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Introduction
This specification provides the processor-specific application binary interface document for RISC-V.

This specification consists of the following three parts:

• Calling convention

• ELF specification

• DWARF specification

A future revision of this ABI will include a canonical set of mappings for memory model
synchronization primitives.

2



Terms and Abbreviations
This specification uses the following terms and abbreviations:

Term Meaning

ABI Application Binary Interface

gABI Generic System V Application Binary
Interface

ELF Executable and Linking Format

psABI Processor-Specific ABI

DWARF Debugging With Arbitrary Record
Formats

GOT Global Offset Table

PLT Procedure Linkage Table

PC Program Counter

TLS Thread-Local Storage

NTBS Null-Terminated Byte String

XLEN The width of an integer register in bits

FLEN The width of a floating-point register
in bits

Linker relaxation A mechanism for optimizing programs
at link-time, see Chapter 9 for more
detail.

RVWMO RISC-V Weak Memory Order, as
defined in the RISC-V specification.
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Status of ABI
ABI Name Status

ILP32 Ratified

ILP32F Ratified

ILP32D Ratified

ILP32E Draft

LP64 Ratified

LP64F Ratified

LP64D Ratified

LP64Q Ratified


ABI for big-endian is NOT included in this specification, we intend to define that in
future version of this specification.
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RISC-V Calling Conventions
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Chapter 1. Register Convention

1.1. Integer Register Convention
Table 1. Integer register convention

Name ABI Mnemonic Meaning Preserved across calls?

x0 zero Zero  — (Immutable)

x1 ra Return address No

x2 sp Stack pointer Yes

x3 gp Global pointer  — (Unallocatable)

x4 tp Thread pointer  — (Unallocatable)

x5 - x7 t0 - t2 Temporary registers No

x8 - x9 s0 - s1 Callee-saved registers Yes

x10 - x17 a0 - a7 Argument registers No

x18 - x27 s2 - s11 Callee-saved registers Yes

x28 - x31 t3 - t6 Temporary registers No

In the standard ABI, procedures should not modify the integer registers tp and gp, because signal
handlers may rely upon their values.

The presence of a frame pointer is optional. If a frame pointer exists, it must reside in x8 (s0); the
register remains callee-saved.

If a platform requires use of a dedicated general-purpose register for a platform-specific purpose, it
is recommended to use gp (x3). The platform ABI specification must document the use of this
register. For such platforms, care must be taken to ensure all code (compiler generated or
otherwise) avoids using gp in a way incompatible with the platform specific purpose, and that
global pointer relaxation is disabled in the toolchain.

1.2. Frame Pointer Convention
The presence of a frame pointer is optional. If a frame pointer exists, it must reside in x8 (s0); the
register remains callee-saved.

Code that uses a frame pointer will construct a linked list of stack frames, where each frame links to
its caller using a "frame record". A frame record consists of two XLEN values on the stack; the
return address and the link to the next frame record. The frame pointer register will point to the
innermost frame, thereby starting the linked list. By convention, the lowest XLEN value shall point
to the previous frame, while the next XLEN value shall be the return address. The end of the frame
record chain is indicated by the address zero appearing as the next link in the chain.

After the prologue, the frame pointer register will point to the Canonical Frame Address or CFA,
which is the stack pointer value on entry to the current procedure. The previous frame pointer and
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return address pair will reside just prior to the current stack address held in fp. This puts the
return address at fp - XLEN/8, and the previous frame pointer at fp - 2 * XLEN/8.

It is left to the platform to determine the level of conformance with this convention. A platform
may choose:

• not to maintain a frame chain and use the frame pointer register as a general purpose callee-
saved register.

• to allow the frame pointer register be used as a general purpose callee-saved register, but
provide a platform specific mechanism to reliably detect this condition.

• to use a frame pointer to address a valid frame record at all times, but allow any procedure to
choose to forgo creating a frame record.

• to use the frame pointer to address a valid frame record at all times, except leaf functions, who
may elect to forgo creating a frame record.

1.3. Floating-point Register Convention
Table 2. Floating-point register convention

Name ABI Mnemonic Meaning Preserved across calls?

f0 - f7 ft0 - ft7 Temporary registers No

f8 - f9 fs0 - fs1 Callee-saved registers Yes*

f10 - f17 fa0 - fa7 Argument registers No

f18 - f27 fs2 - fs11 Callee-saved registers Yes*

f28 - f31 ft8 - ft11 Temporary registers No

*: Floating-point values in callee-saved registers are only preserved across calls if they are no larger
than the width of a floating-point register in the targeted ABI. Therefore, these registers can always
be considered temporaries if targeting the base integer calling convention.

The Floating-Point Control and Status Register (fcsr) must have thread storage duration in
accordance with C11 section 7.6 "Floating-point environment <fenv.h>".

1.4. Vector Register Convention

1.4.1. Standard calling convention

Table 3. Standard vector register calling convention

Name ABI Mnemonic Meaning Preserved across calls?

v0-v31 Temporary registers No

vl Vector length No

vtype Vector data type register No

vxrm Vector fixed-point rounding mode register No
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Name ABI Mnemonic Meaning Preserved across calls?

vxsat Vector fixed-point saturation flag register No


Vector registers are not used for passing arguments or return values in this calling
convention. Use the calling convention variant to pass arguments and return
values in vector registers.

The vxrm and vxsat fields of vcsr are not preserved across calls and their values are unspecified
upon entry.

Procedures may assume that vstart is zero upon entry. Procedures may assume that vstart is zero
upon return from a procedure call.


Application software should normally not write vstart explicitly. Any procedure
that does explicitly write vstart to a nonzero value must zero vstart before either
returning or calling another procedure.

1.4.2. Calling convention variant

Table 4. Variant vector register calling convention*

Name ABI Mnemonic Meaning Preserved across calls?

v0 Argument register No

v1-v7 Callee-saved registers Yes

v8-v23 Argument registers No

v24-v31 Callee-saved registers Yes

vl Vector length No

vtype Vector data type register No

vxrm Vector fixed-point rounding mode register No

vxsat Vector fixed-point saturation flag register No

*: Functions that use vector registers to pass arguments and return values must follow this calling
convention. Some programming languages can require extra functions to follow this calling
convention (e.g. C/C++ functions with attribute riscv_vector_cc).

Please refer to the Section 2.3 section for more details about standard vector calling convention
variant.


The vxrm and vxsat fields of vcsr follow the same behavior as the standard calling
convention.
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Chapter 2. Procedure Calling Convention
This chapter defines standard calling conventions and standard calling convention variants, and
describes how to pass arguments and return values.

Functions must follow the register convention defined in calling convention: the contents of any
register without specifying it as an argument register in the calling convention are unspecified
upon entry, and the content of any register without specifying it as a return value register or callee-
saved in the calling convention are unspecified upon exit, the contents of all callee-saved registers
must be restored to what was set on entry, and the contents of any fixed registers like gp and tp
never change,


Calling convention for big-endian is NOT included in this specification yet, we
intend to define that in future version of this specification.

2.1. Integer Calling Convention
The base integer calling convention provides eight argument registers, a0-a7, the first two of which
are also used to return values.

Scalars that are at most XLEN bits wide are passed in a single argument register, or on the stack by
value if none is available. When passed in registers or on the stack, integer scalars narrower than
XLEN bits are widened according to the sign of their type up to 32 bits, then sign-extended to XLEN
bits. When passed in registers or on the stack, floating-point types narrower than XLEN bits are
widened to XLEN bits, with the upper bits undefined.

Scalars that are 2×XLEN bits wide are passed in a pair of argument registers, with the low-order
XLEN bits in the lower-numbered register and the high-order XLEN bits in the higher-numbered
register. If no argument registers are available, the scalar is passed on the stack by value. If exactly
one register is available, the low-order XLEN bits are passed in the register and the high-order
XLEN bits are passed on the stack.

Scalars wider than 2×XLEN bits are passed by reference and are replaced in the argument list with
the address.

Aggregates whose total size is no more than XLEN bits are passed in a register, with the fields laid
out as though they were passed in memory. If no register is available, the aggregate is passed on the
stack. Aggregates whose total size is no more than 2×XLEN bits are passed in a pair of registers; if
only one register is available, the first XLEN bits are passed in a register and the remaining bits are
passed on the stack. If no registers are available, the aggregate is passed on the stack. Bits unused
due to padding, and bits past the end of an aggregate whose size in bits is not divisible by XLEN, are
undefined.

Aggregates or scalars passed on the stack are aligned to the greater of the type alignment and XLEN
bits, but never more than the stack alignment.

Aggregates larger than 2×XLEN bits are passed by reference and are replaced in the argument list
with the address, as are C++ aggregates with nontrivial copy constructors, destructors, or vtables.
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Fixed-length vectors are treated as aggregates.

Empty structs or union arguments or return values are ignored by C compilers which support them
as a non-standard extension. This is not the case for C++, which requires them to be sized types.

Arguments passed by reference may be modified by the callee.

Floating-point reals are passed the same way as aggregates of the same size; complex floating-point
numbers are passed the same way as a struct containing two floating-point reals. (This constraint
changes when the integer calling convention is augmented by the hardware floating-point calling
convention.)

In the base integer calling convention, variadic arguments are passed in the same manner as
named arguments, with one exception. Variadic arguments with 2×XLEN-bit alignment and size at
most 2×XLEN bits are passed in an aligned register pair (i.e., the first register in the pair is even-
numbered), or on the stack by value if none is available. After a variadic argument has been passed
on the stack, all future arguments will also be passed on the stack (i.e. the last argument register
may be left unused due to the aligned register pair rule).

Values are returned in the same manner as a first named argument of the same type would be
passed. If such an argument would have been passed by reference, the caller allocates memory for
the return value, and passes the address as an implicit first parameter.


There is no requirement that the address be returned from the function and so
software should not assume that a0 will hold the address of the return value on
return.

The stack grows downwards (towards lower addresses) and the stack pointer shall be aligned to a
128-bit boundary upon procedure entry. The first argument passed on the stack is located at offset
zero of the stack pointer on function entry; following arguments are stored at correspondingly
higher addresses.

In the standard ABI, the stack pointer must remain aligned throughout procedure execution. Non-
standard ABI code must realign the stack pointer prior to invoking standard ABI procedures. The
operating system must realign the stack pointer prior to invoking a signal handler; hence, POSIX
signal handlers need not realign the stack pointer. In systems that service interrupts using the
interruptee’s stack, the interrupt service routine must realign the stack pointer if linked with any
code that uses a non-standard stack-alignment discipline, but need not realign the stack pointer if
all code adheres to the standard ABI.

Procedures must not rely upon the persistence of stack-allocated data whose addresses lie below
the stack pointer.

Registers s0-s11 shall be preserved across procedure calls. No floating-point registers, if present, are
preserved across calls. (This property changes when the integer calling convention is augmented by
the hardware floating-point calling convention.)
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2.2. Hardware Floating-point Calling Convention
The hardware floating-point calling convention adds eight floating-point argument registers, fa0-
fa7, the first two of which are also used to return values. Values are passed in floating-point
registers whenever possible, whether or not the integer registers have been exhausted.

The remainder of this section applies only to named arguments. Variadic arguments are passed
according to the integer calling convention.

ABI_FLEN refers to the width of a floating-point register in the ABI. The ABI_FLEN must be no wider
than the ISA’s FLEN. The ISA might have wider floating-point registers than the ABI.

For the purposes of this section, "struct" refers to a C struct with its hierarchy flattened, including
any array fields. That is, struct { struct { float f[1]; } a[2]; } and struct { float f0; float f1;
} are treated the same. Fields containing empty structs or unions are ignored while flattening, even
in C++, unless they have nontrivial copy constructors or destructors. Fields containing zero-length
bit-fields or zero-length arrays are ignored while flattening. Attributes such as aligned or packed do
not interfere with a struct’s eligibility for being passed in registers according to the rules below, i.e.
struct { int i; double d; } and struct __attribute__((__packed__)) { int i; double d } are
treated the same, as are struct { float f; float g; } and struct { float f; float g __attribute__
((aligned (8))); }.



One exceptional case for the flattening rule is an array of empty structs or unions;
C treats it as an empty field, but C++ treats it as a non-empty field since C++ defines
the size of an empty struct or union as 1. i.e. for struct { struct {} e[1]; float f;
} as the first argument, C will treat it like struct { float f; } and pass f in fa0 as
described below, whereas C++ will pass the pass the entire aggregate in a0 (XLEN =
64) or a0 and a1 (XLEN = 32), as described in the integer calling convention. Zero-
length arrays of empty structs or union will be ignored for both C and C++. i.e. For
struct { struct {} e[0]; float f; };, as the first argument, C and C++ will treat it
like struct { float f; } and pass f in fa0 as described below.

A real floating-point argument is passed in a floating-point argument register if it is no more than
ABI_FLEN bits wide and at least one floating-point argument register is available. Otherwise, it is
passed according to the integer calling convention. When a floating-point argument narrower than
FLEN bits is passed in a floating-point register, it is 1-extended (NaN-boxed) to FLEN bits.

A struct containing just one floating-point real is passed as though it were a standalone floating-
point real.

A struct containing two floating-point reals is passed in two floating-point registers, if neither real is
more than ABI_FLEN bits wide and at least two floating-point argument registers are available.
(The registers need not be an aligned pair.) Otherwise, it is passed according to the integer calling
convention.

A complex floating-point number, or a struct containing just one complex floating-point number, is
passed as though it were a struct containing two floating-point reals.

A struct containing one floating-point real and one integer (or bitfield), in either order, is passed in
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a floating-point register and an integer register, provided the floating-point real is no more than
ABI_FLEN bits wide and the integer is no more than XLEN bits wide, and at least one floating-point
argument register and at least one integer argument register is available. If the struct is passed in
this manner, and the integer is narrower than XLEN bits, the remaining bits are unspecified. If the
struct is not passed in this manner, then it is passed according to the integer calling convention.

Unions are never flattened and are always passed according to the integer calling convention.

Values are returned in the same manner as a first named argument of the same type would be
passed.

Floating-point registers fs0-fs11 shall be preserved across procedure calls, provided they hold
values no more than ABI_FLEN bits wide.

2.3. Standard Vector Calling Convention Variant
The RISC-V V Vector Extension[riscv-v-extension] defines a set of thirty-two vector registers, v0-v31.
The RISC-V Vector Extension Intrinsic Document[rvv-intrinsic-doc] defines vector types which
include vector mask types, vector data types, and tuple vector data types. A value of vector type can
be stored in vector register groups.

The remainder of this section applies only to named vector arguments, other named arguments
and return values follow the standard calling convention. Variadic vector arguments are passed by
reference.

v0 is used to pass the first vector mask argument to a function, and to return vector mask result
from a function. v8-v23 are used to pass vector data arguments, tuple vector data arguments and
the rest vector mask arguments to a function, and to return vector data and vector tuple results
from a function.

It must ensure that the entire contents of v1-v7 and v24-v31 are preserved across the call.

Each vector data type and vector tuple type has an LMUL attribute that indicates a vector register
group. The value of LMUL indicates the number of vector registers in the vector register group and
requires the first vector register number in the vector register group must be a multiple of it. For
example, the LMUL of vint64m8_t is 8, so v8-v15 vector register group can be allocated to this type,
but v9-v16 can not because the v9 register number is not a multiple of 8. If LMUL is less than 1, it is
treated as 1. If it is a vector mask type, its LMUL is 1.

Each vector tuple type also has an NFIELDS attribute that indicates how many vector register
groups the type contains. Thus a vector tuple type needs to take up LMUL×NFIELDS registers.

The rules for passing vector arguments are as follows:

1. For the first vector mask argument, use v0 to pass it.

2. For vector data arguments or rest vector mask arguments, starting from the v8 register, if a
vector register group between v8-v23 that has not been allocated can be found and the first
register number is a multiple of LMUL, then allocate this vector register group to the argument
and mark these registers as allocated. Otherwise, pass it by reference and are replaced in the
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argument list with the address.

3. For tuple vector data arguments, starting from the v8 register, if NFIELDS consecutive vector
register groups between v8-v23 that have not been allocated can be found and the first register
number is a multiple of LMUL, then allocate these vector register groups to the argument and
mark these registers as allocated. Otherwise, pass it by reference and are replaced in the
argument list with the address.



The registers assigned to the tuple vector data argument must be consecutive. For
example, for the function void foo(vint32m1_t a, vint32m2_t b, vint32m1x2_t c),
v8 will be allocated to a, v10-v11 will be allocated to b, v12-v13 instead of v9 and
v12 will beallocated to c.



It should be stressed that the search for the appropriate vector register groups
starts at v8 each time and does not start at the next register after the registers are
allocated for the previous vector argument. Therefore, it is possible that the vector
register number allocated to a vector argument can be less than the vector register
number allocated to previous vector arguments. For example, for the function void
foo (vint32m1_t a, vint32m2_t b, vint32m1_t c), according to the rules of
allocation, v8 will be allocated to a, v10-v11 will be allocated to b and v9 will be
allocated to c. This approach allows more vector registers to be allocated to
arguments in some cases.

Vector values are returned in the same manner as the first named argument of the same type
would be passed.

Vector types are disallowed in struct or union.

Vector arguments and return values are disallowed to pass to an unprototyped function.


Functions that use the standard vector calling convention variant must be marked
with STO_RISCV_VARIANT_CC, see Chapter 6 for the meaning of STO_RISCV_VARIANT_CC.


setjmp/longjmp follow the standard calling convention, which clobbers all vector
registers. Hence, the standard vector calling convention variant won’t disrupt the
jmp_buf ABI.

2.4. ILP32E Calling Convention


RV32E is not a ratified base ISA and so we cannot guarantee the stability of ILP32E,
in contrast with the rest of this document. This documents the current
implementation in GCC as of the time of writing, but may be subject to change.

The ILP32E calling convention is designed to be usable with the RV32E ISA. This calling convention
is the same as the integer calling convention, except for the following differences. The stack pointer
need only be aligned to a 32-bit boundary. Registers x16-x31 do not participate in the calling
convention, so there are only six argument registers, a0-a5, only two callee-saved registers, s0-s1,
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and only three temporaries, t0-t2.

If used with an ISA that has any of the registers x16-x31 and f0-f31, then these registers are
considered temporaries.

The ILP32E calling convention is not compatible with ISAs that have registers that require load and
store alignments of more than 32 bits. In particular, this calling convention must not be used with
the D ISA extension.

2.5. Named ABIs
This specification defines the following named ABIs:

ILP32

Integer calling-convention only, hardware floating-point calling convention is not used (i.e.
ELFCLASS32 and EF_RISCV_FLOAT_ABI_SOFT).

ILP32F

ILP32 with hardware floating-point calling convention for ABI_FLEN=32 (i.e. ELFCLASS32 and
EF_RISCV_FLOAT_ABI_SINGLE).

ILP32D

ILP32 with hardware floating-point calling convention for ABI_FLEN=64 (i.e. ELFCLASS32 and
EF_RISCV_FLOAT_ABI_DOUBLE).

ILP32E

ILP32E calling-convention only, hardware floating-point calling convention is not used (i.e.
ELFCLASS32, EF_RISCV_FLOAT_ABI_SOFT, and EF_RISCV_RVE).

LP64

Integer calling-convention only, hardware floating-point calling convention is not used (i.e.
ELFCLASS64 and EF_RISCV_FLOAT_ABI_SOFT).

LP64F

LP64 with hardware floating-point calling convention for ABI_FLEN=32 (i.e. ELFCLASS64 and
EF_RISCV_FLOAT_ABI_SINGLE).

LP64D

LP64 with hardware floating-point calling convention for ABI_FLEN=64 (i.e. ELFCLASS64 and
EF_RISCV_FLOAT_ABI_DOUBLE).

LP64Q

LP64 with hardware floating-point calling convention for ABI_FLEN=128 (i.e. ELFCLASS64 and
EF_RISCV_FLOAT_ABI_QUAD).

The ILP32* ABIs are only compatible with RV32* ISAs, and the LP64* ABIs are only compatible with
RV64* ISAs. A future version of this specification may define an ILP32 ABI for the RV64 ISA, but
currently this is not a supported operating mode.
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The *F ABIs require the *F ISA extension, the *D ABIs require the *D ISA extension, and the LP64Q
ABI requires the Q ISA extension.


This means code targeting the Zfinx extension always uses the ILP32, ILP32E or
LP64 integer calling-convention only ABIs as there is no dedicated hardware
floating-point register file.

2.6. Default ABIs
While various different ABIs are technically possible, for software compatibility reasons it is
strongly recommended to use the following default ABIs for specific architectures:

on RV32G ILP32D

on RV64G LP64D


Although RV64GQ systems can technically use LP64Q, it is strongly recommended
to use LP64D on general-purpose RV64GQ systems for compatibility with standard
RV64G software.
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Chapter 3. Calling Convention for System
Calls
The calling convention for system calls does not fall within the scope of this document. Please refer
to the documentation of the RISC-V execution environment interface (e.g OS kernel ABI, SBI).
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Chapter 4. C/C++ type details

4.1. C/C++ type sizes and alignments
There are two conventions for C/C++ type sizes and alignments.

ILP32, ILP32F, ILP32D, and ILP32E

Use the following type sizes and alignments (based on the ILP32 convention):

Table 5. C/C++ type sizes and alignments for RV32

Type Size
(Bytes)

Alignment
(Bytes)

Note

bool/_Bool 1 1

char 1 1

short 2 2

int 4 4

long 4 4

long long 8 8

void * 4 4

__bf16 2 2 Half precision
floating point
(bfloat16)

_Float16 2 2 Half precision
floating point
(binary16 in
IEEE 754-2008)

float 4 4 Single precision
floating point
(binary32 in
IEEE 754-2008)

double 8 8 Double
precision
floating point
(binary64 in
IEEE 754-2008)

long double 16 16 Quadruple
precision
floating point
(binary128 in
IEEE 754-2008)

float _Complex 8 4

17



Type Size
(Bytes)

Alignment
(Bytes)

Note

double
_Complex

16 8

long double
_Complex

32 16

LP64, LP64F, LP64D, and LP64Q

Use the following type sizes and alignments (based on the LP64 convention):

Table 6. C/C++ type sizes and alignments for RV64

Type Size
(Bytes)

Alignment
(Bytes)

Note

bool/_Bool 1 1

char 1 1

short 2 2

int 4 4

long 8 8

long long 8 8

__int128 16 16

void * 8 8

__bf16 2 2 Half precision
floating point
(bfloat16)

_Float16 2 2 Half precision
floating point
(binary16 in
IEEE 754-2008)

float 4 4 Single precision
floating point
(binary32 in
IEEE 754-2008)

double 8 8 Double
precision
floating point
(binary64 in
IEEE 754-2008)
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Type Size
(Bytes)

Alignment
(Bytes)

Note

long double 16 16 Quadruple
precision
floating point
(binary128 in
IEEE 754-2008)

float _Complex 8 4

double
_Complex

16 8

long double
_Complex

32 16

The alignment of max_align_t is 16.

CHAR_BIT is 8.

Structs and unions are aligned to the alignment of their most strictly aligned member. The size of
any object is a multiple of its alignment.

4.2. Fixed-length vector
Various compilers have support for fixed-length vector types, for example GCC and Clang both
support declaring a type with __attribute__((vector_size(N)), where N is a positive number larger
than zero.

The alignment requirement for the fixed length vector shall be equivalent to the alignment
requirement of its elemental type.

The size of the fixed length vector is determined by multiplying the size of its elemental type by the
total number of elements within the vector.

4.3. C/C++ type representations
char is unsigned.

Booleans (bool/_Bool) stored in memory or when being passed as scalar arguments are either 0
(false) or 1 (true).

A null pointer (for all types) has the value zero.

_Float16 is as defined in the C ISO/IEC TS 18661-3 extension.

__bf16 has the same parameter passing and return rules as for _Float16.

_Complex types have the same layout as a struct containing two fields of the corresponding real type
(float, double, or long double), with the first member holding the real part and the second member
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holding the imaginary part.

The type size_t is defined as unsigned int for RV32 and unsigned long for RV64.

The type ptrdiff_t is defined as int for RV32 and long for RV64.

4.4. Bit-fields
Bit-fields are packed in little-endian fashion. A bit-field that would span the alignment boundary of
its integer type is padded to begin at the next alignment boundary. For example, struct { int x :
10; int y : 12; } is a 32-bit type with x in bits 9-0, y in bits 21-10, and bits 31-22 undefined. By
contrast, struct { short x : 10; short y : 12; } is a 32-bit type with x in bits 9-0, y in bits 27-16,
and bits 31-28 and bits 15-10 undefined.

Bit-fields which are larger than their integer types are only present in C++ and are defined by the
Itanium C++ ABI [itanium-cxx-abi]. The bit-field and containing struct are aligned on a boundary
corresponding to the largest integral type smaller than the bit-field, up to 64-bit alignment on RV32
or 128-bit alignment on RV64. Any bits in excess of the size of the declared type are treated as
padding. For example struct { char x : 9; char y; } is a 24-bit type with x in bits 7-0, y in bit 23-
16, and bits 15-8 undefined; struct { char x : 9; char y : 2 } is a 16-bit type with x in bits 7-0, y in
bit 10-9, and bits 8 and 15-11 undefined.

Unnamed nonzero length bit-fields allocate space in the same fashion as named bitfields but do not
affect the alignment of the containing struct.

Zero length bit-fields are aligned relative to the start of the containing struct according to their
declared type and, since they must be unnamed, do not affect the struct alignment. C requires bit-
fields on opposite sides of a zero-length bitfield to be treated as separate memory locations for the
purposes of data races.

4.5. va_list, va_start, and va_arg
The va_list type has the same representation as void* and points to a sequence of zero or more
arguments with preceding padding for alignment, formatted and aligned as variadic arguments
passed on the stack according to the integer calling convention (Section 2.1). All standard calling
conventions use the same representation for variadic arguments to allow va_list types to be
shared between them.

The va_start macro in a function initializes its va_list argument to point to the first address at
which a variadic argument could be passed to the function. If all integer argument registers are
used for named formal arguments, the first variadic argument will have been passed on the stack
by the caller, and the va_list can point to the address immediately after the last named argument
passed on the stack, or the sp value on entry if no named arguments were passed on the stack. If
some integer argument registers were not used for named formal arguments, then the first variadic
argument may have been passed in a register. The function is then expected to construct a varargs
save area immediately below the entry sp and fill it with the entry values of all integer argument
registers not used for named arguments, in sequence. The va_list value can then be initialized to
the start of the varargs save area, and it will iterate through any variadic arguments passed via
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registers before continuing to variadic arguments passed on the stack, if any.

The va_arg macro will align its va_list argument, fetch a value, and increment the va_list
according to the alignment and size of a variadic argument of the given type, which may not be the
same as the alignment and size of the given type in memory. If the type is passed by reference, the
size and alignment used will be those of a pointer, and the fetched pointer will be used as the
address of the actual argument. The va_copy macro is a single pointer copy and the va_end macro
performs no operation.

4.6. Vector type sizes and alignments
This section defines the sizes and alignments for the vector types defined in the RISC-V Vector
Extension Intrinsic Document[rvv-intrinsic-doc]. The actual size of each type is determined by the
hardware configuration, which is based on the content of the vlenb register.

There are three classes of vector types: the vector mask types, the vector data types and the vector
tuple types.

Table 7. Type sizes and alignments for vector mask types

Internal Name Type Size (Bytes) Alignment
(Bytes)

__rvv_vbool1_t vbool1_t VLENB 1

__rvv_vbool2_t vbool2_t VLENB / 2 1

__rvv_vbool4_t vbool4_t VLENB / 4 1

__rvv_vbool8_t vbool8_t ceil(VLENB / 8) 1

__rvv_vbool16_t vbool16_t ceil(VLENB / 16) 1

__rvv_vbool32_t vbool32_t ceil(VLENB / 32) 1

__rvv_vbool64_t vbool64_t ceil(VLENB / 64) 1

Table 8. Type sizes and alignments for vector data types

Internal Name Type Size (Bytes) Alignment
(Bytes)

__rvv_vint8mf8_t vint8mf8_t (VLEN / 8) / 8 1

__rvv_vuint8mf8_t vuint8mf8_t (VLEN / 8) / 8 1

__rvv_vfloat8mf8_t vfloat8mf8_t (VLEN / 8) / 8 1

__rvv_vint8mf4_t vint8mf4_t (VLEN / 8) / 4 1

__rvv_vuint8mf4_t vuint8mf4_t (VLEN / 8) / 4 1

__rvv_vfloat8mf4_t vfloat8mf4_t (VLEN / 8) / 4 1

__rvv_vint8mf2_t vint8mf2_t (VLEN / 8) / 2 1

__rvv_vuint8mf2_t vuint8mf2_t (VLEN / 8) / 2 1

__rvv_vfloat8mf2_t vfloat8mf2_t (VLEN / 8) / 2 1
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Internal Name Type Size (Bytes) Alignment
(Bytes)

__rvv_vint8m1_t vint8m1_t (VLEN / 8) 1

__rvv_vuint8m1_t vuint8m1_t (VLEN / 8) 1

__rvv_vfloat8m1_t vfloat8m1_t (VLEN / 8) 1

__rvv_vint8m2_t vint8m2_t (VLEN / 8) * 2 1

__rvv_vuint8m2_t vuint8m2_t (VLEN / 8) * 2 1

__rvv_vfloat8m2_t vfloat8m2_t (VLEN / 8) * 2 1

__rvv_vint8m4_t vint8m4_t (VLEN / 8) * 4 1

__rvv_vuint8m4_t vuint8m4_t (VLEN / 8) * 4 1

__rvv_vfloat8m4_t vfloat8m4_t (VLEN / 8) * 4 1

__rvv_vint8m8_t vint8m8_t (VLEN / 8) * 8 1

__rvv_vuint8m8_t vuint8m8_t (VLEN / 8) * 8 1

__rvv_vfloat8m8_t vfloat8m8_t (VLEN / 8) * 8 1

__rvv_vint16mf8_t vint16mf8_t (VLEN / 8) / 8 2

__rvv_vuint16mf8_t vuint16mf8_t (VLEN / 8) / 8 2

__rvv_vbfloat16mf8_t vbfloat16mf8_t (VLEN / 8) / 8 2

__rvv_vint16mf4_t vint16mf4_t (VLEN / 8) / 4 2

__rvv_vuint16mf4_t vuint16mf4_t (VLEN / 8) / 4 2

__rvv_vbfloat16mf4_t vbfloat16mf4_t (VLEN / 8) / 4 2

__rvv_vint16mf2_t vint16mf2_t (VLEN / 8) / 2 2

__rvv_vuint16mf2_t vuint16mf2_t (VLEN / 8) / 2 2

__rvv_vbfloat16mf2_t vbfloat16mf2_t (VLEN / 8) / 2 2

__rvv_vint16m1_t vint16m1_t (VLEN / 8) 2

__rvv_vuint16m1_t vuint16m1_t (VLEN / 8) 2

__rvv_vbfloat16m1_t vbfloat16m1_t (VLEN / 8) 2

__rvv_vint16m2_t vint16m2_t (VLEN / 8) * 2 2

__rvv_vuint16m2_t vuint16m2_t (VLEN / 8) * 2 2

__rvv_vbfloat16m2_t vbfloat16m2_t (VLEN / 8) * 2 2

__rvv_vint16m4_t vint16m4_t (VLEN / 8) * 4 2

__rvv_vuint16m4_t vuint16m4_t (VLEN / 8) * 4 2

__rvv_vbfloat16m4_t vbfloat16m4_t (VLEN / 8) * 4 2

__rvv_vint16m8_t vint16m8_t (VLEN / 8) * 8 2

__rvv_vuint16m8_t vuint16m8_t (VLEN / 8) * 8 2

__rvv_vbfloat16m8_t vbfloat16m8_t (VLEN / 8) * 8 2
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Internal Name Type Size (Bytes) Alignment
(Bytes)

__rvv_vint32mf8_t vint32mf8_t (VLEN / 8) / 8 4

__rvv_vuint32mf8_t vuint32mf8_t (VLEN / 8) / 8 4

__rvv_vfloat32mf8_t vfloat32mf8_t (VLEN / 8) / 8 4

__rvv_vint32mf4_t vint32mf4_t (VLEN / 8) / 4 4

__rvv_vuint32mf4_t vuint32mf4_t (VLEN / 8) / 4 4

__rvv_vfloat32mf4_t vfloat32mf4_t (VLEN / 8) / 4 4

__rvv_vint32mf2_t vint32mf2_t (VLEN / 8) / 2 4

__rvv_vuint32mf2_t vuint32mf2_t (VLEN / 8) / 2 4

__rvv_vfloat32mf2_t vfloat32mf2_t (VLEN / 8) / 2 4

__rvv_vint32m1_t vint32m1_t (VLEN / 8) 4

__rvv_vuint32m1_t vuint32m1_t (VLEN / 8) 4

__rvv_vfloat32m1_t vfloat32m1_t (VLEN / 8) 4

__rvv_vint32m2_t vint32m2_t (VLEN / 8) * 2 4

__rvv_vuint32m2_t vuint32m2_t (VLEN / 8) * 2 4

__rvv_vfloat32m2_t vfloat32m2_t (VLEN / 8) * 2 4

__rvv_vint32m4_t vint32m4_t (VLEN / 8) * 4 4

__rvv_vuint32m4_t vuint32m4_t (VLEN / 8) * 4 4

__rvv_vfloat32m4_t vfloat32m4_t (VLEN / 8) * 4 4

__rvv_vint32m8_t vint32m8_t (VLEN / 8) * 8 4

__rvv_vuint32m8_t vuint32m8_t (VLEN / 8) * 8 4

__rvv_vfloat32m8_t vfloat32m8_t (VLEN / 8) * 8 4

__rvv_vint64mf8_t vint64mf8_t (VLEN / 8) / 8 8

__rvv_vuint64mf8_t vuint64mf8_t (VLEN / 8) / 8 8

__rvv_vfloat64mf8_t vfloat64mf8_t (VLEN / 8) / 8 8

__rvv_vint64mf4_t vint64mf4_t (VLEN / 8) / 4 8

__rvv_vuint64mf4_t vuint64mf4_t (VLEN / 8) / 4 8

__rvv_vfloat64mf4_t vfloat64mf4_t (VLEN / 8) / 4 8

__rvv_vint64mf2_t vint64mf2_t (VLEN / 8) / 2 8

__rvv_vuint64mf2_t vuint64mf2_t (VLEN / 8) / 2 8

__rvv_vfloat64mf2_t vfloat64mf2_t (VLEN / 8) / 2 8

__rvv_vint64m1_t vint64m1_t (VLEN / 8) 8

__rvv_vuint64m1_t vuint64m1_t (VLEN / 8) 8

__rvv_vfloat64m1_t vfloat64m1_t (VLEN / 8) 8
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Internal Name Type Size (Bytes) Alignment
(Bytes)

__rvv_vint64m2_t vint64m2_t (VLEN / 8) * 2 8

__rvv_vuint64m2_t vuint64m2_t (VLEN / 8) * 2 8

__rvv_vfloat64m2_t vfloat64m2_t (VLEN / 8) * 2 8

__rvv_vint64m4_t vint64m4_t (VLEN / 8) * 4 8

__rvv_vuint64m4_t vuint64m4_t (VLEN / 8) * 4 8

__rvv_vfloat64m4_t vfloat64m4_t (VLEN / 8) * 4 8

__rvv_vint64m8_t vint64m8_t (VLEN / 8) * 8 8

__rvv_vuint64m8_t vuint64m8_t (VLEN / 8) * 8 8

__rvv_vfloat64m8_t vfloat64m8_t (VLEN / 8) * 8 8

Table 9. Type sizes and alignments for vector tuple types

Internal Name Type Size (Bytes) Alignment
(Bytes)

__rvv_vint8mf8x2_t vint8mf8x2_t (VLEN / 8) / 4 1

__rvv_vuint8mf8x2_t vuint8mf8x2_t (VLEN / 8) / 4 1

__rvv_vfloat8mf8x2_t vfloat8mf8x2_t (VLEN / 8) / 4 1

__rvv_vint8mf8x3_t vint8mf8x3_t (VLEN / 8) * 0.375 1

__rvv_vuint8mf8x3_t vuint8mf8x3_t (VLEN / 8) * 0.375 1

__rvv_vfloat8mf8x3_t vfloat8mf8x3_t (VLEN / 8) * 0.375 1

__rvv_vint8mf8x4_t vint8mf8x4_t (VLEN / 8) / 2 1

__rvv_vuint8mf8x4_t vuint8mf8x4_t (VLEN / 8) / 2 1

__rvv_vfloat8mf8x4_t vfloat8mf8x4_t (VLEN / 8) / 2 1

__rvv_vint8mf8x5_t vint8mf8x5_t (VLEN / 8) * 0.625 1

__rvv_vuint8mf8x5_t vuint8mf8x5_t (VLEN / 8) * 0.625 1

__rvv_vfloat8mf8x5_t vfloat8mf8x5_t (VLEN / 8) * 0.625 1

__rvv_vint8mf8x6_t vint8mf8x6_t (VLEN / 8) * 0.75 1

__rvv_vuint8mf8x6_t vuint8mf8x6_t (VLEN / 8) * 0.75 1

__rvv_vfloat8mf8x6_t vfloat8mf8x6_t (VLEN / 8) * 0.75 1

__rvv_vint8mf8x7_t vint8mf8x7_t (VLEN / 8) * 0.875 1

__rvv_vuint8mf8x7_t vuint8mf8x7_t (VLEN / 8) * 0.875 1

__rvv_vfloat8mf8x7_t vfloat8mf8x7_t (VLEN / 8) * 0.875 1

__rvv_vint8mf8x8_t vint8mf8x8_t (VLEN / 8) 1

__rvv_vuint8mf8x8_t vuint8mf8x8_t (VLEN / 8) 1
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Internal Name Type Size (Bytes) Alignment
(Bytes)

__rvv_vfloat8mf8x8_t vfloat8mf8x8_t (VLEN / 8) 1

__rvv_vint8mf4x2_t vint8mf4x2_t (VLEN / 8) / 2 1

__rvv_vuint8mf4x2_t vuint8mf4x2_t (VLEN / 8) / 2 1

__rvv_vfloat8mf4x2_t vfloat8mf4x2_t (VLEN / 8) / 2 1

__rvv_vint8mf4x3_t vint8mf4x3_t (VLEN / 8) * 0.75 1

__rvv_vuint8mf4x3_t vuint8mf4x3_t (VLEN / 8) * 0.75 1

__rvv_vfloat8mf4x3_t vfloat8mf4x3_t (VLEN / 8) * 0.75 1

__rvv_vint8mf4x4_t vint8mf4x4_t (VLEN / 8) 1

__rvv_vuint8mf4x4_t vuint8mf4x4_t (VLEN / 8) 1

__rvv_vfloat8mf4x4_t vfloat8mf4x4_t (VLEN / 8) 1

__rvv_vint8mf4x5_t vint8mf4x5_t (VLEN / 8) * 1.25 1

__rvv_vuint8mf4x5_t vuint8mf4x5_t (VLEN / 8) * 1.25 1

__rvv_vfloat8mf4x5_t vfloat8mf4x5_t (VLEN / 8) * 1.25 1

__rvv_vint8mf4x6_t vint8mf4x6_t (VLEN / 8) * 1.5 1

__rvv_vuint8mf4x6_t vuint8mf4x6_t (VLEN / 8) * 1.5 1

__rvv_vfloat8mf4x6_t vfloat8mf4x6_t (VLEN / 8) * 1.5 1

__rvv_vint8mf4x7_t vint8mf4x7_t (VLEN / 8) * 1.75 1

__rvv_vuint8mf4x7_t vuint8mf4x7_t (VLEN / 8) * 1.75 1

__rvv_vfloat8mf4x7_t vfloat8mf4x7_t (VLEN / 8) * 1.75 1

__rvv_vint8mf4x8_t vint8mf4x8_t (VLEN / 8) * 2 1

__rvv_vuint8mf4x8_t vuint8mf4x8_t (VLEN / 8) * 2 1

__rvv_vfloat8mf4x8_t vfloat8mf4x8_t (VLEN / 8) * 2 1

__rvv_vint8mf2x2_t vint8mf2x2_t (VLEN / 8) 1

__rvv_vuint8mf2x2_t vuint8mf2x2_t (VLEN / 8) 1

__rvv_vfloat8mf2x2_t vfloat8mf2x2_t (VLEN / 8) 1

__rvv_vint8mf2x3_t vint8mf2x3_t (VLEN / 8) * 1.5 1

__rvv_vuint8mf2x3_t vuint8mf2x3_t (VLEN / 8) * 1.5 1

__rvv_vfloat8mf2x3_t vfloat8mf2x3_t (VLEN / 8) * 1.5 1

__rvv_vint8mf2x4_t vint8mf2x4_t (VLEN / 8) * 2 1

__rvv_vuint8mf2x4_t vuint8mf2x4_t (VLEN / 8) * 2 1

__rvv_vfloat8mf2x4_t vfloat8mf2x4_t (VLEN / 8) * 2 1

__rvv_vint8mf2x5_t vint8mf2x5_t (VLEN / 8) * 2.5 1

__rvv_vuint8mf2x5_t vuint8mf2x5_t (VLEN / 8) * 2.5 1
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Internal Name Type Size (Bytes) Alignment
(Bytes)

__rvv_vfloat8mf2x5_t vfloat8mf2x5_t (VLEN / 8) * 2.5 1

__rvv_vint8mf2x6_t vint8mf2x6_t (VLEN / 8) * 3 1

__rvv_vuint8mf2x6_t vuint8mf2x6_t (VLEN / 8) * 3 1

__rvv_vfloat8mf2x6_t vfloat8mf2x6_t (VLEN / 8) * 3 1

__rvv_vint8mf2x7_t vint8mf2x7_t (VLEN / 8) * 3.5 1

__rvv_vuint8mf2x7_t vuint8mf2x7_t (VLEN / 8) * 3.5 1

__rvv_vfloat8mf2x7_t vfloat8mf2x7_t (VLEN / 8) * 3.5 1

__rvv_vint8mf2x8_t vint8mf2x8_t (VLEN / 8) * 4 1

__rvv_vuint8mf2x8_t vuint8mf2x8_t (VLEN / 8) * 4 1

__rvv_vfloat8mf2x8_t vfloat8mf2x8_t (VLEN / 8) * 4 1

__rvv_vint8m1x2_t vint8m1x2_t (VLEN / 8) * 2 1

__rvv_vuint8m1x2_t vuint8m1x2_t (VLEN / 8) * 2 1

__rvv_vfloat8m1x2_t vfloat8m1x2_t (VLEN / 8) * 2 1

__rvv_vint8m1x3_t vint8m1x3_t (VLEN / 8) * 3 1

__rvv_vuint8m1x3_t vuint8m1x3_t (VLEN / 8) * 3 1

__rvv_vfloat8m1x3_t vfloat8m1x3_t (VLEN / 8) * 3 1

__rvv_vint8m1x4_t vint8m1x4_t (VLEN / 8) * 4 1

__rvv_vuint8m1x4_t vuint8m1x4_t (VLEN / 8) * 4 1

__rvv_vfloat8m1x4_t vfloat8m1x4_t (VLEN / 8) * 4 1

__rvv_vint8m1x5_t vint8m1x5_t (VLEN / 8) * 5 1

__rvv_vuint8m1x5_t vuint8m1x5_t (VLEN / 8) * 5 1

__rvv_vfloat8m1x5_t vfloat8m1x5_t (VLEN / 8) * 5 1

__rvv_vint8m1x6_t vint8m1x6_t (VLEN / 8) * 6 1

__rvv_vuint8m1x6_t vuint8m1x6_t (VLEN / 8) * 6 1

__rvv_vfloat8m1x6_t vfloat8m1x6_t (VLEN / 8) * 6 1

__rvv_vint8m1x7_t vint8m1x7_t (VLEN / 8) * 7 1

__rvv_vuint8m1x7_t vuint8m1x7_t (VLEN / 8) * 7 1

__rvv_vfloat8m1x7_t vfloat8m1x7_t (VLEN / 8) * 7 1

__rvv_vint8m1x8_t vint8m1x8_t (VLEN / 8) * 8 1

__rvv_vuint8m1x8_t vuint8m1x8_t (VLEN / 8) * 8 1

__rvv_vfloat8m1x8_t vfloat8m1x8_t (VLEN / 8) * 8 1

__rvv_vint8m2x2_t vint8m2x2_t (VLEN / 8) * 4 1

__rvv_vuint8m2x2_t vuint8m2x2_t (VLEN / 8) * 4 1
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Internal Name Type Size (Bytes) Alignment
(Bytes)

__rvv_vfloat8m2x2_t vfloat8m2x2_t (VLEN / 8) * 4 1

__rvv_vint8m2x3_t vint8m2x3_t (VLEN / 8) * 6 1

__rvv_vuint8m2x3_t vuint8m2x3_t (VLEN / 8) * 6 1

__rvv_vfloat8m2x3_t vfloat8m2x3_t (VLEN / 8) * 6 1

__rvv_vint8m2x4_t vint8m2x4_t (VLEN / 8) * 8 1

__rvv_vuint8m2x4_t vuint8m2x4_t (VLEN / 8) * 8 1

__rvv_vfloat8m2x4_t vfloat8m2x4_t (VLEN / 8) * 8 1

__rvv_vint8m4x2_t vint8m4x2_t (VLEN / 8) * 8 1

__rvv_vuint8m4x2_t vuint8m4x2_t (VLEN / 8) * 8 1

__rvv_vfloat8m4x2_t vfloat8m4x2_t (VLEN / 8) * 8 1

__rvv_vint16mf8x2_t vint16mf8x2_t (VLEN / 8) / 4 2

__rvv_vuint16mf8x2_t vuint16mf8x2_t (VLEN / 8) / 4 2

__rvv_vbfloat16mf8x2_t vbfloat16mf8x2_t (VLEN / 8) / 4 2

__rvv_vint16mf8x3_t vint16mf8x3_t (VLEN / 8) * 0.375 2

__rvv_vuint16mf8x3_t vuint16mf8x3_t (VLEN / 8) * 0.375 2

__rvv_vbfloat16mf8x3_t vbfloat16mf8x3_t (VLEN / 8) * 0.375 2

__rvv_vint16mf8x4_t vint16mf8x4_t (VLEN / 8) / 2 2

__rvv_vuint16mf8x4_t vuint16mf8x4_t (VLEN / 8) / 2 2

__rvv_vbfloat16mf8x4_t vbfloat16mf8x4_t (VLEN / 8) / 2 2

__rvv_vint16mf8x5_t vint16mf8x5_t (VLEN / 8) * 0.625 2

__rvv_vuint16mf8x5_t vuint16mf8x5_t (VLEN / 8) * 0.625 2

__rvv_vbfloat16mf8x5_t vbfloat16mf8x5_t (VLEN / 8) * 0.625 2

__rvv_vint16mf8x6_t vint16mf8x6_t (VLEN / 8) * 0.75 2

__rvv_vuint16mf8x6_t vuint16mf8x6_t (VLEN / 8) * 0.75 2

__rvv_vbfloat16mf8x6_t vbfloat16mf8x6_t (VLEN / 8) * 0.75 2

__rvv_vint16mf8x7_t vint16mf8x7_t (VLEN / 8) * 0.875 2

__rvv_vuint16mf8x7_t vuint16mf8x7_t (VLEN / 8) * 0.875 2

__rvv_vbfloat16mf8x7_t vbfloat16mf8x7_t (VLEN / 8) * 0.875 2

__rvv_vint16mf8x8_t vint16mf8x8_t (VLEN / 8) 2

__rvv_vuint16mf8x8_t vuint16mf8x8_t (VLEN / 8) 2

__rvv_vbfloat16mf8x8_t vbfloat16mf8x8_t (VLEN / 8) 2

__rvv_vint16mf4x2_t vint16mf4x2_t (VLEN / 8) / 2 2

__rvv_vuint16mf4x2_t vuint16mf4x2_t (VLEN / 8) / 2 2
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Internal Name Type Size (Bytes) Alignment
(Bytes)

__rvv_vbfloat16mf4x2_t vbfloat16mf4x2_t (VLEN / 8) / 2 2

__rvv_vint16mf4x3_t vint16mf4x3_t (VLEN / 8) * 0.75 2

__rvv_vuint16mf4x3_t vuint16mf4x3_t (VLEN / 8) * 0.75 2

__rvv_vbfloat16mf4x3_t vbfloat16mf4x3_t (VLEN / 8) * 0.75 2

__rvv_vint16mf4x4_t vint16mf4x4_t (VLEN / 8) 2

__rvv_vuint16mf4x4_t vuint16mf4x4_t (VLEN / 8) 2

__rvv_vbfloat16mf4x4_t vbfloat16mf4x4_t (VLEN / 8) 2

__rvv_vint16mf4x5_t vint16mf4x5_t (VLEN / 8) * 1.25 2

__rvv_vuint16mf4x5_t vuint16mf4x5_t (VLEN / 8) * 1.25 2

__rvv_vbfloat16mf4x5_t vbfloat16mf4x5_t (VLEN / 8) * 1.25 2

__rvv_vint16mf4x6_t vint16mf4x6_t (VLEN / 8) * 1.5 2

__rvv_vuint16mf4x6_t vuint16mf4x6_t (VLEN / 8) * 1.5 2

__rvv_vbfloat16mf4x6_t vbfloat16mf4x6_t (VLEN / 8) * 1.5 2

__rvv_vint16mf4x7_t vint16mf4x7_t (VLEN / 8) * 1.75 2

__rvv_vuint16mf4x7_t vuint16mf4x7_t (VLEN / 8) * 1.75 2

__rvv_vbfloat16mf4x7_t vbfloat16mf4x7_t (VLEN / 8) * 1.75 2

__rvv_vint16mf4x8_t vint16mf4x8_t (VLEN / 8) * 2 2

__rvv_vuint16mf4x8_t vuint16mf4x8_t (VLEN / 8) * 2 2

__rvv_vbfloat16mf4x8_t vbfloat16mf4x8_t (VLEN / 8) * 2 2

__rvv_vint16mf2x2_t vint16mf2x2_t (VLEN / 8) 2

__rvv_vuint16mf2x2_t vuint16mf2x2_t (VLEN / 8) 2

__rvv_vbfloat16mf2x2_t vbfloat16mf2x2_t (VLEN / 8) 2

__rvv_vint16mf2x3_t vint16mf2x3_t (VLEN / 8) * 1.5 2

__rvv_vuint16mf2x3_t vuint16mf2x3_t (VLEN / 8) * 1.5 2

__rvv_vbfloat16mf2x3_t vbfloat16mf2x3_t (VLEN / 8) * 1.5 2

__rvv_vint16mf2x4_t vint16mf2x4_t (VLEN / 8) * 2 2

__rvv_vuint16mf2x4_t vuint16mf2x4_t (VLEN / 8) * 2 2

__rvv_vbfloat16mf2x4_t vbfloat16mf2x4_t (VLEN / 8) * 2 2

__rvv_vint16mf2x5_t vint16mf2x5_t (VLEN / 8) * 2.5 2

__rvv_vuint16mf2x5_t vuint16mf2x5_t (VLEN / 8) * 2.5 2

__rvv_vbfloat16mf2x5_t vbfloat16mf2x5_t (VLEN / 8) * 2.5 2

__rvv_vint16mf2x6_t vint16mf2x6_t (VLEN / 8) * 3 2

__rvv_vuint16mf2x6_t vuint16mf2x6_t (VLEN / 8) * 3 2
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__rvv_vbfloat16mf2x6_t vbfloat16mf2x6_t (VLEN / 8) * 3 2

__rvv_vint16mf2x7_t vint16mf2x7_t (VLEN / 8) * 3.5 2

__rvv_vuint16mf2x7_t vuint16mf2x7_t (VLEN / 8) * 3.5 2

__rvv_vbfloat16mf2x7_t vbfloat16mf2x7_t (VLEN / 8) * 3.5 2

__rvv_vint16mf2x8_t vint16mf2x8_t (VLEN / 8) * 4 2

__rvv_vuint16mf2x8_t vuint16mf2x8_t (VLEN / 8) * 4 2

__rvv_vbfloat16mf2x8_t vbfloat16mf2x8_t (VLEN / 8) * 4 2

__rvv_vint16m1x2_t vint16m1x2_t (VLEN / 8) * 2 2

__rvv_vuint16m1x2_t vuint16m1x2_t (VLEN / 8) * 2 2

__rvv_vbfloat16m1x2_t vbfloat16m1x2_t (VLEN / 8) * 2 2

__rvv_vint16m1x3_t vint16m1x3_t (VLEN / 8) * 3 2

__rvv_vuint16m1x3_t vuint16m1x3_t (VLEN / 8) * 3 2

__rvv_vbfloat16m1x3_t vbfloat16m1x3_t (VLEN / 8) * 3 2

__rvv_vint16m1x4_t vint16m1x4_t (VLEN / 8) * 4 2

__rvv_vuint16m1x4_t vuint16m1x4_t (VLEN / 8) * 4 2

__rvv_vbfloat16m1x4_t vbfloat16m1x4_t (VLEN / 8) * 4 2

__rvv_vint16m1x5_t vint16m1x5_t (VLEN / 8) * 5 2

__rvv_vuint16m1x5_t vuint16m1x5_t (VLEN / 8) * 5 2

__rvv_vbfloat16m1x5_t vbfloat16m1x5_t (VLEN / 8) * 5 2

__rvv_vint16m1x6_t vint16m1x6_t (VLEN / 8) * 6 2

__rvv_vuint16m1x6_t vuint16m1x6_t (VLEN / 8) * 6 2

__rvv_vbfloat16m1x6_t vbfloat16m1x6_t (VLEN / 8) * 6 2

__rvv_vint16m1x7_t vint16m1x7_t (VLEN / 8) * 7 2

__rvv_vuint16m1x7_t vuint16m1x7_t (VLEN / 8) * 7 2

__rvv_vbfloat16m1x7_t vbfloat16m1x7_t (VLEN / 8) * 7 2

__rvv_vint16m1x8_t vint16m1x8_t (VLEN / 8) * 8 2

__rvv_vuint16m1x8_t vuint16m1x8_t (VLEN / 8) * 8 2

__rvv_vbfloat16m1x8_t vbfloat16m1x8_t (VLEN / 8) * 8 2

__rvv_vint16m2x2_t vint16m2x2_t (VLEN / 8) * 4 2

__rvv_vuint16m2x2_t vuint16m2x2_t (VLEN / 8) * 4 2

__rvv_vbfloat16m2x2_t vbfloat16m2x2_t (VLEN / 8) * 4 2

__rvv_vint16m2x3_t vint16m2x3_t (VLEN / 8) * 6 2

__rvv_vuint16m2x3_t vuint16m2x3_t (VLEN / 8) * 6 2
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__rvv_vbfloat16m2x3_t vbfloat16m2x3_t (VLEN / 8) * 6 2

__rvv_vint16m2x4_t vint16m2x4_t (VLEN / 8) * 8 2

__rvv_vuint16m2x4_t vuint16m2x4_t (VLEN / 8) * 8 2

__rvv_vbfloat16m2x4_t vbfloat16m2x4_t (VLEN / 8) * 8 2

__rvv_vint16m4x2_t vint16m4x2_t (VLEN / 8) * 8 2

__rvv_vuint16m4x2_t vuint16m4x2_t (VLEN / 8) * 8 2

__rvv_vbfloat16m4x2_t vbfloat16m4x2_t (VLEN / 8) * 8 2

__rvv_vint32mf8x2_t vint32mf8x2_t (VLEN / 8) / 4 4

__rvv_vuint32mf8x2_t vuint32mf8x2_t (VLEN / 8) / 4 4

__rvv_vfloat32mf8x2_t vfloat32mf8x2_t (VLEN / 8) / 4 4

__rvv_vint32mf8x3_t vint32mf8x3_t (VLEN / 8) * 0.375 4

__rvv_vuint32mf8x3_t vuint32mf8x3_t (VLEN / 8) * 0.375 4

__rvv_vfloat32mf8x3_t vfloat32mf8x3_t (VLEN / 8) * 0.375 4

__rvv_vint32mf8x4_t vint32mf8x4_t (VLEN / 8) / 2 4

__rvv_vuint32mf8x4_t vuint32mf8x4_t (VLEN / 8) / 2 4

__rvv_vfloat32mf8x4_t vfloat32mf8x4_t (VLEN / 8) / 2 4

__rvv_vint32mf8x5_t vint32mf8x5_t (VLEN / 8) * 0.625 4

__rvv_vuint32mf8x5_t vuint32mf8x5_t (VLEN / 8) * 0.625 4

__rvv_vfloat32mf8x5_t vfloat32mf8x5_t (VLEN / 8) * 0.625 4

__rvv_vint32mf8x6_t vint32mf8x6_t (VLEN / 8) * 0.75 4

__rvv_vuint32mf8x6_t vuint32mf8x6_t (VLEN / 8) * 0.75 4

__rvv_vfloat32mf8x6_t vfloat32mf8x6_t (VLEN / 8) * 0.75 4

__rvv_vint32mf8x7_t vint32mf8x7_t (VLEN / 8) * 0.875 4

__rvv_vuint32mf8x7_t vuint32mf8x7_t (VLEN / 8) * 0.875 4

__rvv_vfloat32mf8x7_t vfloat32mf8x7_t (VLEN / 8) * 0.875 4

__rvv_vint32mf8x8_t vint32mf8x8_t (VLEN / 8) 4

__rvv_vuint32mf8x8_t vuint32mf8x8_t (VLEN / 8) 4

__rvv_vfloat32mf8x8_t vfloat32mf8x8_t (VLEN / 8) 4

__rvv_vint32mf4x2_t vint32mf4x2_t (VLEN / 8) / 2 4

__rvv_vuint32mf4x2_t vuint32mf4x2_t (VLEN / 8) / 2 4

__rvv_vfloat32mf4x2_t vfloat32mf4x2_t (VLEN / 8) / 2 4

__rvv_vint32mf4x3_t vint32mf4x3_t (VLEN / 8) * 0.75 4

__rvv_vuint32mf4x3_t vuint32mf4x3_t (VLEN / 8) * 0.75 4
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__rvv_vfloat32mf4x3_t vfloat32mf4x3_t (VLEN / 8) * 0.75 4

__rvv_vint32mf4x4_t vint32mf4x4_t (VLEN / 8) 4

__rvv_vuint32mf4x4_t vuint32mf4x4_t (VLEN / 8) 4

__rvv_vfloat32mf4x4_t vfloat32mf4x4_t (VLEN / 8) 4

__rvv_vint32mf4x5_t vint32mf4x5_t (VLEN / 8) * 1.25 4

__rvv_vuint32mf4x5_t vuint32mf4x5_t (VLEN / 8) * 1.25 4

__rvv_vfloat32mf4x5_t vfloat32mf4x5_t (VLEN / 8) * 1.25 4

__rvv_vint32mf4x6_t vint32mf4x6_t (VLEN / 8) * 1.5 4

__rvv_vuint32mf4x6_t vuint32mf4x6_t (VLEN / 8) * 1.5 4

__rvv_vfloat32mf4x6_t vfloat32mf4x6_t (VLEN / 8) * 1.5 4

__rvv_vint32mf4x7_t vint32mf4x7_t (VLEN / 8) * 1.75 4

__rvv_vuint32mf4x7_t vuint32mf4x7_t (VLEN / 8) * 1.75 4

__rvv_vfloat32mf4x7_t vfloat32mf4x7_t (VLEN / 8) * 1.75 4

__rvv_vint32mf4x8_t vint32mf4x8_t (VLEN / 8) * 2 4

__rvv_vuint32mf4x8_t vuint32mf4x8_t (VLEN / 8) * 2 4

__rvv_vfloat32mf4x8_t vfloat32mf4x8_t (VLEN / 8) * 2 4

__rvv_vint32mf2x2_t vint32mf2x2_t (VLEN / 8) 4

__rvv_vuint32mf2x2_t vuint32mf2x2_t (VLEN / 8) 4

__rvv_vfloat32mf2x2_t vfloat32mf2x2_t (VLEN / 8) 4

__rvv_vint32mf2x3_t vint32mf2x3_t (VLEN / 8) * 1.5 4

__rvv_vuint32mf2x3_t vuint32mf2x3_t (VLEN / 8) * 1.5 4

__rvv_vfloat32mf2x3_t vfloat32mf2x3_t (VLEN / 8) * 1.5 4

__rvv_vint32mf2x4_t vint32mf2x4_t (VLEN / 8) * 2 4

__rvv_vuint32mf2x4_t vuint32mf2x4_t (VLEN / 8) * 2 4

__rvv_vfloat32mf2x4_t vfloat32mf2x4_t (VLEN / 8) * 2 4

__rvv_vint32mf2x5_t vint32mf2x5_t (VLEN / 8) * 2.5 4

__rvv_vuint32mf2x5_t vuint32mf2x5_t (VLEN / 8) * 2.5 4

__rvv_vfloat32mf2x5_t vfloat32mf2x5_t (VLEN / 8) * 2.5 4

__rvv_vint32mf2x6_t vint32mf2x6_t (VLEN / 8) * 3 4

__rvv_vuint32mf2x6_t vuint32mf2x6_t (VLEN / 8) * 3 4

__rvv_vfloat32mf2x6_t vfloat32mf2x6_t (VLEN / 8) * 3 4

__rvv_vint32mf2x7_t vint32mf2x7_t (VLEN / 8) * 3.5 4

__rvv_vuint32mf2x7_t vuint32mf2x7_t (VLEN / 8) * 3.5 4
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__rvv_vfloat32mf2x7_t vfloat32mf2x7_t (VLEN / 8) * 3.5 4

__rvv_vint32mf2x8_t vint32mf2x8_t (VLEN / 8) * 4 4

__rvv_vuint32mf2x8_t vuint32mf2x8_t (VLEN / 8) * 4 4

__rvv_vfloat32mf2x8_t vfloat32mf2x8_t (VLEN / 8) * 4 4

__rvv_vint32m1x2_t vint32m1x2_t (VLEN / 8) * 2 4

__rvv_vuint32m1x2_t vuint32m1x2_t (VLEN / 8) * 2 4

__rvv_vfloat32m1x2_t vfloat32m1x2_t (VLEN / 8) * 2 4

__rvv_vint32m1x3_t vint32m1x3_t (VLEN / 8) * 3 4

__rvv_vuint32m1x3_t vuint32m1x3_t (VLEN / 8) * 3 4

__rvv_vfloat32m1x3_t vfloat32m1x3_t (VLEN / 8) * 3 4

__rvv_vint32m1x4_t vint32m1x4_t (VLEN / 8) * 4 4

__rvv_vuint32m1x4_t vuint32m1x4_t (VLEN / 8) * 4 4

__rvv_vfloat32m1x4_t vfloat32m1x4_t (VLEN / 8) * 4 4

__rvv_vint32m1x5_t vint32m1x5_t (VLEN / 8) * 5 4

__rvv_vuint32m1x5_t vuint32m1x5_t (VLEN / 8) * 5 4

__rvv_vfloat32m1x5_t vfloat32m1x5_t (VLEN / 8) * 5 4

__rvv_vint32m1x6_t vint32m1x6_t (VLEN / 8) * 6 4

__rvv_vuint32m1x6_t vuint32m1x6_t (VLEN / 8) * 6 4

__rvv_vfloat32m1x6_t vfloat32m1x6_t (VLEN / 8) * 6 4

__rvv_vint32m1x7_t vint32m1x7_t (VLEN / 8) * 7 4

__rvv_vuint32m1x7_t vuint32m1x7_t (VLEN / 8) * 7 4

__rvv_vfloat32m1x7_t vfloat32m1x7_t (VLEN / 8) * 7 4

__rvv_vint32m1x8_t vint32m1x8_t (VLEN / 8) * 8 4

__rvv_vuint32m1x8_t vuint32m1x8_t (VLEN / 8) * 8 4

__rvv_vfloat32m1x8_t vfloat32m1x8_t (VLEN / 8) * 8 4

__rvv_vint32m2x2_t vint32m2x2_t (VLEN / 8) * 4 4

__rvv_vuint32m2x2_t vuint32m2x2_t (VLEN / 8) * 4 4

__rvv_vfloat32m2x2_t vfloat32m2x2_t (VLEN / 8) * 4 4

__rvv_vint32m2x3_t vint32m2x3_t (VLEN / 8) * 6 4

__rvv_vuint32m2x3_t vuint32m2x3_t (VLEN / 8) * 6 4

__rvv_vfloat32m2x3_t vfloat32m2x3_t (VLEN / 8) * 6 4

__rvv_vint32m2x4_t vint32m2x4_t (VLEN / 8) * 8 4

__rvv_vuint32m2x4_t vuint32m2x4_t (VLEN / 8) * 8 4
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__rvv_vfloat32m2x4_t vfloat32m2x4_t (VLEN / 8) * 8 4

__rvv_vint32m4x2_t vint32m4x2_t (VLEN / 8) * 8 4

__rvv_vuint32m4x2_t vuint32m4x2_t (VLEN / 8) * 8 4

__rvv_vfloat32m4x2_t vfloat32m4x2_t (VLEN / 8) * 8 4

__rvv_vint64mf8x2_t vint64mf8x2_t (VLEN / 8) / 4 8

__rvv_vuint64mf8x2_t vuint64mf8x2_t (VLEN / 8) / 4 8

__rvv_vfloat64mf8x2_t vfloat64mf8x2_t (VLEN / 8) / 4 8

__rvv_vint64mf8x3_t vint64mf8x3_t (VLEN / 8) * 0.375 8

__rvv_vuint64mf8x3_t vuint64mf8x3_t (VLEN / 8) * 0.375 8

__rvv_vfloat64mf8x3_t vfloat64mf8x3_t (VLEN / 8) * 0.375 8

__rvv_vint64mf8x4_t vint64mf8x4_t (VLEN / 8) / 2 8

__rvv_vuint64mf8x4_t vuint64mf8x4_t (VLEN / 8) / 2 8

__rvv_vfloat64mf8x4_t vfloat64mf8x4_t (VLEN / 8) / 2 8

__rvv_vint64mf8x5_t vint64mf8x5_t (VLEN / 8) * 0.625 8

__rvv_vuint64mf8x5_t vuint64mf8x5_t (VLEN / 8) * 0.625 8

__rvv_vfloat64mf8x5_t vfloat64mf8x5_t (VLEN / 8) * 0.625 8

__rvv_vint64mf8x6_t vint64mf8x6_t (VLEN / 8) * 0.75 8

__rvv_vuint64mf8x6_t vuint64mf8x6_t (VLEN / 8) * 0.75 8

__rvv_vfloat64mf8x6_t vfloat64mf8x6_t (VLEN / 8) * 0.75 8

__rvv_vint64mf8x7_t vint64mf8x7_t (VLEN / 8) * 0.875 8

__rvv_vuint64mf8x7_t vuint64mf8x7_t (VLEN / 8) * 0.875 8

__rvv_vfloat64mf8x7_t vfloat64mf8x7_t (VLEN / 8) * 0.875 8

__rvv_vint64mf8x8_t vint64mf8x8_t (VLEN / 8) 8

__rvv_vuint64mf8x8_t vuint64mf8x8_t (VLEN / 8) 8

__rvv_vfloat64mf8x8_t vfloat64mf8x8_t (VLEN / 8) 8

__rvv_vint64mf4x2_t vint64mf4x2_t (VLEN / 8) / 2 8

__rvv_vuint64mf4x2_t vuint64mf4x2_t (VLEN / 8) / 2 8

__rvv_vfloat64mf4x2_t vfloat64mf4x2_t (VLEN / 8) / 2 8

__rvv_vint64mf4x3_t vint64mf4x3_t (VLEN / 8) * 0.75 8

__rvv_vuint64mf4x3_t vuint64mf4x3_t (VLEN / 8) * 0.75 8

__rvv_vfloat64mf4x3_t vfloat64mf4x3_t (VLEN / 8) * 0.75 8

__rvv_vint64mf4x4_t vint64mf4x4_t (VLEN / 8) 8

__rvv_vuint64mf4x4_t vuint64mf4x4_t (VLEN / 8) 8
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__rvv_vfloat64mf4x4_t vfloat64mf4x4_t (VLEN / 8) 8

__rvv_vint64mf4x5_t vint64mf4x5_t (VLEN / 8) * 1.25 8

__rvv_vuint64mf4x5_t vuint64mf4x5_t (VLEN / 8) * 1.25 8

__rvv_vfloat64mf4x5_t vfloat64mf4x5_t (VLEN / 8) * 1.25 8

__rvv_vint64mf4x6_t vint64mf4x6_t (VLEN / 8) * 1.5 8

__rvv_vuint64mf4x6_t vuint64mf4x6_t (VLEN / 8) * 1.5 8

__rvv_vfloat64mf4x6_t vfloat64mf4x6_t (VLEN / 8) * 1.5 8

__rvv_vint64mf4x7_t vint64mf4x7_t (VLEN / 8) * 1.75 8

__rvv_vuint64mf4x7_t vuint64mf4x7_t (VLEN / 8) * 1.75 8

__rvv_vfloat64mf4x7_t vfloat64mf4x7_t (VLEN / 8) * 1.75 8

__rvv_vint64mf4x8_t vint64mf4x8_t (VLEN / 8) * 2 8

__rvv_vuint64mf4x8_t vuint64mf4x8_t (VLEN / 8) * 2 8

__rvv_vfloat64mf4x8_t vfloat64mf4x8_t (VLEN / 8) * 2 8

__rvv_vint64mf2x2_t vint64mf2x2_t (VLEN / 8) 8

__rvv_vuint64mf2x2_t vuint64mf2x2_t (VLEN / 8) 8

__rvv_vfloat64mf2x2_t vfloat64mf2x2_t (VLEN / 8) 8

__rvv_vint64mf2x3_t vint64mf2x3_t (VLEN / 8) * 1.5 8

__rvv_vuint64mf2x3_t vuint64mf2x3_t (VLEN / 8) * 1.5 8

__rvv_vfloat64mf2x3_t vfloat64mf2x3_t (VLEN / 8) * 1.5 8

__rvv_vint64mf2x4_t vint64mf2x4_t (VLEN / 8) * 2 8

__rvv_vuint64mf2x4_t vuint64mf2x4_t (VLEN / 8) * 2 8

__rvv_vfloat64mf2x4_t vfloat64mf2x4_t (VLEN / 8) * 2 8

__rvv_vint64mf2x5_t vint64mf2x5_t (VLEN / 8) * 2.5 8

__rvv_vuint64mf2x5_t vuint64mf2x5_t (VLEN / 8) * 2.5 8

__rvv_vfloat64mf2x5_t vfloat64mf2x5_t (VLEN / 8) * 2.5 8

__rvv_vint64mf2x6_t vint64mf2x6_t (VLEN / 8) * 3 8

__rvv_vuint64mf2x6_t vuint64mf2x6_t (VLEN / 8) * 3 8

__rvv_vfloat64mf2x6_t vfloat64mf2x6_t (VLEN / 8) * 3 8

__rvv_vint64mf2x7_t vint64mf2x7_t (VLEN / 8) * 3.5 8

__rvv_vuint64mf2x7_t vuint64mf2x7_t (VLEN / 8) * 3.5 8

__rvv_vfloat64mf2x7_t vfloat64mf2x7_t (VLEN / 8) * 3.5 8

__rvv_vint64mf2x8_t vint64mf2x8_t (VLEN / 8) * 4 8

__rvv_vuint64mf2x8_t vuint64mf2x8_t (VLEN / 8) * 4 8
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__rvv_vfloat64mf2x8_t vfloat64mf2x8_t (VLEN / 8) * 4 8

__rvv_vint64m1x2_t vint64m1x2_t (VLEN / 8) * 2 8

__rvv_vuint64m1x2_t vuint64m1x2_t (VLEN / 8) * 2 8

__rvv_vfloat64m1x2_t vfloat64m1x2_t (VLEN / 8) * 2 8

__rvv_vint64m1x3_t vint64m1x3_t (VLEN / 8) * 3 8

__rvv_vuint64m1x3_t vuint64m1x3_t (VLEN / 8) * 3 8

__rvv_vfloat64m1x3_t vfloat64m1x3_t (VLEN / 8) * 3 8

__rvv_vint64m1x4_t vint64m1x4_t (VLEN / 8) * 4 8

__rvv_vuint64m1x4_t vuint64m1x4_t (VLEN / 8) * 4 8

__rvv_vfloat64m1x4_t vfloat64m1x4_t (VLEN / 8) * 4 8

__rvv_vint64m1x5_t vint64m1x5_t (VLEN / 8) * 5 8

__rvv_vuint64m1x5_t vuint64m1x5_t (VLEN / 8) * 5 8

__rvv_vfloat64m1x5_t vfloat64m1x5_t (VLEN / 8) * 5 8

__rvv_vint64m1x6_t vint64m1x6_t (VLEN / 8) * 6 8

__rvv_vuint64m1x6_t vuint64m1x6_t (VLEN / 8) * 6 8

__rvv_vfloat64m1x6_t vfloat64m1x6_t (VLEN / 8) * 6 8

__rvv_vint64m1x7_t vint64m1x7_t (VLEN / 8) * 7 8

__rvv_vuint64m1x7_t vuint64m1x7_t (VLEN / 8) * 7 8

__rvv_vfloat64m1x7_t vfloat64m1x7_t (VLEN / 8) * 7 8

__rvv_vint64m1x8_t vint64m1x8_t (VLEN / 8) * 8 8

__rvv_vuint64m1x8_t vuint64m1x8_t (VLEN / 8) * 8 8

__rvv_vfloat64m1x8_t vfloat64m1x8_t (VLEN / 8) * 8 8

__rvv_vint64m2x2_t vint64m2x2_t (VLEN / 8) * 4 8

__rvv_vuint64m2x2_t vuint64m2x2_t (VLEN / 8) * 4 8

__rvv_vfloat64m2x2_t vfloat64m2x2_t (VLEN / 8) * 4 8

__rvv_vint64m2x3_t vint64m2x3_t (VLEN / 8) * 6 8

__rvv_vuint64m2x3_t vuint64m2x3_t (VLEN / 8) * 6 8

__rvv_vfloat64m2x3_t vfloat64m2x3_t (VLEN / 8) * 6 8

__rvv_vint64m2x4_t vint64m2x4_t (VLEN / 8) * 8 8

__rvv_vuint64m2x4_t vuint64m2x4_t (VLEN / 8) * 8 8

__rvv_vfloat64m2x4_t vfloat64m2x4_t (VLEN / 8) * 8 8

__rvv_vint64m4x2_t vint64m4x2_t (VLEN / 8) * 8 8

__rvv_vuint64m4x2_t vuint64m4x2_t (VLEN / 8) * 8 8
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Internal Name Type Size (Bytes) Alignment
(Bytes)

__rvv_vfloat64m4x2_t vfloat64m4x2_t (VLEN / 8) * 8 8


The vector mask types utilize a portion of the space, while the remaining content
may be undefined, both in the register and in memory.

 Size must be a positive integer.
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Appendix A: Linux-specific ABI


This section of the RISC-V calling convention specification only applies to Linux-
based systems.

In order to ensure compatibility between different implementations of the C library for Linux, we
provide some extra definitions which only apply on those systems. These are noted in this section.

A.1. Linux-specific C type sizes and alignments
The following definitions apply for all ABIs defined in this document. Here there is no
differentiation between ILP32 and LP64 ABIs.

Table 10. Linux-specific C type sizes and alignments

Type Size (Bytes) Alignment
(Bytes)

wchar_t 4 4

wint_t 4 4

A.2. Linux-specific C type representations
The following definitions apply for all ABIs defined in this document. Here there is no
differentiation between ILP32 and LP64 ABIs.

wchar_t is signed. wint_t is unsigned.
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Chapter 5. Code models
The RISC-V architecture constrains the addressing of positions in the address space. There is no
single instruction that can refer to an arbitrary memory position using a literal as its argument.
Rather, instructions exist that, when combined together, can then be used to refer to a memory
position via its literal. And, when not, other data structures are used to help the code to address the
memory space. The coding conventions governing their use are known as code models.

However, some code models can’t access the whole address space. The linker may raise an error if
it cannot adjust the instructions to access the target address in the current code model.

5.1. Medium low code model
The medium low code model, or medlow, allows the code to address the whole RV32 address space or
the lower 2 GiB and highest 2 GiB of the RV64 address space (0xFFFFFFFF7FFFF800 ~
0xFFFFFFFFFFFFFFFF and 0x0 ~ 0x000000007FFFF7FF). By using the lui and load / store instructions,
when referring to an object, or addi, when calculating an address literal, for example, a 32-bit
address literal can be produced.

The following instructions show how to load a value, store a value, or calculate an address in the
medlow code model.

    # Load value from a symbol
    lui  a0, %hi(symbol)
    lw   a0, %lo(symbol)(a0)

    # Store value to a symbol
    lui  a0, %hi(symbol)
    sw   a1, %lo(symbol)(a0)

    # Calculate address
    lui  a0, %hi(symbol)
    addi a0, a0, %lo(symbol)


The ranges on RV64 are not 0x0 ~ 0x000000007FFFFFFF and 0xFFFFFFFF80000000 ~
0xFFFFFFFFFFFFFFFF due to RISC-V’s sign-extension of immediates; the following
code fragments show where the ranges come from:

# Largest postive number:
lui a0, 0x7ffff # a0 = 0x7ffff000
addi a0, 0x7ff # a0 = a0 + 2047 = 0x000000007FFFF7FF

# Smallest negative number:
lui a0, 0x80000 # a0 = 0xffffffff80000000
addi a0, a0, -0x800 # a0 = a0 + -2048 = 0xFFFFFFFF7FFFF800
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5.2. Medium any code model
The medium any code model, or medany, allows the code to address the range between -2 GiB and +2
GiB from its position. By using auipc and load / store instructions, when referring to an object, or
addi, when calculating an address literal, for example, a signed 32-bit offset, relative to the value of
the pc register, can be produced.

As a special edge-case, undefined weak symbols must still be supported, whose addresses will be 0
and may be out of range depending on the address at which the code is linked. Any references to
possibly-undefined weak symbols should be made indirectly through the GOT as is used for
position-independent code. Not doing so is deprecated and a future version of this specification will
require using the GOT, not just advise.


This is not yet a requirement as existing toolchains predating this part of the
specification do not adhere to this, and without improvements to linker relaxation
support doing so would regress performance and code size.

The following instructions show how to load a value, store a value, or calculate an address in the
medany code model.

         # Load value from a symbol
.Ltmp0:  auipc a0, %pcrel_hi(symbol)
         lw    a0, %pcrel_lo(.Ltmp0)(a0)

         # Store value to a symbol
.Ltmp1:  auipc a0, %pcrel_hi(symbol)
         sw    a1, %pcrel_lo(.Ltmp1)(a0)

         # Calculate address
.Ltmp2:  auipc a0, %pcrel_hi(symbol)
         addi  a0, a0, %pcrel_lo(.Ltmp2)


Although the generated code is technically position independent, it’s not suitable
for ELF shared libraries due to differing symbol interposition rules; for that, please
use the medium position independent code model below.

5.3. Medium position independent code model
This model is similar to the medium any code model, but uses the global offset table (GOT) for non-
local symbol addresses.

         # Load value from a local symbol
.Ltmp0:  auipc a0, %pcrel_hi(symbol)
         lw    a0, %pcrel_lo(.Ltmp0)(a0)

         # Store value to a local symbol
.Ltmp1:  auipc a0, %pcrel_hi(symbol)
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         sw    a1, %pcrel_lo(.Ltmp1)(a0)

         # Calculate address of a local symbol
.Ltmp2:  auipc a0, %pcrel_hi(symbol)
         addi  a0, a0, %pcrel_lo(.Ltmp2)

         # Calculate address of non-local symbol
.Ltmp3:  auipc  a0, %got_pcrel_hi(symbol)
         l[w|d] a0, %pcrel_lo(.Ltmp3)(a0)

5.4. Large code model
The large code model allows the code to address the whole RV64 address space. Thus, this model is
only available for RV64. By putting object addresses into literal pools, a 64-bit address literal can be
loaded from the pool.



Because calculating the pool entry address must use aupic and addi or ld, each pool
entry has to be located within the range between -2GiB and +2GiB from its access
intructions. In general, the pool is appeneded in .text section or put into .rodata
section.

         # Get address of a symbol
         # Literal pool
.LCPI0:
         .8byte symbol
     ...
.Ltmp0:  auipc   a0, %pcrel_hi(.LCPI0)
         ld      a0, %pcrel_lo(.Ltmp0)(a0)

This model also changes the function call patterns. An external function address must be loaded
from a literal pool entry, and use jalr to jump to the target function.


Same as getting address of symbol, each pool entry has to be located within the
range between -2GiB and +2GiB from its access intructions. The function call can
reach the whole 64-bit address space.


The code generation of function call may be changed after the range extension
thunk is implemented. The compiler can emit call directly, and leave the model
variation to the linker which could decide to jump via the literal pool or not.

         # Function call
         # Literal pool
.LCPI1:
         .8byte function
     ...
.Ltmp1:  auipc   a0, %pcrel_hi(.LCPI1)
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         ld      a0, %pcrel_lo(.Ltmp1)(a0)
         jalr    a0

 Large code model is disallowed to be used with PIC code model.


There will be more different code generation strategies for different usage
purposes in the future.
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Chapter 6. Dynamic Linking
Any functions that use registers in a way that is incompatible with the calling convention of the ABI
in use must be annotated with STO_RISCV_VARIANT_CC, as defined in Section 8.3.



Vector registers have a variable size depending on the hardware implementation
and can be quite large. Saving/restoring all these vector arguments in a run-time
linker’s lazy resolver would use a large amount of stack space and hurt
performance. STO_RISCV_VARIANT_CC attribute will require the run-time linker to
resolve the symbol directly to prevent saving/restoring any vector registers.
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Chapter 7. C++ Name Mangling
C++ name mangling for RISC-V follows the Itanium C++ ABI [itanium-cxx-abi]; plus mangling for
RISC-V vector data types and vector mask types, which are defined in the following section.

See the "Type encodings" section in Itanium C++ ABI for more detail on how to mangle types. Note
that __bf16 is mangled in the same way as std::bfloat16_t.

7.1. Name Mangling for Vector Data Types, Vector
Mask Types and Vector Tuple Types.
The vector data types and vector mask types, as defined in the section Section 4.6, are treated as
vendor-extended types in the Itanium C++ ABI [itanium-cxx-abi]. These mangled name for these
types is "u"<len>"rvv_"<type-name>. Specifically, prefixing the type name withrvv_, which is
prefixed by a decimal string indicating its length, which is prefixed by "u".

For example:

    void foo(vint8m1_t x);

is mangled as

    _Z3foou15__rvv_vint8m1_t

mangled-name = "u" len "__rvv_" type-name

len = nonzero *DIGIT
nonzero = "1" / "2" / "3" / "4" / "5" / "6" / "7" / "8" / "9"

type-name = identifier-nondigit *identifier-char
identifier-nondigit = ALPHA / "_"
identifier-char = identifier-nondigit / "_"
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Chapter 8. ELF Object Files
The ELF object file format for RISC-V follows the Generic System V Application Binary Interface
[gabi] ("gABI"); this specification only describes RISC-V-specific definitions.

8.1. File Header
The section below lists the defined RISC-V-specific values for several ELF header fields; any fields
not listed in this section have no RISC-V-specific values.

e_ident

EI_CLASS

Specifies the base ISA, either RV32 or RV64. Linking RV32 and RV64 code together is not
supported.

ELFCLASS64 ELF-64 Object File

ELFCLASS32 ELF-32 Object File

EI_DATA

Specifies the endianness; either big-endian or little-endian. Linking big-endian and little-
endian code together is not supported.

ELFDATA2LSB Little-endian Object File

ELFDATA2MSB Big-endian Object File

e_machine

Identifies the machine this ELF file targets. Always contains EM_RISCV (243) for RISC-V ELF files.

e_flags

Describes the format of this ELF file. These flags are used by the linker to disallow linking ELF
files with incompatible ABIs together, Table 11 shows the layout of e_flags, and flag details are
listed below.

Table 11. Layout of e_flags

Bit 0 Bits 1 - 2 Bit 3 Bit 4 Bits 5 - 23 Bits 24 - 31

RVC Float ABI RVE TSO Reserved Non-standard extensions

EF_RISCV_RVC (0x0001)

This bit is set when the binary targets the C ABI, which allows instructions to be aligned to 16-
bit boundaries (the base RV32 and RV64 ISAs only allow 32-bit instruction alignment). When
linking objects which specify EF_RISCV_RVC, the linker is permitted to use RVC instructions
such as C.JAL in the linker relaxation process.

EF_RISCV_FLOAT_ABI_SOFT (0x0000)
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EF_RISCV_FLOAT_ABI_SINGLE (0x0002)

EF_RISCV_FLOAT_ABI_DOUBLE (0x0004)

EF_RISCV_FLOAT_ABI_QUAD (0x0006)

These flags identify the floating point ABI in use for this ELF file. They store the largest
floating-point type that ends up in registers as part of the ABI (but do not control if code
generation is allowed to use floating-point internally). The rule is that if you have a floating-
point type in a register, then you also have all smaller floating-point types in registers. For
example _DOUBLE would store "float" and "double" values in F registers, but would not store
"long double" values in F registers. If none of the float ABI flags are set, the object is taken to
use the soft-float ABI.

EF_RISCV_FLOAT_ABI (0x0006)

This macro is used as a mask to test for one of the above floating-point ABIs, e.g., (e_flags &
EF_RISCV_FLOAT_ABI) == EF_RISCV_FLOAT_ABI_DOUBLE.

EF_RISCV_RVE (0x0008)

This bit is set when the binary targets the E ABI.

EF_RISCV_TSO (0x0010)

This bit is set when the binary requires the RVTSO memory consistency model.

Until such a time that the Reserved bits (0x00ffffe0) are allocated by future versions of this
specification, they shall not be set by standard software. Non-standard extensions are free to use
bits 24-31 for any purpose. This may conflict with other non-standard extensions.



There is no provision for compatibility between conflicting uses of the e_flags
bits reserved for non-standard extensions, and many standard RISC-V tools will
ignore them. Do not use them unless you control both the toolchain and the
operating system, and the ABI differences are so significant they cannot be
done with a .RISCV.attributes tag nor an ELF note, such as using a different
syscall ABI.

==== Policy for Merge Objects With Different File Headers

This section describe the behavior when the inputs files come with different file headers.

e_ident and e_machine should have exact same value otherwise linker should raise an error.

e_flags has different different policy for different fields:

RVC

Input file could have different values for the RVC field; the linker should set this field into
EF_RISCV_RVC if any of the input objects has been set.

Float ABI

Linker should report errors if object files of different value for float ABI field.
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RVE

Linker should report errors if object files of different value for RVE field.

TSO

Input files can have different values for the TSO field; the linker should set this field if any of
the input objects have the TSO field set.


The static linker may ignore the compatibility checks if all fields in the e_flags
are zero and all sections in the input file are non-executable sections.

8.2. String Tables
There are no RISC-V specific definitions relating to ELF string tables.

8.3. Symbol Table
st_other

The lower 2 bits are used to specify a symbol’s visibility. The remaining 6 bits have no defined
meaning in the ELF gABI. We use the highest bit to mark functions that do not follow the
standard calling convention for the ABI in use.

The defined processor-specific st_other flags are listed in Table 12.

Table 12. RISC-V-specific st_other flags

Name Mask

STO_RISCV_VARIANT_CC 0x80

See Chapter 6 for the meaning of STO_RISCV_VARIANT_CC.

__global_pointer$ must be exported in the dynamic symbol table of dynamically-linked executables
if there are any GP-relative accesses present in the executable.

8.4. Relocations
RISC-V is a classical RISC architecture that has densely packed non-word sized instruction
immediate values. While the linker can make relocations on arbitrary memory locations, many of
the RISC-V relocations are designed for use with specific instructions or instruction sequences.
RISC-V has several instruction specific encodings for PC-Relative address loading, jumps, branches
and the RVC compressed instruction set.

The purpose of this section is to describe the RISC-V specific instruction sequences with their
associated relocations in addition to the general purpose machine word sized relocations that are
used for symbol addresses in the Global Offset Table or DWARF meta data.

Table 13 provides details of the RISC-V ELF relocations; the meaning of each column is given below:
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Enum

The number of the relocation, encoded in the r_info field

ELF Reloc Type

The name of the relocation, omitting the prefix of R_RISCV_.

Type

Whether the relocation is a static or dynamic relocation:

• A static relocation relocates a location in a relocatable file, processed by a static linker.

• A dynamic relocation relocates a location in an executable or shared object, processed by a
run-time linker.

• Both: Some relocation types are used by both static relocations and dynamic relocations.

Field

Describes the set of bits affected by this relocation; see Section 8.4.3 for the definitions of the
individual types

Calculation

Formula for how to resolve the relocation value; definitions of the symbols can be found in
Section 8.4.2

Description

Additional information about the relocation

Table 13. Relocation types

Enu
m

ELF Reloc Type Type Field / Calculation Description

0 NONE None

1 32 Both word32 32-bit relocation

S + A

2 64 Both word64 64-bit relocation

S + A

3 RELATIVE Dynamic wordclass Adjust a link address (A) to its load
address (B + A)B + A

4 COPY Dynamic Must be in executable; not allowed in
shared library

5 JUMP_SLOT Dynamic wordclass Indicates the symbol associated with
a PLT entryS

6 TLS_DTPMOD32 Dynamic word32

TLSMODULE
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Enu
m

ELF Reloc Type Type Field / Calculation Description

7 TLS_DTPMOD64 Dynamic word64

TLSMODULE

8 TLS_DTPREL32 Dynamic word32

S + A -
TLS_DTV_OFFSET

9 TLS_DTPREL64 Dynamic word64

S + A -
TLS_DTV_OFFSET

10 TLS_TPREL32 Dynamic word32

S + A + TLSOFFSET

11 TLS_TPREL64 Dynamic word64

S + A + TLSOFFSET

12 TLSDESC Dynamic See Section 8.5.4

TLSDESC(S+A)

16 BRANCH Static B-Type 12-bit PC-relative branch offset

S + A - P

17 JAL Static J-Type 20-bit PC-relative jump offset

S + A - P

18 CALL Static U+I-Type Deprecated, please use CALL_PLT
instead 32-bit PC-relative function
call, macros call, tailS + A - P

19 CALL_PLT Static U+I-Type 32-bit PC-relative function call,
macros call, tail (PIC)S + A - P

20 GOT_HI20 Static U-Type High 20 bits of 32-bit PC-relative GOT
access, %got_pcrel_hi(symbol)G + GOT + A - P

21 TLS_GOT_HI20 Static U-Type High 20 bits of 32-bit PC-relative TLS
IE GOT access, macro la.tls.ie

22 TLS_GD_HI20 Static U-Type High 20 bits of 32-bit PC-relative TLS
GD GOT reference, macro la.tls.gd

23 PCREL_HI20 Static U-Type High 20 bits of 32-bit PC-relative
reference, %pcrel_hi(symbol)S + A - P

24 PCREL_LO12_I Static I-type Low 12 bits of a 32-bit PC-relative,
%pcrel_lo(address of %pcrel_hi), the
addend must be 0S - P
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Enu
m

ELF Reloc Type Type Field / Calculation Description

25 PCREL_LO12_S Static S-Type Low 12 bits of a 32-bit PC-relative,
%pcrel_lo(address of %pcrel_hi), the
addend must be 0S - P

26 HI20 Static U-Type High 20 bits of 32-bit absolute
address, %hi(symbol)S + A

27 LO12_I Static I-Type Low 12 bits of 32-bit absolute address,
%lo(symbol)S + A

28 LO12_S Static S-Type Low 12 bits of 32-bit absolute address,
%lo(symbol)S + A

29 TPREL_HI20 Static U-Type High 20 bits of TLS LE thread pointer
offset, %tprel_hi(symbol)

30 TPREL_LO12_I Static I-Type Low 12 bits of TLS LE thread pointer
offset, %tprel_lo(symbol)

31 TPREL_LO12_S Static S-Type Low 12 bits of TLS LE thread pointer
offset, %tprel_lo(symbol)

32 TPREL_ADD Static TLS LE thread pointer usage,
%tprel_add(symbol)

33 ADD8 Static word8 8-bit label addition

V + S + A

34 ADD16 Static word16 16-bit label addition

V + S + A

35 ADD32 Static word32 32-bit label addition

V + S + A

36 ADD64 Static word64 64-bit label addition

V + S + A

37 SUB8 Static word8 8-bit label subtraction

V - S - A

38 SUB16 Static word16 16-bit label subtraction

V - S - A

39 SUB32 Static word32 32-bit label subtraction

V - S - A

40 SUB64 Static word64 64-bit label subtraction

V - S - A
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Enu
m

ELF Reloc Type Type Field / Calculation Description

41 GOT32_PCREL Static word32 32-bit difference between the GOT
entry for a symbol and the current
locationG + GOT + A - P

42 Reserved - Reserved for future standard use

43 ALIGN Static Alignment statement. The addend
indicates the number of bytes
occupied by nop instructions at the
relocation offset. The alignment
boundary is specified by the addend
rounded up to the next power of two.

44 RVC_BRANCH Static CB-Type 8-bit PC-relative branch offset

S + A - P

45 RVC_JUMP Static CJ-Type 11-bit PC-relative jump offset

S + A - P

46-50 Reserved - Reserved for future standard use

51 RELAX Static Instruction can be relaxed, paired
with a normal relocation at the same
address

52 SUB6 Static word6 Local label subtraction

V - S - A

53 SET6 Static word6 Local label assignment

S + A

54 SET8 Static word8 Local label assignment

S + A

55 SET16 Static word16 Local label assignment

S + A

56 SET32 Static word32 Local label assignment

S + A

57 32_PCREL Static word32 32-bit PC relative

S + A - P

58 IRELATIVE Dynamic wordclass Relocation against a non-preemptible
ifunc symbolifunc_resolver(B +

A)

59 PLT32 Static word32 32-bit relative offset to a function or
its PLT entryS + A - P
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Enu
m

ELF Reloc Type Type Field / Calculation Description

60 SET_ULEB128 Static ULEB128 Must be placed immediately before a
SUB_ULEB128 with the same offset.
Local label assignment *noteS + A

61 SUB_ULEB128 Static ULEB128 Must be placed immediately after a
SET_ULEB128 with the same offset.
Local label subtraction *noteV - S - A

62 TLSDESC_HI20 Static U-Type High 20 bits of a 32-bit PC-relative
offset into a TLS descriptor entry,
%tlsdesc_hi(symbol)S + A - P

63 TLSDESC_LOAD_LO
12

Static I-Type Low 12 bits of a 32-bit PC-relative
offset into a TLS descriptor entry,
%tlsdesc_load_lo(address of
%tlsdesc_hi), the addend must be 0

S - P

64 TLSDESC_ADD_LO1
2

Static I-Type Low 12 bits of a 32-bit PC-relative
offset into a TLS descriptor entry,
%tlsdesc_add_lo(address of
%tlsdesc_hi), the addend must be 0

S - P

65 TLSDESC_CALL Static Annotate call to TLS descriptor
resolver function,
%tlsdesc_call(address of
%tlsdesc_hi), for relaxation purposes
only

66-
190

Reserved - Reserved for future standard use

191 VENDOR Static Paired with a vendor-specific
relocation and must be placed
immediately before it, indicates
which vendor owns the relocation.

192-
255

Reserved - Reserved for nonstandard ABI
extensions

Nonstandard extensions are free to use relocation numbers 192-255 for any purpose. These vendor-
specific relocations must be preceded by a R_RISCV_VENDOR relocation against a vendor ID symbol.

Where possible, tools should present relocation as their vendor-specific relocation types, otherwise
a generic name of R_RISCV_CUSTOM<enum value> must be shown. Data contained in paired
RISCV_VENDOR can be used to select the appropriate vendor when performing relocations.

This section and later ones contain fragments written in assembler. The precise assembler syntax,
including that of the relocations, is described in the RISC-V Assembly Programmer’s Manual [rv-
asm].

 The assembler must allocate sufficient space to accommodate the final value for
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the R_RISCV_SET_ULEB128 and R_RISCV_SUB_ULEB128 relocation pair and fill the space
with a single ULEB128-encoded value. This is achieved by prepending the
redundant 0x80 byte as necessary. The linker must not alter the length of the
ULEB128-encoded value.

8.4.1. Vendor identifiers

Vendor identifiers are dummy symbols used in the corresponding R_RISCV_VENDOR relocation
(irrespective of ELF class/XLEN) and must be unique amongst all vendors providing custom
relocations. Vendor identifiers may be suffixed with a tag to provide extra relocations for a given
vendor.


Please refer to the RISC-V Toolchain Conventions [rv-toolchain-conventions] for the
full list.

8.4.2. Calculation Symbols

Table 14 provides details on the variables used in relocation calculation:

Table 14. Variables used in relocation calculation

Variable Description

A Addend field in the relocation entry associated with the symbol

B Base address of a shared object loaded into memory

G Offset of the symbol into the GOT (Global Offset Table)

GOT Address of the GOT (Global Offset Table)

P Position of the relocation

S Value of the symbol in the symbol table

V Value at the position of the relocation

GP Value of __global_pointer$ symbol

TLSMODULE TLS module index for the object containing the symbol

TLSOFFSET TLS static block offset (relative to tp) for the object containing the symbol

Global Pointer: It is assumed that program startup code will load the value of the
__global_pointer$ symbol into register gp (aka x3).

8.4.3. Field Symbols

Table 15 provides details on the variables used in relocation fields:

Table 15. Variables used in relocation fields

Variable Description

word6 Specifies the 6 least significant bits of a word8 field
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Variable Description

word8 Specifies an 8-bit word

word16 Specifies a 16-bit word

word32 Specifies a 32-bit word

word64 Specifies a 64-bit word

ULEB128 Specifies a variable-length data encoded in ULEB128 format.

wordclass Specifies a word32 field for ILP32 or a word64 field for LP64

B-Type Specifies a field as the immediate field in a B-type instruction

CB-Type Specifies a field as the immediate field in a CB-type instruction

CI-Type Specifies a field as the immediate field in a CI-type instruction

CJ-Type Specifies a field as the immediate field in a CJ-type instruction

I-Type Specifies a field as the immediate field in an I-type instruction

S-Type Specifies a field as the immediate field in an S-type instruction

U-Type Specifies a field as the immediate field in an U-type instruction

J-Type Specifies a field as the immediate field in a J-type instruction

U+I-Type Specifies a field as the immediate fields in a U-type and I-type instruction pair

8.4.4. Constants

Table 16 provides details on the constants used in relocation fields:

Table 16. Constants used in
relocation fields

Name Value

TLS_DTV_OFFSET 0x800

8.4.5. Absolute Addresses

32-bit absolute addresses in position dependent code are loaded with a pair of instructions which
have an associated pair of relocations: R_RISCV_HI20 plus R_RISCV_LO12_I or R_RISCV_LO12_S.

The R_RISCV_HI20 refers to an LUI instruction containing the high 20-bits to be relocated to an
absolute symbol address. The LUI instruction is used in conjunction with one or more I-Type
instructions (add immediate or load) with R_RISCV_LO12_I relocations or S-Type instructions (store)
with R_RISCV_LO12_S relocations. The addresses for pair of relocations are calculated like this:

HI20 (symbol_address + 0x800) >> 12

LO12 symbol_address

The following assembly and relocations show loading an absolute address:
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    lui  a0, %hi(symbol)     # R_RISCV_HI20 (symbol)
    addi a0, a0, %lo(symbol) # R_RISCV_LO12_I (symbol)

A symbol can be loaded in multiple fragments using different addends, where multiple instructions
associated with R_RISCV_LO12_I/R_RISCV_LO12_S share a single R_RISCV_HI20. The HI20 values for the
multiple fragments must be identical, a condition met when the symbol is sufficiently aligned.

    lui a0, 0       # R_RISCV_HI20 (symbol)
    lw a1, 0(a0)    # R_RISCV_LO12_I (symbol)
    lw a2, 0(a0)    # R_RISCV_LO12_I (symbol+4)
    lw a3, 0(a0)    # R_RISCV_LO12_I (symbol+8)
    lw a0, 0(a0)    # R_RISCV_LO12_I (symbol+12)

8.4.6. Global Offset Table

For position independent code in dynamically linked objects, each shared object contains a GOT
(Global Offset Table), which contains addresses of global symbols (objects and functions) referred to
by the dynamically linked shared object. The GOT in each shared library is filled in by the dynamic
linker during program loading, or on the first call to extern functions.

To avoid dynamic relocations within the text segment of position independent code the GOT is used
for indirection. Instead of code loading virtual addresses directly, as can be done in static code,
addresses are loaded from the GOT. This allows runtime binding to external objects and functions
at the expense of a slightly higher runtime overhead for access to extern objects and functions.

8.4.7. Procedure Linkage Table

The PLT (Procedure Linkage Table) exists to allow function calls between dynamically linked
shared objects. Each dynamic object has its own GOT (Global Offset Table) and PLT (Procedure
Linkage Table).

The first entry of a shared object PLT is a special entry that calls _dl_runtime_resolve to resolve the
GOT offset for the called function. The _dl_runtime_resolve function in the dynamic loader resolves
the GOT offsets lazily on the first call to any function, except when LD_BIND_NOW is set in which case
the GOT entries are populated by the dynamic linker before the executable is started. Lazy
resolution of GOT entries is intended to speed up program loading by deferring symbol resolution
to the first time the function is called. The first entry in the PLT occupies two 16 byte entries:

1:  auipc  t2, %pcrel_hi(.got.plt)
    sub    t1, t1, t3               # shifted .got.plt offset + hdr size + 12
    l[w|d] t3, %pcrel_lo(1b)(t2)    # _dl_runtime_resolve
    addi   t1, t1, -(hdr size + 12) # shifted .got.plt offset
    addi   t0, t2, %pcrel_lo(1b)    # &.got.plt
    srli   t1, t1, log2(16/PTRSIZE) # .got.plt offset
    l[w|d] t0, PTRSIZE(t0)          # link map
    jr     t3
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Subsequent function entry stubs in the PLT take up 16 bytes and load a function pointer from the
GOT. On the first call to a function, the entry redirects to the first PLT entry which calls
_dl_runtime_resolve and fills in the GOT entry for subsequent calls to the function:

1:  auipc   t3, %pcrel_hi(function@.got.plt)
    l[w|d]  t3, %pcrel_lo(1b)(t3)
    jalr    t1, t3
    nop

8.4.8. Procedure Calls

R_RISCV_CALL and R_RISCV_CALL_PLT relocations are associated with pairs of instructions (AUIPC+JALR)
generated by the CALL or TAIL pseudoinstructions. Originally, these relocations had slightly different
behavior, but that has turned out to be unnecessary, and they are now interchangeable,
R_RISCV_CALL is deprecated, suggest using R_RISCV_CALL_PLT instead.

With linker relaxation enabled, the AUIPC instruction in the AUIPC+JALR pair has both a R_RISCV_CALL
or R_RISCV_CALL_PLT relocation and an R_RISCV_RELAX relocation indicating the instruction sequence
can be relaxed during linking.

Procedure call linker relaxation allows the AUIPC+JALR pair to be relaxed to the JAL instruction when
the procedure or PLT entry is within (-1MiB to +1MiB-2) of the instruction pair.

The pseudoinstruction:

    call symbol
    call symbol@plt

expands to the following assembly and relocation:

    auipc ra, 0           # R_RISCV_CALL (symbol), R_RISCV_RELAX (symbol)
    jalr  ra, ra, 0

and when symbol has an @plt suffix it expands to:

    auipc ra, 0           # R_RISCV_CALL_PLT (symbol), R_RISCV_RELAX (symbol)
    jalr  ra, ra, 0

8.4.9. PC-Relative Jumps and Branches

Unconditional jump (J-Type) instructions have a R_RISCV_JAL relocation that can represent an even
signed 21-bit offset (-1MiB to +1MiB-2).

Branch (SB-Type) instructions have a R_RISCV_BRANCH relocation that can represent an even signed
13-bit offset (-4096 to +4094).
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8.4.10. PC-Relative Symbol Addresses

32-bit PC-relative relocations for symbol addresses on sequences of instructions such as the
AUIPC+ADDI instruction pair expanded from the la pseudoinstruction, in position independent code
typically have an associated pair of relocations: R_RISCV_PCREL_HI20 plus R_RISCV_PCREL_LO12_I or
R_RISCV_PCREL_LO12_S.

The R_RISCV_PCREL_HI20 relocation refers to an AUIPC instruction containing the high 20-bits to be
relocated to a symbol relative to the program counter address of the AUIPC instruction. The AUIPC
instruction is used in conjunction with one or more I-Type instructions (add immediate or load)
with R_RISCV_PCREL_LO12_I relocations or S-Type instructions (store) with R_RISCV_PCREL_LO12_S
relocations.

The R_RISCV_PCREL_LO12_I or R_RISCV_PCREL_LO12_S relocations contain a label pointing to an
instruction in the same section with an R_RISCV_PCREL_HI20 relocation entry that points to the target
symbol:

• At label: R_RISCV_PCREL_HI20 relocation entry → symbol

• R_RISCV_PCREL_LO12_I relocation entry → label

To get the symbol address to perform the calculation to fill the 12-bit immediate on the add, load or
store instruction the linker finds the R_RISCV_PCREL_HI20 relocation entry associated with the AUIPC
instruction. The addresses for pair of relocations are calculated like this:

HI20 (symbol_address - hi20_reloc_offset + 0x800) >> 12

LO12 symbol_address - hi20_reloc_offset

The successive instruction has a signed 12-bit immediate so the value of the preceding high 20-bit
relocation may have 1 added to it.

Note the compiler emitted instructions for PC-relative symbol addresses are not necessarily
sequential or in pairs. There is a constraint is that the instruction with the R_RISCV_PCREL_LO12_I or
R_RISCV_PCREL_LO12_S relocation label points to a valid HI20 PC-relative relocation pointing to the
symbol.

Here is example assembler showing the relocation types:

label:
    auipc t0, %pcrel_hi(symbol)   # R_RISCV_PCREL_HI20 (symbol)
    lui t1, 1
    lw t2, t0, %pcrel_lo(label)   # R_RISCV_PCREL_LO12_I (label)
    add t2, t2, t1
    sw t2, t0, %pcrel_lo(label)   # R_RISCV_PCREL_LO12_S (label)

8.4.11. Relocation for Alignment

The relocation type R_RISCV_ALIGN marks a location that must be aligned to N-bytes, where N is the
smallest power of two that is greater than the value of the addend field, e.g. R_RISCV_ALIGN with
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addend value 2 means align to 4 bytes, R_RISCV_ALIGN with addend value 4 means align to 8 bytes;
this relocation is only required if the containing section has any R_RISCV_RELAX relocations,
R_RISCV_ALIGN points to the beginning of the padding bytes, and the instruction that actually needs
to be aligned is located at the point of R_RISCV_ALIGN plus its addend.

To ensure the linker can always satisfy the required alignment solely by deleting bytes, the
compiler or assembler must emit a R_RISCV_ALIGN relocation and then insert N - [IALIGN] padding
bytes before the location where we need to align, it could be mark by an alignment directive like
.align, .p2align or .balign or emit by compiler directly, the addend value of that relocation is the
number of padding bytes.

The compiler and assembler must ensure padding bytes are valid instructions without any side-
effect like nop or c.nop, and make sure those instructions are aligned to IALIGN if possible.

The linker may remove part of the padding bytes at the linking process to meet the alignment
requirement, and must make sure those padding bytes still are valid instructions and each
instruction is aligned to at least IALIGN byte.

Here is example to showing how R_RISCV_ALIGN is used:

0x0    c.nop           # R_RISCV_ALIGN with addend 2
0x2    add t1, t2, t3  # This instruction must align to 4 byte.


R_RISCV_ALIGN relocation is needed because linker relaxation can shrink preceding
code during the linking process, which may cause an aligned location to become
mis-aligned.



IALIGN means the instruction-address alignment constraint. IALIGN is 4 bytes in
the base ISA, but some ISA extensions, including the compressed ISA extension,
relax IALIGN to 2 bytes. IALIGN may not take on any value other than 4 or 2. This
term is also defined in The RISC-V Instruction Set Manual with a similar meaning,
the only difference being it is specified in terms of the number of bits instead of
the number of bytes.

 Here is pseudocode to decide the alignment of R_RISCV_ALIGN relocation:

# input:
#   addend: addend value of relocation with R_RISCV_ALIGN type.
# output:
#   Alignment of this relocation.

def align(addend):
  ALIGN = 1
  while addend >= ALIGN:
    ALIGN *= 2
  return ALIGN
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8.5. Thread Local Storage
RISC-V adopts the ELF Thread Local Storage Model in which ELF objects define .tbss and .tdata
sections and PT_TLS program headers that contain the TLS "initialization images" for new threads.
The .tbss and .tdata sections are not referenced directly like regular segments, rather they are
copied or allocated to the thread local storage space of newly created threads. See ELF Handling For
Thread-Local Storage [tls].

In The ELF Thread Local Storage Model, TLS offsets are used instead of pointers. The ELF TLS
sections are initialization images for the thread local variables of each new thread. A TLS offset
defines an offset into the dynamic thread vector which is pointed to by the TCB (Thread Control
Block). RISC-V uses Variant I as described by the ELF TLS specification, with tp containing the
address one past the end of the TCB.

There are various thread local storage models for statically allocated or dynamically allocated
thread local storage. Table 17 lists the thread local storage models:

Table 17. TLS models

Mnemonic Model

TLS LE Local Exec

TLS IE Initial Exec

TLS LD Local Dynamic

TLS GD Global Dynamic

The program linker in the case of static TLS or the dynamic linker in the case of dynamic TLS
allocate TLS offsets for storage of thread local variables.

 Global Dynamic model is also known as General Dynamic model.

8.5.1. Local Exec

Local exec is a form of static thread local storage. This model is used when static linking as the TLS
offsets are resolved during program linking.

Variable attribute

__thread int i __attribute__((tls_model("local-exec")));

Example assembler load and store of a thread local variable i using the %tprel_hi, %tprel_add and
%tprel_lo assembler functions. The emitted relocations are in comments.

    lui  a5,%tprel_hi(i)           # R_RISCV_TPREL_HI20 (symbol)
    add  a5,a5,tp,%tprel_add(i)    # R_RISCV_TPREL_ADD (symbol)
    lw   t0,%tprel_lo(i)(a5)       # R_RISCV_TPREL_LO12_I (symbol)
    addi t0,t0,1
    sw   t0,%tprel_lo(i)(a5)       # R_RISCV_TPREL_LO12_S (symbol)
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The %tprel_add assembler function does not return a value and is used purely to associate the
R_RISCV_TPREL_ADD relocation with the add instruction.

8.5.2. Initial Exec

Initial exec is is a form of static thread local storage that can be used in shared libraries that use
thread local storage. TLS relocations are performed at load time. dlopen calls to libraries that use
thread local storage may fail when using the initial exec thread local storage model as TLS offsets
must all be resolved at load time. This model uses the GOT to resolve TLS offsets.

Variable attribute

__thread int i __attribute__((tls_model("initial-exec")));

ELF flags

DF_STATIC_TLS

Example assembler load and store of a thread local variable i using the la.tls.ie
pseudoinstruction, with the emitted TLS relocations in comments:

    la.tls.ie a5,i
    add  a5,a5,tp
    lw   t0,0(a5)
    addi t0,t0,1
    sw   t0,0(a5)

The assembler pseudoinstruction:

    la.tls.ie a5,symbol

expands to the following assembly instructions and relocations:

label:
    auipc a5, 0                   # R_RISCV_TLS_GOT_HI20 (symbol)
    {ld,lw} a5, 0(a5)             # R_RISCV_PCREL_LO12_I (label)

8.5.3. Global Dynamic

RISC-V local dynamic and global dynamic TLS models generate equivalent object code. The Global
dynamic thread local storage model is used for PIC Shared libraries and handles the case where
more than one library uses thread local variables, and additionally allows libraries to be loaded
and unloaded at runtime using dlopen. In the global dynamic model, application code calls the
dynamic linker function __tls_get_addr to locate TLS offsets into the dynamic thread vector at
runtime.

Variable attribute

__thread int i __attribute__((tls_model("global-dynamic")));
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Example assembler load and store of a thread local variable i using the la.tls.gd
pseudoinstruction, with the emitted TLS relocations in comments:

    la.tls.gd a0,i
    call  __tls_get_addr@plt
    mv   a5,a0
    lw   t0,0(a5)
    addi t0,t0,1
    sw   t0,0(a5)

The assembler pseudoinstruction:

    la.tls.gd a0,symbol

expands to the following assembly instructions and relocations:

label:
    auipc a0,0                    # R_RISCV_TLS_GD_HI20 (symbol)
    addi  a0,a0,0                 # R_RISCV_PCREL_LO12_I (label)

In the Global Dynamic model, the runtime library provides the __tls_get_addr function:

extern void *__tls_get_addr (tls_index *ti);

where the type tls_index is defined as:

typedef struct
{
  unsigned long int ti_module;
  unsigned long int ti_offset;
} tls_index;

8.5.4. TLS Descriptors

TLS Descriptors (TLSDESC) are an alternative implementation of the Global Dynamic model that
allows the dynamic linker to achieve performance close to that of Initial Exec when the library was
not loaded dynamically with dlopen.

The linker reserves a consecutive pair of pointer-sized entry in the GOT for each TLSDESC relocation.
At runtime, the dynamic linker fills in the TLS descriptor entry as defined below:

typedef struct
{
  unsigned long (*entry)(tls_descriptor *);

62



  unsigned long arg;
} tls_descriptor;

Upon accessing the thread local variable, the entry function is called with the address of
tls_descriptor containing it, returning <address of thread local variable> - tp.

The TLS descriptor entry is called with a special calling convention, specified as follows:

• a0 is used to pass the argument and return value.

• t0 is used as the link register.

• Any other registers are callee-saved. This includes any vector registers when the vector
extension is supported.

Example assembler load and store of a thread local variable i using the %tlsdesc_hi,
%tlsdesc_load_lo, %tlsdesc_add_lo and %tlsdesc_call assembler functions. The emitted relocations
are in the comments.

label:
    auipc tX, %tlsdesc_hi(symbol)         // R_RISCV_TLSDESC_HI20 (symbol)
    lw    tY, tX, %tlsdesc_load_lo(label) // R_RISCV_TLSDESC_LOAD_LO12 (label)
    addi  a0, tX, %tlsdesc_add_lo(label)  // R_RISCV_TLSDESC_ADD_LO12 (label)
    jalr  t0, tY, %tlsdesc_call(label)    // R_RISCV_TLSDESC_CALL (label)

tX and tY in the example may be replaced with any combination of two general purpose registers.

The %tlsdesc_call assembler function does not return a value and is used purely to associate the
R_RISCV_TLSDESC_CALL relocation with the jalr instruction.

The linker can use the relocations to recognize the sequence and to perform relaxations. To ensure
correctness, only the following changes to the sequence are allowed:

• Instructions outside the sequence that do not clobber the registers used within the sequence
may be inserted in-between the instructions of the sequence (known as instruction scheduling).

• Instructions in the sequence with no data dependency may be reordered. In the preceding
example, the only instructions that can be reordered are lw and addi.

8.6. Sections

8.6.1. Section Types

The defined processor-specific section types are listed in Table 18.

Table 18. RISC-V-specific section types

Name Value Attribute
s

SHT_RISCV_ATTRIBUTES 0x70000003 none
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8.6.2. Special Sections

Table 19 lists the special sections defined by this ABI.

Table 19. RISC-V-specific sections

Name Type Attributes

.riscv.attributes SHT_RISCV_ATTRIBUTES none

.riscv.jvt SHT_PROGBITS SHF_ALLOC +
SHF_EXECINSTR

.note.gnu.property SHT_NOTE SHF_ALLOC

.riscv.attributes names a section that contains RISC-V ELF attributes.

.riscv.jvt is a linker-created section to store table jump target addresses. The minimum alignment of
this section is 64 bytes.

.note.gnu.property names a section that contains a program property note.

8.7. Program Header Table
The defined processor-specific segment types are listed in Table 20.

Table 20. RISC-V-specific segment types

Name Value Meaning

PT_RISCV_ATTRIBUTES 0x70000003 RISC-V ELF attribute section.

PT_RISCV_ATTRIBUTES describes the location of RISC-V ELF attribute section.


PT_RISCV_ATTRIBUTES is deprecated. The build attributes section does not contain
the SHF_ALLOC flag. Dynamic loaders cannot assume that the region described by
PT_RISCV_ATTRIBUTES is present.

8.8. Note Sections
There are no RISC-V specific definitions relating to ELF note sections.

8.9. Dynamic Section
The defined processor-specific dynamic array tags are listed in Table 21.

Table 21. RISC-V-specific dynamic array tags

Name Value d_un Executable Shared Object

DT_RISCV_VARIANT_CC 0x70000001 d_val Platform specific Platform specific

An object must have the dynamic tag DT_RISCV_VARIANT_CC if it has one or more R_RISCV_JUMP_SLOT
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relocations against symbols with the STO_RISCV_VARIANT_CC attribute.

DT_INIT and DT_FINI are not required to be supported and should be avoided in favour of
DT_PREINIT_ARRAY, DT_INIT_ARRAY and DT_FINI_ARRAY.

8.10. Hash Table
There are no RISC-V specific definitions relating to ELF hash tables.

8.11. Attributes
Attributes are used to record information about an object file/binary that a linker or runtime loader
needs to check compatibility.

Attributes are encoded in a vendor-specific section of type SHT_RISCV_ATTRIBUTES and name
.riscv.attributes. The value of an attribute can hold an integer encoded in the uleb128 format or a
null-terminated byte string (NTBS). The tag number is also encoded as uleb128.

In order to improve the compatibility of the tool, the attribute follows below rules:

• RISC-V attributes have a string value if the tag number is odd and an integer value if the tag
number is even.

• The tag is mandatory; If the tool does not recognize this attribute and the tag number modulo
128 is less than 64 ((N % 128) < 64), errors should be reported.

• The tag is optional; If the tool does not recognize this attribute and the tag number modulo 128
is greater than or equal to 64 ((N % 128) >= 64), the tag can be ignored.

8.11.1. Layout of .riscv.attributes section

The attributes section start with a format-version (uint8 = 'A') followed by vendor specific sub-
section(s). A sub-section starts with sub-section length (uint32), vendor name (NTBS) and one or
more sub-sub-section(s).

A sub-sub-section consists of a tag (uleb128), sub-sub-section length (uint32) followed by actual
attribute tag,value pair(s) as specified above. Sub-sub-section Tag Tag_file (value 1) specifies that
contained attibutes relate to whole file.

A sub-section with name "riscv\0" is mandatory. Vendor specific sub-sections are allowed in future.
Vendor names starting with "[Aa]non" are reserved for non-standard ABI extensions.

8.11.2. List of attributes

Table 22. RISC-V attributes

Tag Value Parameter
type

Description

Tag_RISCV_stack_align 4 uleb128 Indicates the stack alignment
requirement in bytes.
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Tag Value Parameter
type

Description

Tag_RISCV_arch 5 NTBS Indicates the target architecture of
this object.

Tag_RISCV_unaligned_access 6 uleb128 Indicates whether to impose
unaligned memory accesses in code
generation.

Tag_RISCV_priv_spec 8 uleb128 Deprecated, indicates the major
version of the privileged
specification.

Tag_RISCV_priv_spec_minor 10 uleb128 Deprecated, indicates the minor
version of the privileged
specification.

Tag_RISCV_priv_spec_revisio
n

12 uleb128 Deprecated, indicates the revision
version of the privileged
specification.

Tag_RISCV_atomic_abi 14 uleb128 Indicates which version of the
atomics ABI is being used.

Tag_RISCV_x3_reg_usage 16 uleb128 Indicates the usage definition of the
X3 register.

Reserved for non-standard
attribute

>= 32768 - -

8.11.3. Detailed attribute description

How does this specification describe public attributes?

Each attribute is described in the following structure: <Tag name>, <Value>, <Parameter type
1>=<Parameter name 1>[, <Parameter type 2>=<Parameter name 2>]

Tag_RISCV_stack_align, 4, uleb128=value

Tag_RISCV_stack_align records the N-byte stack alignment for this object. The default value is 16 for
RV32I or RV64I, and 4 for RV32E.

Merge Policy

The linker should report erros if link object files with different Tag_RISCV_stack_align values.

Tag_RISCV_arch, 5, NTBS=subarch

Tag_RISCV_arch contains a string for the target architecture taken from the option -march. Different
architectures will be integrated into a superset when object files are merged.

Tag_RISCV_arch should be recorded in lowercase, and all extensions should be separated by
underline(_).
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Note that the version information for target architecture must be presented explicitly in the
attribute and abbreviations must be expanded. The version information, if not given by -march,
must agree with the default specified by the tool. For example, the architecture rv32i has to be
recorded in the attribute as rv32i2p1 in which 2p1 stands for the default version of its based ISA. On
the other hand, the architecture rv32g has to be presented as
rv32i2p1_m2p0_a2p1_f2p2_d2p2_zicsr2p0_zifencei2p0 in which the abbreviation g is expanded to the
imafd_zicsr_zifencei combination with default versions of the standard extensions.

The toolchain should normalize the architecture string by expanding all required extensions and
placing them in canonical order which is defined in The RISC-V Instruction Set Manual, Volume I:
User-Level ISA, Document [riscv-unpriv] . Shorthand extensions should be expanded into the
architecture string if all expanded extensions are included in the architecture string.



A shorthand extension is an extension that does not define any actual instructions,
registers or behavior, but requires other extensions, such as the zks cryptography
extension. zks extension is shorthand for zbkb, zbkc, zbkx, zksed and zksh, so the
toolchain should normalize rv32i_zbkb_zbkc_zbkx_zksed_zksh to
rv32i_zbkb_zbkc_zbkx_zks_zksed_zksh; g is an exception and does not follow this
rule.

Merge Policy

The linker should merge the different architectures into a superset when object files are merged,
and should report errors if the merge result contains conflict extensions.

This specification does not mandate rules on how to merge ISA strings that refer to different
versions of the same ISA extension. The suggested merge rules are as follows:

• Merge versions into the latest version of all input versions that are ratified without warning
or error.

• The linker should emit a warning or error if input versions have different versions and any
extension versions are not ratified.

• The linker may report a warning or error if it detects incompatible versions, even if it’s
ratified.


Example of conflicting merge result: RV32IF and RV32IZfinx will be merged into
RV32IFZfinx, which is an invalid architecture since F and Zfinx conflict.

Tag_RISCV_unaligned_access, 6, uleb128=value

Tag_RISCV_unaligned_access denotes the code generation policy for this object file. Its values are
defined as follows:

0 This object does not perform any unaligned memory accesses.

1 This object may perform unaligned memory accesses.

Merge policy

Input file could have different values for the Tag_RISCV_unaligned_access; the linker should set
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this field into 1 if any of the input objects has been set.

Tag_RISCV_priv_spec, 8, uleb128=version

Tag_RISCV_priv_spec_minor, 10, uleb128=version

Tag_RISCV_priv_spec_revision, 12, uleb128=version


Those three attributes are deprecated since RISC-V using extensions with version
rather than a single privileged specification version scheme for privileged ISA.

Tag_RISCV_priv_spec contains the major/minor/revision version information of the privileged
specification.

Merge policy

The linker should report errors if object files of different privileged specification versions are
merged.

Tag_RISCV_atomic_abi, 14, uleb128=version

Tag_RISCV_atomic_abi denotes the atomic ABI used within this object file. Its values are defined as
follows:

Value Symbolic Name Description

0 UNKNOWN This object uses unknown atomic ABI.

1 A6C This object uses the A6 classical atomic ABI, which is defined
in table A.6 in [riscv-unpriv-20191213].

2 A6S This object uses the strengthened A6 ABI, which uses the
atomic mapping defined by [Mappings from C/C++ primitives
to RISC-V primitives] and does not rely on any note 3
annotated mappings.

3 A7 This object uses the A7 atomic ABI, which uses the atomic
mapping defined by [Mappings from C/C++ primitives to
RISC-V primitives] and may rely on note 3 annotated
mappings.

Merge policy

The linker should report errors if object files with incompatible atomics ABIs are merged; the
compatibility rules for atomic ABIs can be found in the compatibility column in the following
table.

Input Values Compatible? Ouput Value

UNKNOWN and A6C Yes A6C

UNKNOWN and A6S Yes A6S

UNKNOWN and A7 Yes A7
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Input Values Compatible? Ouput Value

A6C and A6S Yes A6C

A6C and A7 No -

A6S and A7 Yes A7

 Merging object files with the same ABI will result in the same ABI.


Programs that implement atomic operations without relying on the A-extension
are classified as UNKNOWN for now. A new value for those may be defined in the
future.

Tag_RISCV_x3_reg_usage, 16, uleb128=value

Tag_RISCV_x3_reg_usage indicates the usage of x3/gp register. x3/gp could be used for global pointer
relaxation, as a reserved platform register, or as a temporary register.

0 This object uses x3 as a fixed register with unknown purpose.

1 This object uses x3 as the global pointer, for relaxation purposes.

2 This object uses x3 as the shadow stack pointer.

3 This object uses X3 as a temporary register.

4~1023 Reserved for future standard defined platform register.

1024~2047 Reserved for nonstandard defined platform register.

Merge policy

The linker should issue errors when object files with differing gp usage are combined. However,
an exception exists: the value 0 can merge with 1 or 2 value. After the merge, the resulting value
will be the non-zero one.

8.12. Program Property
Program properties are used to record information about an object file or binary that a linker or
runtime loader needs to check for compatibility.

The linker should ignore and discard unknown bits in program properties, and issue warnings or
errors.

8.13. Mapping Symbol
The section can have a mixture of code and data or code with different ISAs. A number of symbols,
named mapping symbols, describe the boundaries.

Symbol Name Meaning
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$d Start of a sequence of data.

$d.<any>

$x Start of a sequence of instructions.

$x.<any>

$x<ISA> Start of a sequence of instructions with <ISA> extension.

$x<ISA>.<any>

The mapping symbol should set the type to STT_NOTYPE, binding to STB_LOCAL, and the size of symbol
to zero.

The mapping symbol for data($d) indicates the start of a sequence of data bytes.

The mapping symbol for instruction($x) indicates the start of a sequence of instructions. It has an
optional ISA string that indicates the following code regions are using ISA which is different from
the ISA recorded in the arch attribute. The optional ISA information, when present, will be used
until the next instruction mapping symbol. An instruction mapping symbol without ISA string
means using ISA configuration from ELF attribute. The format and rules of the optional ISA string
are same as Tag_RISCV_arch and must have explicit version. For more detailed rules, please refer to
Section 8.11.

The mapping symbol can be followed by an optional uniquifier, which is prefixed with a dot (.).



The use case for mapping symbol for instruction($x) with ISA information is used
with IFUNC. Consider a scenario where C library is built with rv64gc but few
functions like memcpy may provide two versions, one built with rv64gc and
another built with rv64gcv, and the IFUNC mechanism selects one version of those
at run-time. However, the arch attribute is recorded for the minimal execution
environment requirements, so the ISA information from arch attribute is not
enough for the disassembler to disassemble the rv64gcv version correctly.
Specifying ISA string appropriately with the two memcpy instruction mapping
symbols helps the disassembler to disassemble instructions correctly.
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Chapter 9. Linker Relaxation
At link time, when all the memory objects have been resolved, the code sequence used to refer to
them may be simplified and optimized by the linker by relaxing some assumptions about the
memory layout made at compile time.

Some relocation types, in certain situations, indicate to the linker where this can happen.
Additionally, some relocation types indicate to the linker the associated parts of a code sequence
that can be thusly simplified, rather than to instruct the linker how to apply a relocation.

The linker should only perform such relaxations when a R_RISCV_RELAX relocation is at the same
position as a candidate relocation.

As this transformation may delete bytes (and thus invalidate references that are commonly
resolved at compile-time, such as intra-function jumps), code generators must in general ensure
that relocations are always emitted when relaxation is enabled.

Linkers should adjust relocations that refer to symbols whose addresses have been updated.

ULEB128 value with relocation must be padding to the same length even if the data can be encoded
with a shorter byte sequence after linker relaxation, The linker should report errors if the length of
ULEB128 byte sequence is more extended than the current byte sequence.

9.1. Linker Relaxation Types
The purpose of this section is to describe all types of linker relaxation, the linker may implement a
part of linker relaxation type, and can be skipped the relaxation type is unsupported.

Each candidate relocation might fit more than one relaxation type, the linker should only apply one
relaxation type.

In the linker relaxation optimization, we introduce a concept called relocation group; a relocation
group consists of 1) relocations associated with the same target symbol and can be applied with the
same relaxation, or 2) relocations with the linkage relationship (e.g. R_RISCV_PCREL_LO12_S linked
with a R_RISCV_PCREL_HI20); all relocations in a single group must be present in the same section,
otherwise will split into another relocation group.

Every relocation group must apply the same relaxation type, and the linker should not apply linker
relaxation to only part of the relocation group.



Applying relaxation on the part of the relocation group might result in a wrong
execution result; for example, a relocation group consists of lui t0, 0 #
R_RISCV_HI20 (foo), lw t1, 0(t0) # R_RISCV_LO12_I (foo), and we only apply global
pointer relaxation on first instruction, then remove that instruction, and didn’t
apply relaxation on the second instruction, which made the load instruction
reference to an unspecified address.
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9.1.1. Function Call Relaxation

Target Relocation

R_RISCV_CALL, R_RISCV_CALL_PLT.

Description

This relaxation type can relax AUIPC+JALR into JAL.

Condition

The offset between the location of relocation and target symbol or the PLT stub of the target
symbol is within +-1MiB.

Relaxation

• Instruction sequence associated with R_RISCV_CALL or R_RISCV_CALL_PLT can be rewritten to
a single JAL instruction with the offset between the location of relocation and target
symbol.

Example

Relaxation candidate:

    auipc ra, 0           # R_RISCV_CALL_PLT (symbol), R_RISCV_RELAX
    jalr  ra, ra, 0

Relaxation result:

    jal  ra, 0            # R_RISCV_JAL (symbol)


Using address of PLT stubs of the target symbol or address target symbol directly
will resolve by linker according to the visibility of the target symbol.

9.1.2. Compressed Function Call Relaxation

Target Relocation

R_RISCV_CALL, R_RISCV_CALL_PLT.

Description

This relaxation type can relax AUIPC+JALR into C.JAL instruction sequence.

Condition

The offset between the location of relocation and target symbol or the PLT stub of the target
symbol is within +-2KiB and rd operand of second instruction in the instruction sequence is
X1/RA and if it is RV32.

Relaxation

• Instruction sequence associated with R_RISCV_CALL or R_RISCV_CALL_PLT can be rewritten to
a single C.JAL instruction with the offset between the location of relocation and target
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symbol.

Example

Relaxation candidate:

    auipc ra, 0           # R_RISCV_CALL_PLT (symbol), R_RISCV_RELAX
    jalr  ra, ra, 0

Relaxation result:

    c.jal  ra, <offset-between-pc-and-symbol>

9.1.3. Compressed Tail Call Relaxation

Target Relocation

R_RISCV_CALL, R_RISCV_CALL_PLT.

Description

This relaxation type can relax AUIPC+JALR into C.J instruction sequence.

Condition

The offset between the location of relocation and target symbol or the PLT stub of the target
symbol is within +-2KiB and rd operand of second instruction in the instruction sequence is
X0.

Relaxation

• Instruction sequence associated with R_RISCV_CALL or R_RISCV_CALL_PLT can be rewritten to
a single C.J instruction with the offset between the location of relocation and target
symbol.

Example

Relaxation candidate:

    auipc ra, 0           # R_RISCV_CALL_PLT (symbol), R_RISCV_RELAX
    jalr  x0, ra, 0

Relaxation result:

    c.j  ra, <offset-between-pc-and-symbol>

9.1.4. Global-pointer Relaxation

Target Relocation

R_RISCV_HI20, R_RISCV_LO12_I, R_RISCV_LO12_S, R_RISCV_PCREL_HI20,
R_RISCV_PCREL_LO12_I, R_RISCV_PCREL_LO12_S
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Description

This relaxation type can relax a sequence of the load address of a symbol or load/store with a
symbol reference into global-pointer-relative instruction.

Condition

Global-pointer relaxation requires that Tag_RISCV_x3_reg_usage must be 0 or 1, and offset
between global-pointer and symbol is within +-2KiB, R_RISCV_PCREL_LO12_I and
R_RISCV_PCREL_LO12_S resolved as indirect relocation pointer. It will always point to another
R_RISCV_PCREL_HI20 relocation, the symbol pointed by R_RISCV_PCREL_HI20 will be used in the
offset calculation.

Relaxation

• Instruction associated with R_RISCV_HI20 or R_RISCV_PCREL_HI20 can be removed.

• Instruction associated with R_RISCV_LO12_I, R_RISCV_LO12_S, R_RISCV_PCREL_LO12_I or
R_RISCV_PCREL_LO12_S can be replaced with a global-pointer-relative access instruction.

Example

Relaxation candidate (tX and tY can be any combination of two general purpose registers):

    lui tX, 0       # R_RISCV_HI20 (symbol), R_RISCV_RELAX
    lw tY, 0(tX)    # R_RISCV_LO12_I (symbol), R_RISCV_RELAX

Relaxation result:

    lw tY, <gp-offset-for-symbol>(gp)

A symbol can be loaded in multiple fragments using different addends, where multiple
instructions associated with R_RISCV_LO12_I/R_RISCV_LO12_S share a single R_RISCV_HI20. The HI20
values for the multiple fragments must be identical and all the relaxed global-pointer offsets
must be in range.

Relaxation candidate:

    lui tX, 0       # R_RISCV_HI20 (symbol), R_RISCV_RELAX
    lw tY, 0(tX)    # R_RISCV_LO12_I (symbol), R_RISCV_RELAX
    lw tZ, 0(tX+4)  # R_RISCV_LO12_I (symbol+4), R_RISCV_RELAX
    lw tW, 0(tX+8)  # R_RISCV_LO12_I (symbol+8), R_RISCV_RELAX
    lw tX, 0(tX+12) # R_RISCV_LO12_I (symbol+12), R_RISCV_RELAX

Relaxation result:

    lw tY, <gp-offset-for-symbol>(gp)
    lw tZ, <gp-offset-for-symbol+4>(gp)
    lw tW, <gp-offset-for-symbol+8>(gp)
    lw tX, <gp-offset-for-symbol+12>(gp)

74




The global-pointer refers to the address of the __global_pointer$ symbol, which is
the content of gp register.



This relaxation requires the program to initialize the gp register with the address
of __global_pointer$ symbol before accessing any symbol address, strongly
recommended initialize gp at the beginning of the program entry function like
_start, and code fragments of initialization must disable linker relaxation to
prevent initialization instruction relaxed into a NOP-like instruction (e.g. mv gp,
gp).

    # Recommended way to initialize the gp register.
    .option push
    .option norelax
1:  auipc gp, %pcrel_hi(__global_pointer$)
    addi  gp, gp, %pcrel_lo(1b)
    .option pop



The global pointer is referred to as the global offset table pointer in many other
targets, however, RISC-V uses PC-relative addressing rather than access GOT via
the global pointer register (gp), so we use gp register to optimize code size and
performance of the symbol accessing.

 Tag_RISCV_x3_reg_usage is treated as 0 if it is not present.

9.1.5. GOT load relaxation

Target Relocation

R_RISCV_GOT_HI20, R_RISCV_PCREL_LO12_I

Description

This relaxation can relax a GOT indirection into load immediate or PC-relative addressing. This
relaxation is intended to optimize the lga assembly pseudo-instruction (and thus la for PIC
objects), which loads a symbol’s address from a GOT entry with an auipc + l[w|d] instruction
pair.

Condition

• Both R_RISCV_GOT_HI20 and R_RISCV_PCREL_LO12_I are marked with R_RISCV_RELAX.

• The symbol pointed to by R_RISCV_PCREL_LO12_I is at the location to which R_RISCV_GOT_HI20
refers.

• If the symbol is absolute, its address is within 0x0 ~ 0x7ff or 0xfffffffffffff800 ~
0xffffffffffffffff for RV64 and 0xfffff800 ~ 0xffffffff for RV32. Note that an undefined
weak symbol satisfies this condition because such a symbol is handled as if it were an
absolute symbol at address 0.

• If the symbol is relative, it’s bound at link time to be within the object. It should not be of the
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GNU ifunc type. Additionally, the offset between the location to which R_RISCV_GOT_HI20
refers and the target symbol should be within a range of +-2GiB.

Relaxation

• The auipc instruction associated with R_RISCV_GOT_HI20 can be removed if the symbol is
absolute.

• The instruction or instructions associated with R_RISCV_PCREL_LO12_I can be rewritten to
either c.li or addi to materialize the symbol’s address directly in a register.

• If this relaxation eliminates all references to the symbol’s GOT slot, the linker may opt not to
create a GOT slot for that symbol.

Example

Relaxation candidate:

label:
    auipc   tX, 0      # R_RISCV_GOT_HI20 (symbol), R_RISCV_RELAX
    l[w|d]  tY, 0(tX)  # R_RISCV_PCREL_LO12_I (label), R_RISCV_RELAX

Relaxation result (absolute symbol whose address can be represented as a 6-bit signed integer
and if the RVC instruction is permitted):

    c.li    tY, <symbol-value>

Relaxation result (absolute symbol and did not meet the above condition to use c.li):

    addi    tY, zero, <symbol-value>

Relaxation result (relative symbol):

    auipc   tX, <hi>
    addi    tY, tX, <lo>

9.1.6. Zero-page Relaxation

Target Relocation

R_RISCV_HI20, R_RISCV_LO12_I, R_RISCV_LO12_S

Description

This relaxation type can relax a sequence of the load address of a symbol or load/store with a
symbol reference into shorter instruction sequence if possible.

Condition

The symbol address located within 0x0 ~ 0x7ff or 0xfffffffffffff800 ~ 0xffffffffffffffff for
RV64 and 0xfffff800 ~ 0xffffffff for RV32.
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Relaxation

• Instruction associated with R_RISCV_HI20 can be removed if the symbol address satisfies the
x0-relative access.

• Instruction associated with R_RISCV_LO12_I or R_RISCV_LO12_S can be relaxed into x0-relative
access.

Example

Relaxation candidate:

    lui t0, 0       # R_RISCV_HI20 (symbol), R_RISCV_RELAX
    lw t1, 0(t0)    # R_RISCV_LO12_I (symbol), R_RISCV_RELAX

Relaxation result:

    lw t1, <address-of-symbol>(x0)

9.1.7. Compressed LUI Relaxation

Target Relocation

R_RISCV_HI20, R_RISCV_LO12_I, R_RISCV_LO12_S

Description

This relaxation type can relax a sequence of the load address of a symbol or load/store with a
symbol reference into shorter instruction sequence if possible.

Condition

The symbol address can be presented by a C.LUI plus an ADDI or load / store instruction.

Relaxation

• Instruction associated with R_RISCV_HI20 can be replaced with C.LUI.

• Instruction associated with R_RISCV_LO12_I or R_RISCV_LO12_S should keep unchanged.

Example

Relaxation candidate:

    lui t0, 0       # R_RISCV_HI20 (symbol), R_RISCV_RELAX
    lw t1, 0(t0)    # R_RISCV_LO12_I (symbol), R_RISCV_RELAX

Relaxation result:

    c.lui t0, <non-zero>  # RVC_LUI (symbol), R_RISCV_RELAX
    lw t1, 0(t0)          # R_RISCV_LO12_I (symbol), R_RISCV_RELAX
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9.1.8. Thread-pointer Relaxation

Target Relocation

R_RISCV_TPREL_HI20, R_RISCV_TPREL_ADD, R_RISCV_TPREL_LO12_I, R_RISCV_TPREL_LO12_S.

Description

This relaxation type can relax a sequence of the load address of a symbol or load/store with a
thread-local symbol reference into a thread-pointer-relative instruction.

Condition

Offset between thread-pointer and thread-local symbol is within +-2KiB.

Relaxation

• Instruction associated with R_RISCV_TPREL_HI20 or R_RISCV_TPREL_ADD can be removed.

• Instruction associated with R_RISCV_TPREL_LO12_I or R_RISCV_TPREL_LO12_S can be replaced
with a thread-pointer-relative access instruction.

Example

Relaxation candidate:

    lui t0, 0       # R_RISCV_TPREL_HI20 (symbol), R_RISCV_RELAX
    add t0, t0, tp  # R_RISCV_TPREL_ADD (symbol), R_RISCV_RELAX
    lw t1, 0(t0)    # R_RISCV_TPREL_LO12_I (symbol), R_RISCV_RELAX

Relaxation result:

    lw t1, <tp-offset-for-symbol>(tp)

9.1.9. TLS Descriptors → Initial Exec Relaxation

Target Relocation

R_RISCV_TLSDESC_HI20, R_RISCV_TLSDESC_LOAD_LO12, R_RISCV_TLSDESC_ADD_LO12,
R_RISCV_TLSDESC_CALL

Description

This relaxation can relax a sequence loading the address of a thread-local symbol reference into
a GOT load instruction.

Condition

• Linker output is an executable.

Relaxation

• Instruction associated with R_RISCV_TLSDESC_HI20 or R_RISCV_TLSDESC_LOAD_LO12 can be
removed.

• Instruction associated with R_RISCV_TLSDESC_ADD_LO12 can be replaced with load of the high
half of the symbol’s GOT address.
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• Instruction associated with R_RISCV_TLSDESC_CALL can be replaced with load of the low half of
the symbol’s GOT address.

Example

Relaxation candidate (tX and tY can be any combination of two general purpose registers):

label:
    auipc tX, <hi>      // R_RISCV_TLSDESC_HI20 (symbol), R_RISCV_RELAX
    lw    tY, tX, <lo>  // R_RISCV_TLSDESC_LOAD_LO12 (label)
    addi  a0, tX, <lo>  // R_RISCV_TLSDESC_ADD_LO12 (label)
    jalr  t0, tY        // R_RISCV_TLSDESC_CALL (label)

Relaxation result:

    auipc   a0, <pcrel-got-offset-for-symbol-hi>
    {ld,lw} a0, <pcrel-got-offset-for-symbol-lo>(a0)

9.1.10. TLS Descriptors → Local Exec Relaxation

Target Relocation

R_RISCV_TLSDESC_HI20, R_RISCV_TLSDESC_LOAD_LO12, R_RISCV_TLSDESC_ADD_LO12,
R_RISCV_TLSDESC_CALL

Description

This relaxation can relax a sequence loading the address of a thread-local symbol reference into
a thread-pointer-relative instruction sequence.

Condition

• Short form only: Offset between thread-pointer and thread-local symbol is within +-2KiB.

• Linker output is an executable.

• Target symbol is non-preemptible.

Relaxation

• Instruction associated with R_RISCV_TLSDESC_HI20 or R_RISCV_TLSDESC_LOAD_LO12 can be
removed.

• Instruction associated with R_RISCV_TLSDESC_ADD_LO12 can be replaced with the high TP-
relative offset of symbol (long form) or be removed (short form).

• Instruction associated with R_RISCV_TLSDESC_CALL can be replaced with the low TP-relative
offset of symbol.

Example

Relaxation candidate (tX and tY can be any combination of two general purpose registers):

label:
    auipc tX, <hi>      // R_RISCV_TLSDESC_HI20 (symbol), R_RISCV_RELAX
    lw    tY, tX, <lo>  // R_RISCV_TLSDESC_LOAD_LO12 (label)

79



    addi  a0, tX, <lo>  // R_RISCV_TLSDESC_ADD_LO12 (label)
    jalr  t0, tY        // R_RISCV_TLSDESC_CALL (label)

Relaxation result (long form):

    lui a0, <tp-offset-for-symbol-hi>
    addi a0, a0, <tp-offset-for-symbol-lo>

Relaxation result (short form):

    addi a0, zero, <tp-offset-for-symbol>

9.1.11. Table Jump Relaxation

Target Relocation

R_RISCV_CALL, R_RISCV_CALL_PLT, R_RISCV_JAL.

Description

This relaxation type can relax a function call or jump instruction into a single table jump
instruction with the index of the target address in table jump section (Table 19). Before
relaxation, the linker scans all relocations and calculates whether additional gains can be
obtained by using table jump instructions, where expected size saving from function-call-
related relaxations and the size of jump table will be taken into account. If there is no
additional gain, then table jump relaxation is ignored. Otherwise, this relaxation is switched
on. Compressed Tail Call Relaxation and Compressed Function Call Relaxation are always
prefered during relaxation, since table jump relaxation has no extra size saving over these
two relaxations and might bring a performance overhead.

Condition

The zcmt extension is required, the linker output is not position-independent and the rd
operand of a function call or jump instruction is X0 or RA.

Relaxation

• Instruction sequence associated with R_RISCV_CALL or R_RISCV_CALL_PLT can be rewritten to
a table jump instruction.

• Instruction associated with R_RISCV_JAL can be rewritten to a table jump instruction.

Example

Relaxation candidate:

    auipc ra, 0           # R_RISCV_CALL (symbol), R_RISCV_RELAX (symbol)
    jalr  ra, ra, 0

    auipc ra, 0           # R_RISCV_CALL_PLT (symbol), R_RISCV_RELAX (symbol)
    jalr  x0, ra, 0
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    jal ra, 0             # R_RISCV_JAL (symbol), R_RISCV_RELAX (symbol)

    jal x0, 0             # R_RISCV_JAL (symbol), R_RISCV_RELAX (symbol)

Relaxation result:

    cm.jalt  <index-for-symbol>

    cm.jt    <index-for-symbol>

    cm.jalt  <index-for-symbol>

 The zcmt extension cannot be used in position-independent binaries.



Jump or call instructions with the rd operand RA will be relaxed into cm.jalt and
instructions with the rd operand X0 will be relaxed into cm.jt. The table jump
section holds target addresses for these two instructions separately. More details
are available in the ZC* extension specification [riscv-zc-extension-group].


This relaxation requires programs to initialize the jvt CSR with the address of the
__jvt_base$ symbol before executing table jump instructions. It is recommended to
initialize jvt CSR immediately after global pointer initialization.

    # Recommended way to initialize the jvt CSR.
1:  auipc a0, %pcrel_hi(__jvt_base$)
    addi  a0, a0, %pcrel_lo(1b)
    csrw  jvt, a0
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RISC-V DWARF Specification
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Chapter 10. DWARF Debugging Format
The DWARF debugging format for RISC-V follows the standard DWARF specification; this
specification only describes RISC-V-specific definitions.
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Chapter 11. DWARF Register Numbers
The table below lists the mapping from DWARF register numbers to machine registers.

Table 23. DWARF register number encodings

DWARF Number Register Name Description

0 - 31 x0 - x31 Integer Registers

32 - 63 f0 - f31 Floating-point Registers

64 Alternate Frame Return Column

65 - 95 Reserved for future standard
extensions

96 - 127 v0 - v31 Vector Registers

128 - 3071 Reserved for future standard
extensions

3072 - 4095 Reserved for custom extensions

4096 - 8191 CSRs

The alternate frame return column is meant to be used when unwinding from signal handlers, and
stores the address where the signal handler will return to.

The RISC-V specification defines a total of 4096 CSRs (see [riscv-priv]). Each CSR is assigned a
DWARF register number corresponding to its specified CSR number plus 4096.
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RISC-V Run-time ABI Specification
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Chapter 12. Run-time ABI
This document defines the run-time helper function ABI for RISC-V, which includes compiler helper
functions, but does not cover the language standard library functions.
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RISC-V Atomics ABI Specification
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Chapter 13. RISC-V atomics mappings
This specifies mappings of C and C++ atomic operations to RISC-V machine instructions. Other
languages, for example Java, provide similar facilities that should be implemented in a consistent
manner, usually by applying the mapping for the corresponding C++ primitive.



Because different programming languages may be used within the same process,
these mappings must be compatible across programming languages. For example,
Java programmers expect memory ordering guarantees to be enforced even if
some of the actual memory accesses are performed by a library written in C.



Though many mappings are possible, not all of them will interoperate correctly. In
particular, many mapping combinations will not correctly enforce ordering 
between a C++ memory_order_seq_cst store and a subsequent memory_order_seq_cst
load.



These mappings are very similar to those that originally appeared in the appendix
of the RISC-V "unprivileged" architecture specification as "Mappings from C/C++
primitives to RISC-V Primitives", which we will refer to by their 2019 historical
label of "Table A.6". That mapping may be used, except that
atomic_store(memory_order_seq_cst) must have an an extra trailing fence for
compatibility with the "Hypothetical mappings …" table in the same section, which
we similarly refer to as "Table A.7". As a result, we allow the "Table A.7" mappings
as well.



Our primary design goal is to maximize performance of the "Table A.7" mappings.
These require additional load-acquire and store-release instructions, and are this
not immediately usable. By requiring the extra store fence. or equivalent, we avoid
an ABI break when moving to the "Table A.7" mappings in the future, in return for
a small performance penalty in the short term.

For each construct, we provide a mapping that assumes only the A extension. In some cases, we
provide additional mappings that assume a future load-acquire and store-release extension, as
denoted by note 1 in the table.

All mappings interoperate correctly, and with the original "Table A.6" mappings, except that
mappings marked with note 3 do not interoperate with the original "Table A.6" mappings.

We present the mappings as a table in 3 sections. The first deals with translations for loads, stores,
and fences. The next two sections address mappings for read-modify-write operations like
fetch_add, and exchange. The second section deals with operations that have direct amo instruction
equivalents in the RISC-V A extension. The final section deals with other read-modify-write
operations that require the lr and sc instructions.

Table 24. Mappings from C/C++ primitives to RISC-V primitives
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C/C++ Construct RVWMO Mapping Notes

Non-atomic load l{b|h|w|d}

atomic_load(memory_order_relaxed) l{b|h|w|d}

atomic_load(memory_order_acquire) l{b|h|w|d}; fence r,rw

atomic_load(memory_order_acquire) <RCsc atomic load-acquire> 1, 2

atomic_load(memory_order_seq_cst) fence rw,rw; l{b|h|w|d}; fence r,rw

atomic_load(memory_order_seq_cst) <RCsc atomic load-acquire> 1, 3

Non-atomic store s{b|h|w|d}

atomic_store(memory_order_relaxed) s{b|h|w|d}

atomic_store(memory_order_release) fence rw,w; s{b|h|w|d}

atomic_store(memory_order_release) <RCsc atomic store-release> 1, 2

atomic_store(memory_order_seq_cst) fence rw,w; s{b|h|w|d}; fence rw,rw;

atomic_store(memory_order_seq_cst) amoswap.rl{w|d}; 4

atomic_store(memory_order_seq_cst) <RCsc atomic store-release> 1

atomic_thread_fence(memory_order_acquire) fence r,rw

atomic_thread_fence(memory_order_release) fence rw,w

atomic_thread_fence(memory_order_acq_rel) fence.tso

atomic_thread_fence(memory_order_seq_cst) fence rw,rw

C/C++ Construct RVWMO AMO Mapping Notes

atomic_<op>(memory_order_relaxed) amo<op>.{w|d} 4

atomic_<op>(memory_order_acquire) amo<op>.{w|d}.aq 4

atomic_<op>(memory_order_release) amo<op>.{w|d}.rl 4

atomic_<op>(memory_order_acq_rel) amo<op>.{w|d}.aqrl 4

atomic_<op>(memory_order_seq_cst) amo<op>.{w|d}.aqrl 4, 5

C/C++ Construct RVWMO LR/SC Mapping Notes

atomic_<op>(memory_order_relaxed) loop:lr.{w|d}; <op>; sc.{w|d}; bnez loop 4

atomic_<op>(memory_order_acquire) loop:lr.{w|d}.aq; <op>; sc.{w|d}; bnez loop 4

atomic_<op>(memory_order_release) loop:lr.{w|d}; <op>; sc.{w|d}.rl; bnez loop 4

atomic_<op>(memory_order_acq_rel) loop:lr.{w|d}.aq; <op>; sc.{w|d}.rl; bnez loop 4

atomic_<op>(memory_order_seq_cst) loop:lr.{w|d}.aqrl; <op>; sc.{w|d}.rl; bnez loop 4

atomic_<op>(memory_order_seq_cst) loop:lr.{w|d}.aq; <op>; sc.{w|d}.rl; bnez loop 3, 4

13.1. Meaning of notes in table
1) Depends on a load instruction with an RCsc acquire annotation, or a store instruction with an
RCsc release annotation. These are currently under discussion, but the specification has not yet
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been approved.

2) An RCpc load or store would also suffice, if it were to be introduced in the future.

3) Incompatible with the original "Table A.6" mapping. Do not combine these mappings with code
generated by a compiler using those older mappings. (This was mostly used by the initial LLVM
implementations for RISC-V.)

4) Currently only directly possible for 32- and 64-bit operands.

5) atomic_compare_exchange operations with a memory_order_seq_cst failure ordering are
considered to have a note 3 annotation. To remove the note 3 annotation the amocas operation
must be prepended with a leading fence (fence rw,rw; amocas.{w\|d}.aqrl).
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Chapter 14. Ztso atomics mappings
This specifies additional mappings of C and C++ atomic operations to RISC-V machine instructions.

For each construct, we provide a mapping that assumes only the A and Ztso extension.

All mappings interoperate correctly with the RVWMO mappings, and with the original "Table A.6"
mappings, except that mappings marked with note 3 do not interoperate with the original "Table
A.6" mappings.

We present the mappings as a table in 3 sections, as above.

Table 25. Mappings with Ztso extension from C/C++ primitives to RISC-V primitives

C/C++ Construct Ztso Mapping Notes

atomic_load(memory_order_acquire) l{b|h|w|d} 6

atomic_load(memory_order_seq_cst) fence rw,rw; l{b|h|w|d} 6

atomic_store(memory_order_release) s{b|h|w|d} 6

atomic_store(memory_order_seq_cst) s{b|h|w|d}; fence rw, rw 6

atomic_thread_fence(memory_order_acquire) nop 6

atomic_thread_fence(memory_order_release) nop 6

atomic_thread_fence(memory_order_acq_rel) nop 6

C/C++ Construct Ztso AMO Mapping Notes

atomic_<op>(memory_order_acquire) amo<op>.{w|d} 4, 6

atomic_<op>(memory_order_release) amo<op>.{w|d} 4, 6

atomic_<op>(memory_order_acq_rel) amo<op>.{w|d} 4, 6

atomic_<op>(memory_order_seq_cst) amo<op>.{w|d} 4, 5, 6

C/C++ Construct Ztso LR/SC Mapping Notes

atomic_<op>(memory_order_acquire) loop:lr.{w|d}; <op>; sc.{w|d}; bnez loop 4, 6

atomic_<op>(memory_order_release) loop:lr.{w|d}; <op>; sc.{w|d}; bnez loop 4, 6

atomic_<op>(memory_order_acq_rel) loop:lr.{w|d}; <op>; sc.{w|d}; bnez loop 4, 6

14.1. Meaning of notes in table
3) Incompatible with the original "Table A.6" mapping. Do not combine these mappings with code
generated by a compiler using those older mappings. (This was mostly used by the initial LLVM
implementations for RISC-V.)

4) Currently only directly possible for 32- and 64-bit operands.

5) atomic_compare_exchange operations with a memory_order_seq_cst failure ordering are
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considered to have a note 3 annotation. To remove the note 3 annotation the amocas operation
must be prepended with a leading fence (fence rw,rw; amocas.{w\|d}).

6) Requires the Ztso extension.
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Chapter 15. Other conventions
It is expected that the RVWMO and Ztso AMO Mappings will be used for atomic read-modify-write
operations that are directly supported by corresponding AMO instructions, and that LR/SC
mappings will be used for the remainder, currently including compare-exchange operations.
Compare-exchange LR/SC sequences on the containing 32-bit word should be used for shorter
operands. Thus, a fetch_add operation on a 16-bit quantity would use a 32-bit LR/SC sequence.

It is acceptable, but usually undesirable for performance reasons, to use LR/SC mappings where an
AMO mapping would suffice.

Atomics do not imply any ordering for IO operations. IO operations should include sufficient fences
to prevent them from being visibly reordered with atomic operations.

Float and double atomic loads and stores should be implemented using the integer sequences.

Float and double read-modify-write instructions should consist of a loop performing an initial plain
load of the value, followed by the floating point computation, followed by an integer compare-and-
swap sequence to try to store back the updated value. This avoids floating point instructions
between LR and SC instructions. Depending on language requirements, it may be necessary to save
and restore floating-point exception flags in the case of an operation that is later redone due to a
failed SC operation.



The "Eventual Success of Store-Conditional Instructions" section in the ISA
specification provides that essential progress guarantee only if there are no
floating point instructions between the LR and matching SC instruction. By
compiling such sequences with an "extra" ordinary load, and performing the
floating point computation before the LR, we preserve the guarantee.
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