shamt. For RV32, the encodings corresponding to

shamt[5]=1 are reserved.

Operation

let index = shamt & (XLEN - 1);

X(rd) = X(rs1) A (1 << index)

Included in

Extension

Zbs (Single-bit instructions)
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28.5.9. bset

Synopsis
Single-Bit Set (Register)

Mnemonic

bset rd, rsl,rs2

Encoding

31 25 24 20 19 15 14 12 1 7 6 0

001 0100 rs2 rs1 0 0 1 rd 011 00 11
BSET BSET OP

Description

This instruction returns rsI with a single bit set at the index specified in rs2. The index is read from
the lower log2(XLEN) bits of rs2.

Operation

let index = X(rs2) & (XLEN - 1);
X(rd) = X(rs1) | (1 << index)

Included in

Extension Minimum version Lifecycle state

Zbs (Single-bit instructions) 0.93 Frozen
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28.5.10. bseti

Synopsis
Single-Bit Set (Immediate)

Mnemonic

bseti rd, rsl,shamt

Encoding (RV32)

31 25 24 20 19 15 14 12 1

001 0100 shamt rs1 0 0 1 rd 0O 01 0 0 1
BSETI BSETI OP-IMM

Encoding (RV64)

31 26 25 20 19 1514 12 1

001 01O shamt rs1 0 0 1 rd 0O 01 0 0 1
BSETI BSETI OP-IMM

Description

This instruction returns rsI with a single bit set at the index specified in shamt. The index is read
from the lower log2(XLEN) bits of shamt. For RV32, the encodings corresponding to shamt[5]=1 are

reserved.

Operation

let index = shamt & (XLEN - 1);

X(rd) = X(rs1) | (1 << index)

Included in

Extension

Zbs (Single-bit instructions)
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28.5.11. clmul

Synopsis
Carry-less multiply (low-part)

Mnemonic

clmul rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 1 7 6 0

00001 01 rs2 rs1 0 0 1 rd 011 00 11
MINMAX/CLMUL CLMUL OP

Description

clmul produces the lower half of the 2-XLEN carry-less product.

Operation
let rs1_val = X(rs1);
let rs2 val = X(rs2);

let output : xlenbits = 0;
foreach (i from @ to (xlen - 1) by 1) {
output = if  ((rs2_val >> i) & 1)

then output A (rs1_val << 1);
else output;

X[rd] = output

Included in

Extension Minimum version Lifecycle state
Zbc (Carry-less multiplication) 0.93 Frozen
Zbke (Carry-less multiplication for Cryptography) v0.9.4 Frozen
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28.5.12. cimulh

Synopsis
Carry-less multiply (high-part)

Mnemonic

clmulh rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 1 7

00001 01 rs2 rs1 0 1 1 rd 011 00
MINMAX/CLMUL CLMULH OP

Description

clmulh produces the upper half of the 2-XLEN carry-less product.

Operation
let rs1_val = X(rs1);
let rs2 val = X(rs2);

let output : xlenbits = 0;

foreach (i from 1 to xlen by 1) {
output = if  ((rs2_val >> i) & 1)
then output A (rs1_val >> (xlen - i));
else output;

}

X[rd] = output

Included in

Extension Minimum version
Zbc (Carry-less multiplication) 0.93
Zbke (Carry-less multiplication for Cryptography) v0.9.4
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28.5.13. clmulr

Synopsis

Carry-less multiply (reversed)

Mnemonic

clmulr rd, rs1, rs2
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Encoding

31 25 24 20 19 15 14 12 11 7 6 0

00001 01 rs2 rs1 01 0 rd 011 0 0 11
MINMAX/CLMUL CLMULR oP

Description

clmulr produces bits 2-XLEN-2:XLEN-1 of the 2-XLEN carry-less product.

Operation
let rs1_val = X(rs1);
let rs2 val = X(rs2);

let output : xlenbits

0,

foreach (i from @ to (xlen - 1) by 1) {

output = if  ((rs2_val >> i) & 1)

then output A (rs1_val >> (xlen - i - 1));

else output;

}

X[rd] = output

Note

Dy The clmulr instruction is used to accelerate CRC calculations. The r in the instruction’s
mnemonic stands for reversed, as the instruction is equivalent to bit-reversing the inputs,
performing a clmul, then bit-reversing the output.

Included in

Extension

Zbc (Carry-less multiplication)

Minimum version Lifecycle state

0.93 Frozen
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28.5.14.clz

Synopsis

Count leading zero bits

Mnemonic
clzrd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0171 00 OO0 OO OTDO rsi 0 0 1 rd 0O 01 0 0 11
CLZ CLZ CLZ OP-IMM
Description

This instruction counts the number of O’s before the first 1, starting at the most-significant bit (i.e.,
XLEN-1) and progressing to bit 0. Accordingly, if the input is O, the output is XLEN, and if the
most-significant bit of the input is a 1, the output is O.

Operation

val HighestSetBit : forall ('N : Int), 'N >= 0. bits('N) -> int

function HighestSetBit x = {
foreach (i from (xlen - 1) to @ by 1 in dec)
if [x[i]] == @b1 then return(i) else ();
return -1;

}

let rs = X(rs);
X[rd] = (xlen - 1) - HighestSetBit(rs);

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) 0.93 Frozen
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28.5.15. clzw

Synopsis

Count leading zero bits in word

Mnemonic
clzw rd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0171 00 OO0 OO OTDO rsi 0 0 1 rd 0O 01T 1 0 11
CLZW CLZW CLZW OP-IMM-32
Description

This instruction counts the number of O’s before the first 1 starting at bit 31 and progressing to bit
0. Accordingly, if the least-significant word is O, the output is 32, and if the most-significant bit of
the word (i.e., bit 31) is a 1, the output is O.

Operation

val HighestSetBit32 : forall ('N : Int), 'N >= 0. bits('N) -> int

function HighestSetBit32 x = {
foreach (i from 31 to @ by 1 in dec)
if [x[i]] == @b1 then return(i) else ();
return -1;

}

let rs = X(rs);
X[rd] = 31 - HighestSetBit(rs);

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) 0.93 Frozen
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28.5.16. cpop

Synopsis

Count set bits

Mnemonic
cpop rd, s
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
611 00O0O0|]0 O0O0™1TO rs1 0 0 1 rd 0 01 0 0 11
CPOP CPOP CPOP OP-IMM
Description

This instructions counts the number of 1s (i.e,, set bits) in the source register.

Operation

let bitcount = 0;
let rs = X(rs);

foreach (i from @ to (xlen - 1) in inc)
if rs[i] == @b1 then bitcount = bitcount + 1 else ();

X[rd] = bitcount

Software Hint

This operations is known as population count, popcount, sideways sum, bit summation, or
Hamming weight.

/4

The GCC builtin function __builtin_popcount (unsigned int x) is implemented by
cpop on RV32 and by cpopw on RV64. The GCC builtin function __builtin_popcountl
(unsigned long x) for LP64 is implemented by cpop on RV64.

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) 0.93 Frozen
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28.5.17. cpopw

Synopsis

Count set bits in word

Mnemonic

cpopw rd, rs

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

011 0O0O0O0|O0 O0O0OMTTO rs 0 0 1 rd 0O 01T 1 0 11
CPOPW CPOPW CPOPW OP-IMM-32

Description

This instructions counts the number of 1s (i.e, set bits) in the least-significant word of the source
register.

Operation

let bitcount = 0;
let val = X(rs);

foreach (i from @ to 31 in inc)
if val[i] == @b1 then bitcount = bitcount + 1 else ();

X[rd] = bitcount

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) 0.93 Frozen
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28.5.18. ctz

Synopsis

Count trailing zeros

Mnemonic
ctzrd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
o011 0O0O0O0O|0 O0O0O0~1 rsi 0 0 1 rd 0O 01 0 0 11
CTZ/CTZW CTZ/CTZW CTZ/CTZW OP-IMM
Description

This instruction counts the number of O’s before the first 1, starting at the least-significant bit (i.e,,
0) and progressing to the most-significant bit (i.e, XLEN-1). Accordingly, if the input is O, the
output is XLEN, and if the least-significant bit of the input is a 1, the output is O.

Operation

val LowestSetBit :

forall ('N : Int), 'N >= 0. bits('N) -> int

function LowestSetBit x = {
foreach (i from @ to (xlen - 1) by 1 in dec)
if [x[i]] == @b1 then return(i) else ();

return xlen;

}

let rs = X(rs);

X[rd] = LowestSetBit(rs);

Included in

Extension

Zbb (Basic bit-manipulation)
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28.5.19. ctzw

Synopsis

Count trailing zero bits in word

Mnemonic
ctzw rd, 18
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
611 00O0O0|0 OO0 0 1 rs1 0 0 1 rd 0 01 1 0 11
CTZ/CTZW CTZ/CTZW CTZ/CTZW OP-IMM-32
Description

This instruction counts the number of O’s before the first 1, starting at the least-significant bit (i.e,,
0) and progressing to the most-significant bit of the least-significant word (i.e., 31). Accordingly, if
the least-significant word is O, the output is 32, and if the least-significant bit of the input is a 1, the
outputis O.

Operation

val LowestSetBit32 : forall ('N : Int), 'N >= 0. bits('N) -> int

function LowestSetBit32 x = {
foreach (i from @ to 31 by 1 in dec)
if [x[i]] == 0b1 then return(i) else ();
return 32;

}

let rs = X(rs);
X[rd] = LowestSetBit32(rs);

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) 0.93 Frozen
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28.5.20. max

Synopsis

Maximum

Mnemonic

max rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 1

00001 01 rs2 rs1 T 10 rd 0 0
MINMAX/CLMUL MAX OP

Description

This instruction returns the larger of two signed integers.

Operation
let rs1_val = X(rs1);
let rs2 val = X(rs2);

let result = if rs1_val <_s rs2_val
then rs2_val
else rs1_val;

X(rd) = result;

Software Hint

Calculating the absolute value of a signed integer can be performed using the following
| ﬁ sequence: neg rD,rS followed by max rD,rS,rD. When using this common sequence, it is
suggested that they are scheduled with no intervening instructions so that

implementations that are so optimized can fuse them together.
Included in

Extension Minimum version

Zbb (Basic bit-manipulation) 0.93
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28.5.21. maxu

Synopsis

Unsigned maximum

Mnemonic

maxu rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

0 00 01 01 rs2 rsi 171 1 rd 011 00 11
MINMAX/CLMUL MAXU oP

Description

This instruction returns the larger of two unsigned integers.

Operation
let rs1_val = X(rs1);
let rs2 val = X(rs2);

let result = if rs1_val < u rs2_val
then rs2_val
else rs1_val;

X(rd) = result;

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) 0.93 Frozen
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28.5.22. min

Synopsis

Minimum

Mnemonic

min rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 1

00001 01 rs2 rs1 17 0 0 rd 0 0
MINMAX/CLMUL MIN OP

Description

This instruction returns the smaller of two signed integers.

Operation
let rs1_val = X(rs1);
let rs2 val = X(rs2);

let result = if rs1_val <_s rs2_val
then rs1_val
else rs2 val;

X(rd) = result;

Included in

Extension Minimum version

Zbb (Basic bit-manipulation) 0.93
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28.5.23. minu

Synopsis

Unsigned minimum

Mnemonic

minu rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 1 7 6 0

00001 01 rs2 rs1 17 0 1 rd 011 00 11
MINMAX/CLMUL MINU OP

Description

This instruction returns the smaller of two unsigned integers.

Operation
let rs1_val = X(rs1);
let rs2 val = X(rs2);

let result = if rs1_val < u rs2_val
then rs1_val
else rs2 val;

X(rd) = result;

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) 0.93 Frozen
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28.5.24. orc.b

Synopsis
Bitwise OR-Combine, byte granule

Mnemonic
orc.brd, rs
Encoding
31 20 19 15 14 12 11 7 6 0
o 01 01 0O0O0O0TT1TTIT1T1 rs 1 0 1 rd 0O 01 O 0 11
OP-IMM
Description

Combines the bits within each byte using bitwise logical OR. This sets the bits of each byte in the
result rd to all zeros if no bit within the respective byte of rs is set, or to all ones if any bit within the
respective byte of rs is set.

Operation
let input = X(rs);
let output : xlenbits = 0;
foreach (i from @ to (xlen - 8) by 8) {
output[(i + 7)..1] = if input[(i + 7)..i] ==

then 0b00000000
else @b11111111;

}

X[rd] = output;

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) 0.93 Frozen
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28.5.25. orn

Synopsis
OR with inverted operand

Mnemonic

orn rd, rs1, rs2

Encoding

31 25 24 20 19 15 14 12 1 7 6 0

010 0 O0O0O rs2 rs1 T 10 rd 011 00 11
ORN ORN OP

Description

This instruction performs the bitwise logical OR operation between rsl and the bitwise inversion of
rs2.

Operation

X(rd) = X(rs1) | ~X(rs2);

Included in

Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen
Zbkb (Bit-manipulation for Cryptography) v0.9.4 Frozen
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28.5.26. pack

Synopsis

Pack the low halves of rsI and rs2 into rd.

Mnemonic

pack rd, rs1, rs2

Encoding
31 25 24 20 19 15 14 12 1 7 6 0
00001 00O rs2 rs1 17 0 0 rd 011 00 11
PACK PACK OP
Description

The pack instruction packs the XLEN/2-bit lower halves of rsI and rs2 into rd, with rsI in the lower
half and rs2 in the upper half.

Operation

let lo_half : bits(xlen/2) = X(rs1)[xlen/2-1..0];
let hi_half : bits(xlen/2) = X(rs2)[xlen/2-1..0];
X(rd) = EXTZ(hi_half @ lo_half);

Included in

Extension Minimum version Lifecycle state

Zbkb (Bit-manipulation for Cryptography) v0.9.4 Frozen
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28.5.27. packh

Synopsis
Pack the low bytes of rsI and rs2 into rd.

Mnemonic

packh rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 1 7 6 0

00001 00O rs2 rs1 T 11 rd 011 00 11
PACKH PACKH OP

Description

And the packh instruction packs the least-significant bytes of rsl and rs2 into the 16 least-
significant bits of rd, zero extending the rest of rd.

Operation

let 1lo_half : bits(8) = X(rs1)[7..0];
let hi_half : bits(8) = X(rs2)[7..0];
X(rd) = EXTZ(hi_half @ lo_half);

Included in

Extension Minimum version Lifecycle state

Zbkb (Bit-manipulation for Cryptography) v0.9.4 Frozen
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28.5.28. packw

Synopsis
Pack the low 16-bits of rsI and rs2 into rd on RV64.

Mnemonic

packw rd, rsl, rs2

Encoding
31 25 24 20 19 15 14 12 1 7 6 2 10
00001 00O rs2 rs1 17 0 0 rd o111 0|11
Description

This instruction packs the low 16 bits of rsI and rs2 into the 32 least-significant bits of rd, sign
extending the 32-bit result to the rest of rd. This instruction only exists on RV64 based systems.

Operation
let lo_half : bits(16) = X(rs1)[15..0];

let hi_half : bits(16) = X(rs2)[15..0];
X(rd) = EXTS(hi_half @ lo_half);

Included in

Extension Minimum version Lifecycle state

Zbkb (Bit-manipulation for Cryptography) v0.94 Frozen
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28.5.29. rev8

Synopsis

Byte-reverse register

Mnemonic

rev8 rd, rs

Encoding (RV32)

31 20 19 15 14 12 11 7 6 0

611 010011000 rs 17 0 1 rd 0 01 0 0 1 1
OP-IMM

Encoding (RV64)

31 20 19 15 14 12 11 7 6 0

6110101711000 rs 17 0 1 rd 6 01 0 0 1 1
OP-IMM

Description

This instruction reverses the order of the bytes in rs.

Operation

let input = X(rs);
let output : xlenbits = 0;
let j = xlen - 1;

foreach (i from @ to (xlen - 8) by 8) {
output[i..(i + 7)] = input[(j - 7)..j];
j=3-8

}

X[rd] = output

Ely Note

The rev8 mnemonic corresponds to different instruction encodings in RV32 and RV64.

Software Hint

_y The byte-reverse operation is only available for the full register width. To emulate word-
J sized and halfword-sized byte-reversal, perform a rev8 rd,rs followed by a srai
rd, rd,K, where K is XLEN-32 and XLEN-16, respectively.

Included in

Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen
Zbkb (Bit-manipulation for Cryptography) v0.9.4 Frozen
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28.5.30. rev.b

Synopsis
Reverse the bits in each byte of a source register.

Mnemonic
rev.brd, rs
Encoding
31 20 19 15 14 12 11 7 6 0
o171 01 0O0O0O01T 11 rs 17 0 1 rd 0O 01 0 0 1 1
OP-IMM
Description

This instruction reverses the order of the bits in every byte of a register.

Operation

result : xlenbits = EXTZ(0b0);
foreach (i from @ to sizeof(xlen) by 8) {
result[i+7..1i] = reverse_bits_in_byte(X(rs1)[i+7..1]);

+
X(rd) = result;

Included in

Extension Minimum version

Zbkb (Bit-manipulation for Cryptography) v0.94
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Frozen
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28.5.31. rol

Synopsis
Rotate Left (Register)

Mnemonic

rol rd, rs1, rs2

Encoding
31 25 24 20 19 15 14 12 1 7 6 0
011 00O0O rs2 rs1 0 0 1 rd 011 00 11
ROL ROL OP
Description

This instruction performs a rotate left of rsI by the amount in least-significant log2(XLEN) bits of
rs2.

Operation

let shamt = if xlen == 32
then X(rs2)[4..0]
else X(rs2)[5..0];
let result = (X(rs1) << shamt) | (X(rs1) >> (xlen - shamt));

X(rd) = result;

Included in

Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen
Zbkb (Bit-manipulation for Cryptography) v0.9.4 Frozen

The RISC-V Instruction Set Manual Volume I | © RISC-V



28.5. Instructions (in alphabetical order) | Page 248

28.5.32. rolw

Synopsis
Rotate Left Word (Register)

Mnemonic

rolw rd, rs1, rs2

Encoding
31 25 24 20 19 15 14 12 1 7 0
611 00 0O rs2 rs1 0 0 1 rd 71 1 0 11
ROLW ROLW OP-32
Description

This instruction performs a rotate left on the least-significant word of rsI by the amount in least-
significant 5 bits of rs2. The resulting word value is sign-extended by copying bit 31 to all of the

more-significant bits.

Operation

let rs1 = EXTZ(X(rs1)[31..0])
let shamt = X(rs2)[4..0];

let result = (rs1 << shamt) | (rs1 >> (32 -

X(rd) = EXTS(result[31..0]);

Included in

Extension
Zbb (Basic bit-manipulation)

Zbkb (Bit-manipulation for Cryptography)

The RISC-V Instruction Set Manual Volume I | © RISC-V

shamt));

Minimum version
0.93
v0.94

Lifecycle state
Frozen

Frozen



28.5.33. ror

Synopsis
Rotate Right

Mnemonic

ror rd, rsl, rs2

28.5. Instructions (in alphabetical order) | Page 249

Encoding
31 25 24 20 19 15 14 12 11 7 0
011 00O0O rs2 rs1 17 0 1 rd 011 00 11
ROR ROR oP
Description
This instruction performs a rotate right of rs1 by the amount in least-significant log2(XLEN) bits of
rs2.
Operation

let shamt = if xlen == 32
then X(rs2)[4..0]
else X(rs2)[5..0];

let result = (X(rs1) >> shamt) | (X(rs1) <<

X(rd) = result;

Included in

Extension
Zbb (Basic bit-manipulation)

Zbkb (Bit-manipulation for Cryptography)

(xlen - shamt));

Minimum version
0.93
v0.9.4

Lifecycle state
Frozen

Frozen
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28.5.34. rori

Synopsis
Rotate Right (Immediate)

Mnemonic

rori rd, rs1, shamt

Encoding (RV32)

31 25 24 20 19 15 14 12 1 7 0
011 00O0O shamt rs1 17 0 1 rd 001 00 11
RORI RORI OP-IMM

Encoding (RV64)

31 26 25 20 19 1514 12 1 7 0
011 0 0O shamt rs1 17 0 1 rd 0 01 0 0 11
RORI RORI OP-IMM

Description

This instruction performs a rotate right of rsI by the amount in the least-significant log2(XLEN)
bits of shamt. For RV32, the encodings corresponding to shamt[5]=1 are reserved.

Operation

let shamt = if xlen == 32
then shamt[4..0]

else shamt[5..0];
let result = (X(rs1) >> shamt) | (X(rs1) <<

X(rd) = result;

Included in

Extension
Zbb (Basic bit-manipulation)

Zbkb (Bit-manipulation for Cryptography)

The RISC-V Instruction Set Manual Volume I | © RISC-V

(xlen - shamt));

Minimum version
0.93
v0.94

Lifecycle state
Frozen

Frozen
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28.5.35. roriw

Synopsis
Rotate Right Word by Immediate

Mnemonic

roriw rd, rs1, shamt

Encoding

31 25 24 20 19 15 14 12 1 7 6 0

011 00O0O shamt rs1 17 0 1 rd 0011011
RORIW RORIW OP-IMM-32

Description

This instruction performs a rotate right on the least-significant word of rsl by the amount in the
least-significant log2(XLEN) bits of shamt. The resulting word value is sign-extended by copying bit
31 to all of the more-significant bits.

Operation

let rs1_data = EXTZ(X(rs1)[31..0];
let result = (rs1_data >> shamt) | (rs1_data << (32 - shamt));
X(rd) = EXTS(result[31..0]);

Included in

Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen
Zbkb (Bit-manipulation for Cryptography) v0.9.4 Frozen
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28.5.36. rorw

Synopsis
Rotate Right Word (Register)

Mnemonic

rorw rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 11 7 6 0

011 00 0O rs2 rsi 17 0 1 rd o111 0 11
RORW RORW OP-32

Description

This instruction performs a rotate right on the least-significant word of rsI by the amount in least-
significant 5 bits of rs2. The resultant word is sign-extended by copying bit 31 to all of the more-
significant bits.

Operation

let rs1 = EXTZ(X(rs1)[31..0])

let shamt = X(rs2)[4..0];

let result = (rs1 >> shamt) | (rs1 << (32 - shamt));
X(rd) = EXTS(result);

Included in

Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen
Zbkb (Bit-manipulation for Cryptography) v0.9.4 Frozen
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28.5.37. sext.b

Synopsis
Sign-extend byte

Mnemonic
sextbrd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
011 00 O0O0|0 01T 0O rs1 0 0 1 rd 0O 01 0 0 1 1
SEXT.B SEXT.B/SEXT.H OP-IMM
Description

This instruction sign-extends the least-significant byte in the source to XLEN by copying the most-
significant bit in the byte (i.e., bit 7) to all of the more-significant bits.

Operation

X(rd) = EXTS(X(rs)[7..0]);

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) 0.93 Frozen
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28.5.38. sext.h

Synopsis
Sign-extend halfword

Mnemonic
sexth rd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
0171 00 OO0 01T 0 1 rsi 0 0 1 rd 0O 01 0 0 11
SEXT.H SEXT.B/SEXT.H OP-IMM
Description

This instruction sign-extends the least-significant halfword in rs to XLEN by copying the most-
significant bit in the halfword (i.e., bit 15) to all of the more-significant bits.

Operation

X(rd) = EXTS(X(rs)[15..0]);

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) 0.93 Frozen
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28.5.39. shladd

Synopsis
Shift left by 1 and add

Mnemonic
shladd rd, rs1, rs2

28.5. Instructions (in alphabetical order) | Page 255

Encoding

31 25 24 20 19 15 14 12 1 7 6 0

001 0O0O0O rs2 rs1 01 0 rd 011 00 11
SH1ADD SH1ADD OP

Description

This instruction shifts rsI to the left by 1 bit and adds it to rs2.

Operation

X(rd) = X(rs2) + (X(rs1) << 1);

Included in

Extension

Zba (Address generation instructions)

Minimum version Lifecycle state

0.93 Frozen
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28.5.40. shladd.uw

Synopsis
Shift unsigned word left by 1 and add

Mnemonic
shladd.uw rd, rsi, rs2

Encoding

31 25 24 20 19 15 14 12 1 7 6 0

001 0O0O0O rs2 rs1 01 0 rd o111 011
SH1ADD.UW SH1ADD.UW OP-32

Description

This instruction performs an XLEN-wide addition of two addends. The first addend is rs2. The
second addend is the unsigned value formed by extracting the least-significant word of rsI and
shifting it left by 1 place.

Operation

let base = X(rs2);
let index = EXTZ(X(rs1)[31..0]1);

X(rd) = base + (index << 1);

Included in

Extension Minimum version Lifecycle state

Zba (Address generation instructions) 0.93 Frozen
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28.5.41. sh2add

Synopsis
Shift left by 2 and add

Mnemonic
sh2add rd, rsi, rs2

28.5. Instructions (in alphabetical order) | Page 257

Encoding

31 25 24 20 19 15 14 12 1 7 6 0

001 0O0O0O rs2 rs1 17 0 0 rd 011 00 11
SH2ADD SH2ADD OP

Description

This instruction shifts rsI to the left by 2 places and adds it to rs2.

Operation

X(rd) = X(rs2) + (X(rs1) << 2);

Included in

Extension

Zba (Address generation instructions)

Minimum version Lifecycle state

0.93 Frozen
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28.5.42. sh2add.uw

Synopsis
Shift unsigned word left by 2 and add

Mnemonic
sh2add.uw rd, rsi, rs2

Encoding

31 25 24 20 19 15 14 12 1 7 6 0

001 0O0O0O rs2 rs1 17 0 0 rd o111 011
SH2ADD.UW SH2ADD.UW OP-32

Description

This instruction performs an XLEN-wide addition of two addends. The first addend is rs2. The
second addend is the unsigned value formed by extracting the least-significant word of rsI and
shifting it left by 2 places.

Operation

let base = X(rs2);
let index = EXTZ(X(rs1)[31..0]1);

X(rd) = base + (index << 2);
Included in

Extension Minimum version Lifecycle state

Zba (Address generation instructions) 0.93 Frozen
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28.5.43. sh3add

Synopsis
Shift left by 3 and add

Mnemonic
sh3add rd, rsi, rs2

28.5. Instructions (in alphabetical order) | Page 259

Encoding

31 25 24 20 19 15 14 12 1 7 6 0

001 0O0O0O rs2 rs1 T 10 rd 011 00 11
SH3ADD SH3ADD OP

Description

This instruction shifts rsI to the left by 3 places and adds it to rs2.

Operation

X(rd) = X(rs2) + (X(rs1) << 3);

Included in

Extension

Zba (Address generation instructions)

Minimum version Lifecycle state

0.93 Frozen
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28.5.44. sh3add.uw

Synopsis
Shift unsigned word left by 3 and add

Mnemonic
sh3add.uw rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 1 7 6 0

001 0O0O0O rs2 rs1 T 10 rd 011 1 0 11
SH3ADD.UW SH3ADD.UW OP-32

Description

This instruction performs an XLEN-wide addition of two addends. The first addend is rs2. The
second addend is the unsigned value formed by extracting the least-significant word of rsI and
shifting it left by 3 places.

Operation

let base = X(rs2);
let index = EXTZ(X(rs1)[31..0]1);

X(rd) = base + (index << 3);

Included in

Extension Minimum version Lifecycle state

Zba (Address generation instructions) 0.93 Frozen
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28.5.45. slli.uw

Synopsis
Shift-left unsigned word (Immediate)

Mnemonic

slli.uw rd, rs1, shamt

Encoding

31 26 25 20 19 15 14 12 1 7 6 0

0 00 010 shamt rs1 0 0 1 rd 0011011
SLLILUW SLLILUW OP-IMM-32

Description

This instruction takes the least-significant word of rsl, zero-extends it, and shifts it left by the
immediate.

Operation

X(rd) = (EXTZ(X(rs)[31..0]) << shamt);

Included in

Extension Minimum version Lifecycle state

Zba (Address generation instructions) 0.93 Frozen

Dy Architecture Explanation

This instruction is the same as slli with zext.w performed on rs1 before shifting.
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28.5.46. unzip

Synopsis
Implements the inverse of the zip instruction.

Mnemonic
unzip rd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
O o0oo0oo0o1 0©O0(17 11 11 rs1 1 0 1 rd 0O 01 0 0 11
OP-IMM
Description

This instruction gathers bits from the high and low halves of the source word into odd/even bit
positions in the destination word. It is the inverse of the zip instruction. This instruction is
available only on RV32.

Operation

foreach (i from @ to xlen/2-1) {
X(rd)[i] = X(rs1)[2*1]
X(rd)[i+x1len/2] = X(rs1)[2*i+1]
}

Software Hint

Dy This instruction is useful for implementing the SHA3 cryptographic hash function on a 32-
bit architecture, as it implements the bit-interleaving operation used to speed up the 64-
bit rotations directly.

Included in

Extension Minimum version Lifecycle state

Zbkb (Bit-manipulation for Cryptography) (RV32) v0.9.4 Frozen
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28.5.47. xnor

Synopsis
Exclusive NOR

Mnemonic

xnor rd, rsl, rs2

Encoding

31 25 24 20 19 15 14 12 1 7 6 0

01 0 0O0O0O rs2 rs1 17 0 0 rd 011 00 11
XNOR XNOR OP

Description

This instruction performs the bit-wise exclusive-NOR operation on rsI and rs2.

Operation

X(rd) = ~(X(rs1) ™ X(rs2));

Included in

Extension Minimum version Lifecycle state
Zbb (Basic bit-manipulation) 0.93 Frozen
Zbkb (Bit-manipulation for Cryptography) v0.9.4 Frozen
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28.5.48. xperm.b

Synopsis

Byte-wise lookup of indices into a vector in registers.

Mnemonic

xperm.b rd, rsl, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 2 1 0
0O 01 0 1 0O rs2 rsi 17 0 O rd 01 1 0 01 1
Description

The xperm.b instruction operates on bytes. The rsl register contains a vector of XLEN/8 8-bit
elements. The rs2 register contains a vector of XLEN/8 8-bit indexes. The result is each element in
rs2 replaced by the indexed element in s, or zero if the index into rs2 is out of bounds.

Operation

val xpermb_lookup : (bits(8), xlenbits) -> bits(8)
function xpermb_lookup (idx, lut) = {

(lut >> (idx @ 0b0ee))[7..0]
}

function clause execute ( XPERM B (rs2,rs1,rd)) = {
result : xlenbits = EXTZ(@bQ);
foreach(i from @ to xlen by 8) {
result[i+7..1] = xpermn_lookup(X(rs2)[i+7..1], X(rs1));
¥
X(rd) = result;
RETIRE_SUCCESS

Included in

Extension Minimum version

Zbkx (Crossbar permutations) v0.94
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28.5.49. xperm.n

Synopsis

Nibble-wise lookup of indices into a vector.

Mnemonic

xperm.n rd, rsl, rs2

Encoding
31 25 24 20 19 15 14 12 11 7 6 2 1 0
0O 01 0 1 0O rs2 rsi 0 1 O rd 01 1 0 01 1
Description

The xperm.n instruction operates on nibbles. The rsI register contains a vector of XLEN/4 4-bit
elements. The rs2 register contains a vector of XLEN/4 4-bit indexes. The result is each element in
rs2 replaced by the indexed element in s, or zero if the index into rs2 is out of bounds.

Operation

val xpermn_lookup : (bits(4), xlenbits) -> bits(4)
function xpermn_lookup (idx, lut) = {

(lut >> (idx @ 0b00@))[3..0]
}

function clause execute ( XPERM_N (rs2,rs1,rd)) = {
result : xlenbits = EXTZ(@bQ);
foreach(i from @ to xlen by 4) {
result[i+3..1] = xpermn_lookup(X(rs2)[i+3..1], X(rs1));
¥
X(rd) = result;
RETIRE_SUCCESS

Included in

Extension Minimum version Lifecycle state

Zbkx (Crossbar permutations) v0.94 Frozen
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28.5.50. zext.h

Synopsis
Zero-extend halfword

Mnemonic
zexthrd, rs

Encoding (RV32)

31 25 24 20 19 15 14 12 11 7 6 0

6 00 01 O0O0|0 0O0O0O0CO rs 70 O rd 011 00 11
ZEXT.H oP

Encoding (RV64)

31 25 24 20 19 15 14 12 11 7 6 0

0 00 01 000 OO0 OO rs 70 O rd o111 0 11
ZEXTH OP-32

Description

This instruction zero-extends the least-significant halfword of the source to XLEN by inserting O’s
into all of the bits more significant than 15.

Operation

X(rd) = EXTZ(X(rs)[15..0]);

—y Note
|

The zext.h mnemonic corresponds to different instruction encodings in RV32 and RV64.

Included in

Extension Minimum version Lifecycle state

Zbb (Basic bit-manipulation) 0.93 Frozen
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28.5.51. zip

Synopsis

Gather odd and even bits of the source word into upper/lower halves of the destination.

Mnemonic
ziprd, rs
Encoding
31 25 24 20 19 15 14 12 11 7 6 0
00001 O0O0|I7T 1T 1 10 rsi 0 0 1 rd 0O 01 0 0 1 1
OP-IMM
Description

This instruction scatters all of the odd and even bits of a source word into the high and low halves
of a destination word. It is the inverse of the unzip instruction. This instruction is available only on
RV32.

Operation
foreach (i from @ to xlen/2-1) {
X(rd)[2*1] = X(rs1)[1i]

X(rd)[2*i1+1] = X(rs1)[i+xlen/2]
}

Software Hint

Dy This instruction is useful for implementing the SHA3 cryptographic hash function on a 32-
bit architecture, as it implements the bit-interleaving operation used to speed up the 64-
bit rotations directly.

Included in

Extension Minimum version Lifecycle state

Zbkb (Bit-manipulation for Cryptography) (RV32) v0.9.4 Frozen

28.6. Software optimization guide

28.6.1. strlen
The orc.b instruction allows for the efficient detection of NUL bytes in an XLEN-sized chunk of data:

- the result of orc.b on a chunk that does not contain any NUL bytes will be all-ones, and

- after a bitwise-negation of the result of orc.b, the number of data bytes before the first NUL byte (if
any) can be detected by ctz/clz (depending on the endianness of data).

A full example of a strlen function, which uses these techniques and also demonstrates the use of it for
unaligned/partial data, is the following:
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#include <sys/asm.h>

Ltext
.globl strlen
.type strlen, @function

strlen:
andi a3, a0, (SZREG-1) // offset
andi al, a0, -SZREG // align pointer
.Lprologue:
1i a4, SIREG
sub a4, a4, a3 // XLEN - offset
s11i a3, a3, 3 // offset * 8
REG_ L a2, 0(al) // chunk
/*

* Shift the partial/unaligned chunk we loaded to remove the bytes
* from before the start of the string, adding NUL bytes at the end.

*/
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__

srl a2, a2 ,a3 // chunk >> (offset * 8)
felse

sll a2, a2, a3
fendif

orc.b a2, a2

not a2, a2

/*

* Non-NUL bytes in the string have been expanded to 0x00, while
* NUL bytes have become @xff. Search for the first set bit
* (corresponding to a NUL byte in the original chunk).

*/
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
ctz a2, a2
#else
clz a2, al
fendif
/*

* The first chunk is special: compare against the number of valid
* bytes in this chunk.
*/
srli a0, a2, 3
bgtu a4, a0, .Ldone
addi a3, al, SZREG
1li a4, -1
.align 2
/*
* Qur critical loop is 4 instructions and processes data in 4 byte
* or 8 byte chunks.
*/
.Lloop:
REG_L a2, SZREG(a1)
addi al, al, SZREG
orc.b a2, a2
beq a2, a4, .Lloop

.Lepilogue:
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not a2, a2
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
ctz 32, al
#else
clz a2, al
fendif
sub al, a1, a3

add a0, a0, al

srli a2, a2, 3

add a0, ab, a2
.Ldone:

ret

28.6.2. strcmp

#include <sys/asm.h>

.text
.globl strcmp
.type strcmp, @function

stremp:
or a4, a0, al
1i t2, -1

and a4, a4, SZREG-1
bnez a4, .Lsimpleloop

# Main loop for aligned strings
.Lloop:

REG_L a2, 0(a0)

REG_L a3, 0(al)

orc.b t@, a2

bne t@, t2, .Lfoundnull

addi a0, a@d, SZREG

addi a1, al, SZREG

beq 32, a3, .Lloop

# Words don't match, and no null byte in first word.
# Get bytes in big-endian order and compare.
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
rev8 a2, a2
rev8 a3, a3
fendif
# Synthesize (a2 >=a3) ? 1 : -1 in a branchless sequence.
sltu a@, a2, a3
neg a0, aod
ori a@, a0, 1
ret

.Lfoundnull:
# Found a null byte.
# If words don't match, fall back to simple loop.
bne a2, a3, .Lsimpleloop
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# Otherwise, strings are equal.
11 a0, o
ret

# Simple loop for misaligned strings
.Lsimpleloop:

1bu a2, 0(ad)

1bu a3, 0(al)

addi a0, a0, 1

addi al, al, 1

bne a2, a3, 1f

bnez a2, .Lsimpleloop

sub a@, a2, a3
ret

.size strcemp, .-stremp
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Chapter 29."J" Extension for Dynamically Translated Languages, Version 0.0

This chapter is a placeholder for a future standard extension to support dynamically translated
languages.

y Many popular languages are usually implemented via dynamic translation, including Java

and Javascript. These languages can benefit from additional ISA support for dynamic
checks and garbage collection.

The RISC-V Instruction Set Manual Volume I | © RISC-V



Chapter 30. "P" Extension for Packed-SIMD Instructions, Version 0.2 | Page 272
Chapter 30. "P" Extension for Packed-SIMD Instructions, Version 0.2

Discussions at the 5th RISC-V workshop indicated a desire to drop this packed-SIMD
proposal for floating-point registers in favor of standardizing on the V extension for large

Dy floating-point SIMD operations. However, there was interest in packed-SIMD fixed-point
operations for use in the integer registers of small RISC-V implementations. A task group
is working to define the new P extension.
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Chapter 31. "V" Standard Extension for Vector Operations, Version 1.0

The base vector extension is intended to provide general support for data-parallel
|y execution within the 32-bit instruction encoding space, with later vector extensions
supporting richer functionality for certain domains.

31.1. Introduction

This document is version 1.1-draft of the RISC-V vector extension.

Dy This version holds updates gathered after the start of the public review. The spec will have

a final update to version 2.0 at time of ratification.

This spec includes the complete set of currently frozen vector instructions. Other instructions that
have been considered during development but are not present in this document are not included in
the review and ratification process, and may be completely revised or abandoned. Section Section
31.18 lists the standard vector extensions and which instructions and element widths are supported by
each extension.

31.2. Implementation-defined Constant Parameters
Each hart supporting a vector extension defines two parameters:

1. The maximum size in bits of a vector element that any operation can produce or consume, ELEN >
8, which must be a power of 2.

2. The number of bits in a single vector register, VLEN = ELEN, which must be a power of 2, and must
be no greater than 2'°.

Standard vector extensions (Section Section 31.18) and architecture profiles may set further
constraints on ELEN and VLEN.

y Future extensions may allow ELEN > VLEN by holding one element using bits from
EI multiple vector registers, but this current proposal does not include this option.

The upper limit on VLEN allows software to know that indices will fit into 16 bits (largest

y VLMAX of 65,536 occurs for LMUL=8 and SEW=8 with VLEN=65536). Any future

EI extension beyond 64Kib per vector register will require new configuration instructions such
that software using the old configuration instructions does not see greater vector lengths.

The vector extension supports writing binary code that under certain constraints will execute portably
on harts with different values for the VLEN parameter, provided the harts support the required
element types and instructions.

Df Code can be written that will expose differences in implementation parameters.
y In general, thread contexts with active vector state cannot be migrated during execution
EI between harts that have any difference in VLEN or ELEN parameters.

31.3. Vector Extension Programmer’s Model

The vector extension adds 32 vector registers, and seven unprivileged CSRs (vstart, vxsat, vxrm, vesr,
vtype, v1, vlenb) to a base scalar RISC-V ISA.
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Table 39. New vector CSRs

Address  Privilege ~ Name Description

0x008 URW vstart  Vector start position

0x009 URW vxsat  Fixed-Point Saturate Flag

0x00A URW vxrm  Fixed-Point Rounding Mode

OxOOF URW vesr Vector control and status register
0xC20 URO vl Vector length

0xC21 URO vtype  Vector data type register

0xC22 URO vlenb  VLEN/8 (vector register length in bytes)

y The four CSR numbers 0x00B-0x00E are tentatively reserved for future vector CSRs, some
EI of which may be mirrored into vesr.

31.3.1. Vector Registers

The vector extension adds 32 architectural vector registers, v@-v31 to the base scalar RISC-V ISA.

Each vector register has a fixed VLEN bits of state.

31.3.2. Vector Context Status in mstatus

A vector context status field, VS, is added to mstatus[10:9] and shadowed in sstatus[10:9]. It is
defined analogously to the floating-point context status field, FS.

Attempts to execute any vector instruction, or to access the vector CSRs, raise an illegal—instruction
exception when mstatus.VS is set to Off.

When mstatus.VS is set to Initial or Clean, executing any instruction that changes vector state,
including the vector CSRs, will change mstatus.VS to Dirty. Implementations may also change
mstatus.VS from Initial or Clean to Dirty at any time, even when there is no change in vector state.

y Accurate setting of mstatus. VS is an optimization. Software will typically use VS to reduce
EI context-swap overhead.

If mstatus.VS is Dirty, mstatus.SD is 1, otherwise, mstatus.SD is set in accordance with existing
specifications.

Implementations may have a writable misa.V field. Analogous to the way in which the floating-point
unit is handled, the mstatus.VS field may exist even if misa.V is clear.

y Allowing mstatus.VS to exist when misa.V is clear, enables vector emulation and
EI simplifies handling of mstatus.\VS in systems with writable misa. V.

31.3.3. Vector Context Status in vsstatus

When the hypervisor extension is present, a vector context status field, VS, is added to
vsstatus[10:9]. It is defined analogously to the floating-point context status field, FS.

When V=1, both vsstatus.VS and mstatus.VS are in effect: attempts to execute any vector instruction,
or to access the vector CSRs, raise an illegal-instruction exception when either field is set to Off.
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When V=1 and neither vsstatus.VS nor mstatus.VS is set to Off, executing any instruction that
changes vector state, including the vector CSRs, will change both mstatus.VS and vsstatus.VS to
Dirty. Implementations may also change mstatus.VS or vsstatus.VS from Initial or Clean to Dirty at
any time, even when there is no change in vector state.

If vsstatus.VS is Dirty, vsstatus.SD is 1; otherwise, vsstatus.SD is set in accordance with existing
specifications.

If mstatus.VS is Dirty, mstatus.SD is 1, otherwise, mstatus.SD is set in accordance with existing
specifications.

For implementations with a writable misa.V field, the vsstatus.VS field may exist even if misa.V is
clear.

31.3.4. Vector type register, vtype

The read-only XLEN-wide vector type CSR, vtype provides the default type used to interpret the
contents of the vector register file, and can only be updated by vset{i}v1{i} instructions. The vector
type determines the organization of elements in each vector register, and how multiple vector registers
are grouped. The vtype register also indicates how masked-off elements and elements past the current
vector length in a vector result are handled.

y Allowing updates only via the vset{i}v1{i} instructions simplifies maintenance of the
EI vtype register state.

The vtype register has five fields, vill, vma, vta, vsew[2:0], and vIimul[2:@]. Bits vtype[XLEN-2:8]

should be written with zero, and non-zero values in this field are reserved.

31 30 8 7 6 5 3 2 0

vill reserved vmalvtalvsew[2:0]|vImul[2:0]

—y This diagram shows the layout for RV32 systems, whereas in general vill should be at bit
] XLEN-1.

Table 40. vtype register layout

Bits Name Description
XLEN-1 vill Illegal value if set
XLEN-2:8 O Reserved if non-zero
7 vma Vector mask agnostic
6 vta Vector tail agnostic

5:3 vsew[2:0] Selected element width (SEW) setting

2:0 vlmul[2:0]  Vector register group multiplier (LMUL) setting

A small implementation supporting ELEN=32 requires only seven bits of state in vtype:

y two bits for ma and ta, two bits for vsew[1:@] and three bits for vimul[2:@]. The illegal

EI value represented by vill can be internally encoded using the illegal 64-bit combination
in vsew[1:0] without requiring an additional storage bit to hold vill.

y Further standard and custom vector extensions may extend these fields to support a
EI greater variety of data types.
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The primary motivation for the vtype CSR is to allow the vector instruction set to fit into a
32-bit instruction encoding space. A separate vset{i}v1{i} instruction can be used to
set V1 and/or vtype fields before execution of a vector instruction, and implementations
y may choose to fuse these two instructions into a single internal vector microop. In many
EI cases, the v1 and vtype values can be reused across multiple instructions, reducing the
static and dynamic instruction overhead from the vset{i}vl{i} instructions. It is
anticipated that a future extended 64-bit instruction encoding would allow these fields to

be specified statically in the instruction encoding.

Vector selected element width vsew[2:0]

The value in vsew sets the dynamic selected element width (SEW). By default, a vector register is viewed
as being divided into VLEN/SEW elements.

Table 41. vsew[2:0] (selected element width) encoding
vsew[2:0]  SEW
0O O O 8
0O 0 1 16
0O 1 0 32
0O 1 1 64

—
<
<

Reserved

y While it is anticipated the larger vsew[2:0] encodings (100-111) will be used to encode
EI larger SEW, the encodings are formally reserved at this point.

Table 42. Example VLEN = 128 bits

SEW Elements per vector register
64 2
32 4
16 8

8 16

The supported element width may vary with LMUL.

The current set of standard vector extensions do not vary supported element width with
LMUL. Some future extensions may support larger SEWs only when bits from multiple
vector registers are combined using LMUL. In this case, software that relies on large SEW
y should attempt to use the largest LMUL, and hence the fewest vector register groups, to
EI increase the number of implementations on which the code will run. The vill bit in vtype
should be checked after setting vtype to see if the configuration is supported, and an
alternate code path should be provided if it is not. Alternatively, a profile can mandate the
minimum SEW at each LMUL setting.

Vector Register Grouping (vimul[2:0])

Multiple vector registers can be grouped together, so that a single vector instruction can operate on
multiple vector registers. The term vector register group is used herein to refer to one or more vector
registers used as a single operand to a vector instruction. Vector register groups can be used to provide
greater execution efficiency for longer application vectors, but the main reason for their inclusion is to
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allow double-width or larger elements to be operated on with the same vector length as single-width
elements. The vector length multiplier, LMUL, when greater than 1, represents the default number of
vector registers that are combined to form a vector register group. Implementations must support
LMUL integer values of 1, 2, 4, and 8.

The vector architecture includes instructions that take multiple source and destination

vector operands with different element widths, but the same number of elements. The

y effective LMUL (EMUL) of each vector operand is determined by the number of registers

EI required to hold the elements. For example, for a widening add operation, such as add 32-

bit values to produce 64-bit results, a double-width result requires twice the LMUL of the
single-width inputs.

LMUL can also be a fractional value, reducing the number of bits used in a single vector register.
Fractional LMUL is used to increase the number of effective usable vector register groups when
operating on mixed-width values.

With only integer LMUL values, a loop operating on a range of sizes would have to allocate
at least one whole vector register (LMUL=1) for the narrowest data type and then would
consume multiple vector registers (LMUL>1) to form a vector register group for each wider
vector operand. This can limit the number of vector register groups available. With
y fractional LMUL, the widest values need occupy only a single vector register while
EI narrower values can occupy a fraction of a single vector register, allowing all 32
architectural vector register names to be used for different values in a vector loop even
when handling mixed-width values. Fractional LMUL implies portions of vector registers
are unused, but in some cases, having more shorter register-resident vectors improves
efficiency relative to fewer longer register-resident vectors.

Implementations must provide fractional LMUL settings that allow the narrowest supported type to
occupy a fraction of a vector register corresponding to the ratio of the narrowest supported type’s
width to that of the largest supported type’s width. In general, the requirement is to support LMUL >
SEWyw/ELEN, where SEWy,y is the narrowest supported SEW value and ELEN is the widest
supported SEW value. In the standard extensions, SEW;=8. For standard vector extensions with
ELEN=32, fractional LMULs of 1/2 and 1/4 must be supported. For standard vector extensions with
ELEN=64, fractional LMULs of 1/2, 1/4, and 1/8 must be supported.

When LMUL < SEWy,/ELEN, there is no guarantee an implementation would have

y enough bits in the fractional vector register to store at least one element, as VLEN=ELEN

EI is a valid implementation choice. For example, with VLEN=ELEN=32, and SEW =8, an
LMUL of 1/8 would only provide four bits of storage in a vector register.

For a given supported fractional LMUL setting, implementations must support SEW settings between
SEW,y and LMUL * ELEN, inclusive.

The use of vtype encodings with LMUL < SEW,/ELEN is reserved, but implementations can set vill
if they do not support these configurations.

. Requiring all implementations to set vill in this case would prohibit future use of this
y; case in an extension, so to allow for a future definition of LMUL<SEW,n/ELEN behavior,
we consider the use of this case to be reserved.

—y It is recommended that assemblers provide a warning (not an error) if a vsetvli
J instruction attempts to write an LMUL < SEW,y;y/ELEN.
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LMUL is set by the signed vlmul field in vtype (i.e, LMUL = 2"'™12)

The derived value VLMAX = LMUL*VLEN/SEW represents the maximum number of elements that
can be operated on with a single vector instruction given the current SEW and LMUL settings as
shown in the table below.

vlmul[2:0] LMUL #groups VLMAX Registers grouped with register n
1 0 O - - - reserved

1 0 1 1/8 32 VLEN/SEW/8 v n (single register in group)

1 1 0 1/4 32 VLEN/SEW/4 v n (single register in group)
11 1 1/2 32 VLEN/SEW/2 v n (single register in group)

0O O o0 1 32 VLEN/SEW v n (single register in group)

0O 0 1 2 16 2*VLEN/SEW vn,Vvntl

o 1 0 4 8 4*VLEN/SEW vn,.,Vn+3

o 1 1 8 4 8*VLEN/SEW vn, .., Vn+7

When LMUL=2, the vector register group contains vector register v n and vector register v n+1,
providing twice the vector length in bits. Instructions specifying an LMUL=2 vector register group
with an odd-numbered vector register are reserved.

When LMUL=4, the vector register group contains four vector registers, and instructions specifying an
LMUL=4 vector register group using vector register numbers that are not multiples of four are
reserved.

When LMUL=8, the vector register group contains eight vector registers, and instructions specifying
an LMUL=8 vector register group using register numbers that are not multiples of eight are reserved.

Mask registers are always contained in a single vector register, regardless of LMUL.

Vector Tail Agnostic and Vector Mask Agnostic vta and vma

These two bits modify the behavior of destination tail elements and destination inactive masked-off
elements respectively during the execution of vector instructions. The tail and inactive sets contain
element positions that are not receiving new results during a vector operation, as defined in Section
Section 31.5.4.

All systems must support all four options:

vta vma Tail Elements Inactive Elements
0 0 undisturbed undisturbed

0 1 undisturbed agnostic

1 O agnostic undisturbed

1 1 agnostic agnostic

Mask destination tail elements are always treated as tail-agnostic, regardless of the setting of vta.

When a set is marked undisturbed, the corresponding set of destination elements in a vector register
group retain the value they previously held.

When a set is marked agnostic, the corresponding set of destination elements in any vector destination
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operand can either retain the value they previously held, or are overwritten with 1s. Within a single
vector instruction, each destination element can be either left undisturbed or overwritten with 1s, in
any combination, and the pattern of undisturbed or overwritten with 1s is not required to be
deterministic when the instruction is executed with the same inputs.

The agnostic policy was added to accommodate machines with vector register renaming.
With an undisturbed policy, all elements would have to be read from the old physical

Dy destination vector register to be copied into the new physical destination vector register.
This causes an inefficiency when these inactive or tail values are not required for
subsequent calculations.

The value of all 1s instead of all Os was chosen for the overwrite value to discourage
software developers from depending on the value written.

A simple in-order implementation can ignore the settings and simply execute all vector
instructions using the undisturbed policy. The vta and vma state bits must still be
provided in vtype for compatibility and to support thread migration.

N

An out-of-order implementation can choose to implement tail-agnostic + mask-agnostic
using tail-agnostic + mask-undisturbed to reduce implementation complexity.

N

The definition of agnostic result policy is left loose to accommodate migrating application
threads between harts on a small in-order core (which probably leaves agnostic regions
undisturbed) and harts on a larger out-of-order core with register renaming (which
y probably overwrites agnostic elements with 1s). As it might be necessary to restart in the
EI middle, we allow arbitrary mixing of agnostic policies within a single vector instruction.
This allowed mixing of policies also enables implementations that might change policies
for different granules of a vector register, for example, using undisturbed within a granule

that is actively operated on but renaming to all Is for granules in the tail.

In addition, except for mask load instructions, any element in the tail of a mask result can also be
written with the value the mask-producing operation would have calculated with v1=VLMAX.
Furthermore, for mask-logical instructions and vmsbf.m, vmsif.m, vmsof.m mask-manipulation
instructions, any element in the tail of the result can be written with the value the mask-producing
operation would have calculated with v1=VLEN, SEW=8, and LMUL=8 (i.e, all bits of the mask
register can be overwritten).

Mask tails are always treated as agnostic to reduce complexity of managing mask data,
which can be written at bit granularity. There appears to be little software need to support
y tail-undisturbed for mask register values. Allowing mask-generating instructions to write
EI back the result of the instruction avoids the need for logic to mask out the tail, except
mask loads cannot write memory values to destination mask tails as this would imply

accessing memory past software intent.

The assembly syntax adds two mandatory flags to the vsetvli instruction:

ta # Tail agnostic
tu # Tail undisturbed
ma # Mask agnostic
mu # Mask undisturbed

vsetvli t0, a0, e32, m4, ta, ma # Tail agnostic, mask agnostic
vsetvli t0, a0, e32, m4, tu, ma # Tail undisturbed, mask agnostic
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vsetvli t0, a0, e32, m4, ta, mu # Tail agnostic, mask undisturbed
vsetvli t@, a@, e32, m4, tu, mu # Tail undisturbed, mask undisturbed

Prior to v0.9, when these flags were not specified on a vsetvli, they defaulted to mask-

undisturbed/tail-undisturbed. The use of vsetvli without these flags is deprecated,

y however, and specifying a flag setting is now mandatory. The default should perhaps be

EI tail-agnostic/mask-agnostic, so software has to specify when it cares about the non-

participating elements, but given the historical meaning of the instruction prior to
introduction of these flags, it was decided to always require them in future assembly code.

Vector Type lllegal vill

The vill bit is used to encode that a previous vset{i}vl{i} instruction attempted to write an
unsupported value to vtype.

y The vill bit is held in bit XLEN-1 of the CSR to support checking for illegal values with a
EI branch on the sign bit.

If the vill bit is set, then any attempt to execute a vector instruction that depends upon vtype will
raise an illegal-instruction exception.

Df vset{i}v1l{i} and whole register loads and stores do not depend upon vtype.

When the vill bit is set, the other XLEN-1 bits in vtype shall be zero.

31.3.5. Vector Length Register vl

The XLEN-bit-wide read-only vl CSR can only be updated by the vset{i}v1{i} instructions, and the
fault-only-first vector load instruction variants.

The vl register holds an unsigned integer specifying the number of elements to be updated with
results from a vector instruction, as further detailed in Section Section 31.5.4.

The number of bits implemented in v1 depends on the implementation’s maximum vector

Dy length of the smallest supported type. The smallest vector implementation with VLEN=32
and supporting SEW=8 would need at least six bits in vl to hold the values 0-32
(VLEN=32, with LMUL=8 and SEW=8, yields VLMAX=32).

31.3.6. Vector Byte Length vlenb

The XLEN-bit-wide read-only CSR vlenb holds the value VLEN/S8, i.e. the vector register length in
bytes.

Df The value in vlenb is a design-time constant in any implementation.

y Without this CSR, several instructions are needed to calculate VLEN in bytes, and the code
EI has to disturb current v1 and vtype settings which require them to be saved and restored.
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31.3.7. Vector Start Index CSR vstart

The XLEN-bit-wide read-write vstart CSR specifies the index of the first element to be executed by a
vector instruction, as described in Section Section 31.5.4.

Normally, vstart is only written by hardware on a trap on a vector instruction, with the vstart value
representing the element on which the trap was taken (either a synchronous exception or an
asynchronous interrupt), and at which execution should resume after a resumable trap is handled.

All vector instructions are defined to begin execution with the element number given in the vstart
CSR, leaving earlier elements in the destination vector undisturbed, and to reset the vstart CSR to
zero at the end of execution.

Df Allvector instructions, including vset{i}v1{i}, reset the vstart CSR to zero.
vstart is not modified by vector instructions that raise illegal-instruction exceptions.

The vstart CSR is defined to have only enough writable bits to hold the largest element index (one
less than the maximum VLMAX).

The maximum vector length is obtained with the largest LMUL setting (8) and the smallest
| yl SEW setting (8), so VLMAX_max = 8*VLEN/8 = VLEN. For example, for VLEN=256,
vstart would have 8 bits to represent indices from O through 255.

The use of vstart values greater than the largest element index for the current vtype setting is
reserved.

It is recommended that implementations trap if vstart is out of bounds. It is not required
|y to trap, as a possible future use of upper vstart bits is to store imprecise trap
information.

The vstart CSR is writable by unprivileged code, but non-zero vstart values may cause vector
instructions to run substantially slower on some implementations, so vstart should not be used by
application programmers. A few vector instructions cannot be executed with a non-zero vstart value
and will raise an illegal instruction exception as defined below.

Df Making vstart visible to unprivileged code supports user-level threading libraries.

Implementations are permitted to raise illegal instruction exceptions when attempting to execute a
vector instruction with a value of vstart that the implementation can never produce when executing
that same instruction with the same vtype setting.

For example, some implementations will never take interrupts during execution of a vector

y arithmetic instruction, instead waiting until the instruction completes to take the

EI interrupt. Such implementations are permitted to raise an illegal instruction exception
when attempting to execute a vector arithmetic instruction when vstart is nonzero.

When migrating a software thread between two harts with different microarchitectures,
the vstart value might not be supported by the new hart microarchitecture. The runtime

Dy on the receiving hart might then have to emulate instruction execution up to the next
supported vstart element position. Alternatively, migration events can be constrained to
only occur at mutually supported vstart locations.
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31.3.8. Vector Fixed-Point Rounding Mode Register vxrm

The vector fixed-point rounding-mode register holds a two-bit read-write rounding-mode field in the
least-significant bits (vxrm[1:@]). The upper bits, vxrm[ XLEN-1:2], should be written as zeros.

The vector fixed-point rounding-mode is given a separate CSR address to allow independent access,
but is also reflected as a field in vesr.

y A new rounding mode can be set while saving the original rounding mode using a single
EI cSrwi instruction.

The fixed-point rounding algorithm is specified as follows. Suppose the pre-rounding result is v, and d
bits of that result are to be rounded off. Then the rounded resultis (v >> d) + r, where r depends on
the rounding mode as specified in the following table.

Table 43. vxrm encoding

vxrm[1:0] Abbreviation Rounding Mode Rounding increment, r

0 0 rnu round-to-nearest-up (add +0.5 LSB) v[d-1]

0 1 me round-to-nearest-even v[d-1] & (v[d-2:0]=0 | v[d])
1 0 rdn round-down (truncate) 0

1 1 rod round-to-odd (OR bits into LSB, aka "jam") Iv[d] & v[d-1:0]=0

The rounding functions:

(unsigned(v) >> d) +r

roundoff_unsigned(v, d) =
= (signed(v) > d) +r

roundoff_signed(v, d)

are used to represent this operation in the instruction descriptions below.

31.3.9. Vector Fixed-Point Saturation Flag vxsat

The vxsat CSR has a single read-write least-significant bit (vxsat[0]) that indicates if a fixed-point
instruction has had to saturate an output value to fit into a destination format. Bits vxsat[XLEN-1:1]
should be written as zeros.

The vxsat bit is mirrored in vesr.

31.3.10. Vector Control and Status Register vesr

The vxrm and vxsat separate CSRs can also be accessed via fields in the XLEN-bit-wide vector control
and status CSR, vesr.

Table 44. vesr layout

Bits Name Description
XLEN-1:3 Reserved
2:1 vxrm[1:0]  Fixed-point rounding mode
O vxsat Fixed-point accrued saturation flag
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31.3.11. State of Vector Extension at Reset

The vector extension must have a consistent state at reset. In particular, vtype and vl must have
values that can be read and then restored with a single vsetvl instruction.

y It is recommended that at reset, vtype.vill is set, the remaining bits in vtype are zero,
EI and V1 is set to zero.

The vstart, vxrm, vxsat CSRs can have arbitrary values at reset.

y Most uses of the vector unit will require an initial vset{i}v1{i}, which will reset vstart.
EI The vxrm and vxsat fields should be reset explicitly in software before use.

The vector registers can have arbitrary values at reset.

31.4. Mapping of Vector Elements to Vector Register State

The following diagrams illustrate how different width elements are packed into the bytes of a vector
register depending on the current SEW and LMUL settings, as well as implementation VLEN.
Elements are packed into each vector register with the least-significant byte in the lowest-numbered
bits.

The mapping was chosen to provide the simplest and most portable model for software, but might
appear to incur large wiring cost for wider vector datapaths on certain operations. The vector
instruction set was expressly designed to support implementations that internally rearrange vector
data for different SEW to reduce datapath wiring costs, while externally preserving the simple
software model.

For example, microarchitectures can track the EEW with which a vector register was
| y written, and then insert additional scrambling operations to rearrange data if the register
is accessed with a different EEW.

31.4.1. Mapping for LMUL =1

When LMUL=], elements are simply packed in order from the least-significant to most-significant bits
of the vector register.

To increase readability, vector register layouts are drawn with bytes ordered from right to
y; left with increasing byte address. Bits within an element are numbered in a little-endian
format with increasing bit index from right to left corresponding to increasing magnitude.

LMUL=1 examples.

The element index is given in hexadecimal and is shown placed at the
least-significant byte of the stored element.

VLEN=32b
Byte 3210
SEW=8b 3210
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SEW=16b 1 0

SEW=32b 0

VLEN=64b

Byte 765432180

SEW=8b 765432190

SEW=16b 32 1 0

SEW=32b 1 0

SEW=64b 0

VLEN=128b

Byte FEDCBA98765432180
SEW=8b FEDCBA987654321080
SEW=16b 7 6 5 4 3 2 1 @
SEW=32b 3 2 1 0
SEW=64b 1 0
VLEN=256b

Byte TF1ET1D1C1B1A191817161514131211M10 FEDCBA 9876543210

SEW=8b  1F1E1D1C1B1A191817161514131211M0 FEDCBA 9876543210
SEW=16b F E D C B A 9 8 7 6 5 4 3 2 1 0
SEW=32b 7 b 5 4 3 2 1 0
SEW=64b 3 2 1 0

31.4.2. Mapping for LMUL <1

When LMUL < 1, only the first LMUL*VLEN/SEW elements in the vector register are used. The
remaining space in the vector register is treated as part of the tail, and hence must obey the vta setting.

Example, VLEN=128b, LMUL=1/4

Byte FEDCBA987654321080
SEW=8b - - - - -------- 32180
SEW=16b - - - - - -1 10
SEW=32b - - - 0

31.4.3. Mapping for LMUL >1

When vector registers are grouped, the elements of the vector register group are packed contiguously
in element order beginning with the lowest-numbered vector register and moving to the next-highest-
numbered vector register in the group once each vector register is filled.

LMUL > 1 examples
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VLEN=32b,

Byte
v2*n
v2*n+1

VLEN=32b,

Byte
v2*n
v2*n+1

VLEN=32b,

Byte
vd*n
vd*n+1
v4*n+2
v4*n+3

VLEN=32b,

Byte
vd*n
v4*n+1
v4*n+2
v4*n+3

VLEN=64b,

Byte
v2*n
v2*n+1

VLEN=64b,

Byte
v4*n
v4*n+1
v4*n+2
v4*n+3

VLEN=128b, SEW=32b, LMUL=2

Byte
v2*n
v2*n+1

VLEN=128b, SEW=32b, LMUL=4

Byte
v4*n
v4*n+1
v4*n+2

SEW=8b, LMUL=2

32180
32180
7654

SEW=16b, LMUL=2

321

w =N
NS S

SEW=16b, LMUL=4

321

~N oW =N
OO R~ANOO S

SEW=32b, LMUL=4

321

wWN L,

SEW=32b, LMUL=2

765

SEW=32b,

765

S

OO RRNOO S
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FEDCBA987654321080

3
7

2
6

1
5

0
4

FEDCBA987654321

3
7
B

2
6
A

1
5
9
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vd*n+3 F E D C

31.4.4. Mapping across Mixed-Width Operations

The vector ISA is designed to support mixed-width operations without requiring additional explicit
rearrangement instructions. The recommended software strategy when operating on multiple vectors
with different precision values is to modify vtype dynamically to keep SEW/LMUL constant (and
hence VLMAX constant).

The following example shows four different packed element widths (8b, 16b, 32b, 64b) in a
VLEN=128b implementation. The vector register grouping factor (LMUL) is increased by the relative
element size such that each group can hold the same number of vector elements (VLMAX=8 in this
example) to simplify stripmining code.

Example VLEN=128b, with SEW/LMUL=16

Byte FEDCBA987654321080

vn - - - - === - 76543210 SEW=8b, LMUL=1/2
vn 7 6 5 4 3 2 1 0 SEW=16b, LMUL=1

v2*n 3 2 1 0 SEW=32b, LMUL=2

v2*n+1 7 6 4

va*n 1 @ SEW=64b, LMUL=4

v4*n+1 3 2

v4*n+2 5 4

vA*n+3 7 6

The following table shows each possible constant SEW/LMUL operating point for loops with mixed-
width operations. Each column represents a constant SEW/LMUL operating point. Entries in table are
the LMUL values that yield that column’s SEW/LMUL value for the datawidth on that row. In each
column, an LMUL setting for a datawidth indicates that it can be aligned with the other datawidths in
the same column that also have an LMUL setting, such that all have the same VLMAX.

SEW/LMUL
1 2 4 8 16 32 64
SEW-=8 8 4 2 1 1/2 1/4 1/8
SEW=16 8 4 2 1 1/2 1/4
SEW= 32 8 4 2 1 1/2
SEW= 64 8 4 2 1

Larger LMUL settings can also used to simply increase vector length to reduce instruction fetch and
dispatch overheads in cases where fewer vector register groups are needed.

31.4.5. Mask Register Layout

A vector mask occupies only one vector register regardless of SEW and LMUL.
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Each element is allocated a single mask bit in a mask vector register. The mask bit for element i is
located in bit i of the mask register, independent of SEW or LMUL.

31.5. Vector Instruction Formats

The instructions in the vector extension fit under two existing major opcodes (LOAD-FP and STORE-
FP) and one new major opcode (OP-V).

Vector loads and stores are encoded within the scalar floating-point load and store major opcodes
(LOAD-FP/STORE-FP). The vector load and store encodings repurpose a portion of the standard scalar
floating-point load/store 12-bit immediate field to provide further vector instruction encoding, with

bit 25 holding the standard vector mask bit (see Section 31.5.3.1).

Format for Vector Load Instructions under LOAD-FP major opcode

31 29 28 27 26 25 24 20 19 15 14 12 11 7 6

nf mew mop |vm lumop rs1 width vd 0O 00 0 11
base address destination of load VL* unit-stride

31 29 28 27 26 25 24 20 19 15 14 12 11 7
nf mew mop [vm rs2 rs1 width vd 0O 00 0O 11
stride base address destination of load VLS* strided

31 29 28 27 26 25 24 20 19 15 14 12 11 7
nf mew mop (vm vs2 rs1 width vd 0O 00 0 11

ad.dreés o%fse.ts

l:.)asel addresls

destination of load

Format for Vector Store Instructions under STORE-FP major opcode

V‘LX*. ind.exe.d

31 29 28 27 26 25 24 20 19 15 14 12 11 7
nf mew mop [vm sumop rs1 width vs3 01 0 0 11
base address store data VS* unit-stride

31 29 28 27 26 25 24 20 19 15 14 12 11 7
nf mew mop (vm rs2 rs1 width vs3 01 0 0 11

stride base address store data VSS* strided

31 29 28 27 26 25 24 20 19 15 14 12 11 7
nf mew mop |vm vs2 rs1 width vs3 01 0 0 11
address offsets base address store data VSX* indexed

Formats for Vector Arithmetic Instructions under OP-V major opcode

31 26 25 24 20 19 1514 1211 7 6
 functe |vm|  vs2 w1 |ooo] v |1 0101 1
— " " — " OPIVV
31 26 25 24 20 19 1514 1211 7 6
 functe |vm|  vs2 w1 oo 1| w/rd 101 0 1 1
— — — — — OPFVV
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31 26 25 24 20 19 15 14 12 11 7 6 0
funct6é vm vs2 vs1 01 0 vd / rd 1701 0 1 11
OPMVV
31 26 25 24 20 19 15 14 12 11 7 6 0
funct6é vm vs2 imm[4:0] 0o 1 1 vd 1701 0 1 11
OPIVI
31 26 25 24 20 19 15 14 12 11 7 6 0
functé vm vs2 rsi 17 0 O vd 1.0 1 0 1 1 1
OPIVX
31 26 25 24 20 19 15 14 12 11 7 6 0
functé vm vs2 rs1i 1 0 1 vd 101 0 1 1 1
OPFVF
31 26 25 24 20 19 15 14 12 11 7 6 0
functé vm vs2 rs1i 171 0 vd / rd 101 0 1 1 1
OPMVX

Formats for Vector Configuration Instructions under OP-V major opcode

31 30 20 19 15 14 12 11 7 6 0

0 vtypei[10:0] rsi 17 1 1 rd 1701 0 1 1 1
vsetvli

31 30 29 20 19 15 14 12 11 7 6 0

111 vtypei[9:0] uimm[4:0] 17 1 1 rd 1701 0 1 11
vsetivli

31 30 25 24 20 19 15 14 12 11 7 6 0

1710 0 0 0 0 O rs2 rs1 17 1 1 rd 1701 0 1 11
vsetvl

Vector instructions can have scalar or vector source operands and produce scalar or vector results, and
most vector instructions can be performed either unconditionally or conditionally under a mask.

Vector loads and stores move bit patterns between vector register elements and memory. Vector
arithmetic instructions operate on values held in vector register elements.

31.5.1. Scalar Operands

Scalar operands can be immediates, or taken from the x registers, the f registers, or element O of a
vector register. Scalar results are written to an X or f register or to element O of a vector register. Any
vector register can be used to hold a scalar regardless of the current LMUL setting.

/4
4

Zfinx ('F in X') is a new ISA extension where floating-point instructions take their
arguments from the integer register file. The vector extension is also compatible with Zfinx,
where the Zfinx vector extension has vector-scalar floating-point instructions taking their
scalar argument from the X registers.

We considered but did not pursue overlaying the f registers on v registers. The adopted
approach reduces vector register pressure, avoids interactions with the standard calling
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convention, simplifies high-performance scalar floating-point design, and provides
compatibility with the Zfinx ISA option. Overlaying T with v would provide the advantage
of lowering the number of state bits in some implementations, but complicates high-
performance designs and would prevent compatibility with the Zfinx ISA option.

31.5.2. Vector Operands

Each vector operand has an effective element width (EEW) and an effective LMUL (EMUL) that is used to
determine the size and location of all the elements within a vector register group. By default, for most
operands of most instructions, EEW=SEW and EMUL=LMUL.

Some vector instructions have source and destination vector operands with the same number of
elements but different widths, so that EEW and EMUL differ from SEW and LMUL respectively but
EEW/EMUL = SEW/LMUL. For example, most widening arithmetic instructions have a source group
with  EEW=SEW and EMUL=LMUL but have a destination group with EEW=2*SEW and
EMUL=2*LMUL. Narrowing instructions have a source operand that has EEW=2*SEW and
EMUL=2*LMUL but with a destination where EEW=SEW and EMUL=LMUL.

Vector operands or results may occupy one or more vector registers depending on EMUL, but are
always specified using the lowest-numbered vector register in the group. Using other than the lowest-
numbered vector register to specify a vector register group is a reserved encoding.

A vector register cannot be used to provide source operands with more than one EEW for a single
instruction. A mask register source is considered to have EEW=1 for this constraint. An encoding that
would result in the same vector register being read with two or more different EEWSs, including when
the vector register appears at different positions within two or more vector register groups, is reserved.

In practice, there is no software benefit to reading the same register with different EEW in
| y the same instruction, and this constraint reduces complexity for implementations that
internally rearrange data dependent on EEW.

A destination vector register group can overlap a source vector register group only if one of the
following holds:
- The destination EEW equals the source EEW.

- The destination EEW is smaller than the source EEW and the overlap is in the lowest-numbered
part of the source register group (e.g, when LMUL=1, vnsrl.wi v@, v@, 3 is legal, but a
destination of v1 is not).

- The destination EEW is greater than the source EEW, the source EMUL is at least 1, and the overlap
is in the highest-numbered part of the destination register group (e.g., when LMUL=8, vzext.vf4
v0, V6 is legal, but a source of v@, v2, or v4 is not).

For the purpose of determining register group overlap constraints, mask elements have EEW=1.

y The overlap constraints are designed to support resumable exceptions in machines
EI without register renaming.

Any instruction encoding that violates the overlap constraints is reserved.

When source and destination registers overlap and have different EEW, the instruction is mask- and
tail-agnostic, regardless of the setting of the vta and vma bits in vtype.
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The largest vector register group used by an instruction can not be greater than 8 vector registers (i.e.,
EMUL<8), and if a vector instruction would require greater than 8 vector registers in a group, the
instruction encoding is reserved. For example, a widening operation that produces a widened vector
register group result when LMUL=8 is reserved as this would imply a result EMUL=16.

Widened scalar values, e.g., input and output to a widening reduction operation, are held in the first
element of a vector register and have EMUL=1.

31.5.3. Vector Masking

Masking is supported on many vector instructions. Element operations that are masked off (inactive)
never gene