ACE 330 Exam 1: Spring 2021
90 minutes J. Schuh, R. Chang, O. Mironenko.

USEFUL INFORMATION

$$
\begin{array}{lll}
\sin (\mathrm{x})=\cos \left(\mathrm{x}-90^{\circ}\right) & \bar{V}=\bar{Z} \bar{I} \quad \bar{S}=\bar{V} \bar{I}^{*}=P+j Q \quad \bar{S}_{3 \varphi}=\sqrt{3} V_{L} I_{L} \angle \theta \\
0<\theta<180^{\circ}(\mathrm{lag}) & I_{L}=\sqrt{3} I_{\varphi}(\text { delta }) & \bar{Z}_{Y}=\bar{Z}_{\Delta} / 3 \\
-180^{\circ}<\theta<0(\text { lead }) & V_{L}=\sqrt{3} V_{\varphi} \text { (wye) } & \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}
\end{array}
$$

$A B C$ phase sequence has A at $\mathbf{0}, \mathrm{B}$ at $\mathbf{- 1 2 0 ^ { \circ }}$, and C at $\mathbf{+ 1 2 0 ^ { \circ }}$

$$
\begin{array}{llll}
\int \underline{H} \cdot \underline{d l}=\int J_{f} \cdot \hat{n} d A & \int \underline{E} \cdot \underline{d l}=-\frac{d}{d t}\left(\int \underline{B} \cdot \hat{n} d A\right) & \mathcal{R}=\frac{l}{\mu A} & N i=\mathcal{R} \varphi \\
\varphi=B A & \lambda=N \varphi=L i \text { (if linear) } & v=\frac{d \lambda}{d t} & k=\frac{M}{\sqrt{L_{1} L_{2}}}
\end{array}
$$

$$
1 \mathrm{hp}=746 \mathrm{~W}
$$

$v_{1}=L_{1} \frac{d i_{1}}{d t}+M \frac{d i_{2}}{d t}$

$$
a=\frac{N_{1}}{N_{2}} \quad N_{1} i_{1}=N_{2} i_{2}
$$

$$
v_{2}=M \frac{d i_{1}}{d t}+L_{2} \frac{d i_{2}}{d t}
$$

$$
\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}
$$

Problem 1 (25 Points)

a) A single-phase load has a voltage of $157 \cos \left(377 t+15^{\circ}\right)$ Volts with a current into the positive terminal of $12 \sin \left(377 t+70^{\circ}\right)$ Amps. Find the average power absorbed by this load.
b) Two single-phase loads in parallel, 16 kW at 0.8 PF lag and a load with impedance $\mathrm{Z}=20+\mathrm{j} 20 \Omega$, are supplied by a source $\mathrm{V}=100 \angle 0^{\circ} \mathrm{V}$. Find the total current supplied by the source and the combined PF (specify lag or lead).

Problem 2 (25 Points)

The following three-phase balanced loads are connected in parallel across a three - phase wye-connected, 60 Hz source of 4160 V (line to line).

Load 1: 120 kVA at 0.8 PF lag (Wye connected)
Load 2: 180 kW at 0.7 PF lag (Wye connected)
Load 3: 13 Amps phase current, unity power factor (Delta connected)
a) Find the complex power $\mathrm{P}+\mathrm{jQ}$ consumed by each load.
b) Find the total source line current (magnitude)
(1) a)

$$
\begin{aligned}
& v(t)=157 \cos \left(377 t+15^{\circ}\right) \mathrm{V} \\
& \dot{c}(t)=12 \sin \left(377 t+70^{\circ}\right) \mathrm{A}=12 \cos \left(377 t+70^{\circ}-80^{\circ}\right)= \\
& \\
& p-?
\end{aligned}
$$

$$
\begin{aligned}
\bar{V} & =\frac{157}{\sqrt{2}} \angle 15^{\circ}=111 \angle 15^{\circ} \mathrm{V} \\
\bar{T} & =\frac{12}{\sqrt{2}} \angle-20^{\circ} \mathrm{A}=8.5 \angle-20^{\circ} \mathrm{A} \\
P & =\operatorname{Re}\left\{111 \angle 15^{\circ} \cdot 8.5 \angle 20^{\circ}\right\}=\operatorname{Re}\left\{943.5 \angle 35^{\circ}\right\}= \\
& =773 \mathrm{~W}
\end{aligned}
$$

b)

$$
\begin{aligned}
& =773 \mathrm{~W} \\
& \bar{S}_{t}=\bar{V} \cdot \bar{I}^{*} \Rightarrow \bar{I}=\left(\frac{\overline{S t}}{\bar{V}}\right)^{*} \\
& \bar{S}_{t}=\bar{S}_{1}+\bar{S}_{2} \\
& Z=20+j 20=28 \angle 45^{\circ} \Omega \\
& S_{1}=\frac{P}{P F}=\frac{16 \mathrm{k}}{0.8}=20 \mathrm{kVA} \\
& \bar{S}_{2}=\bar{V} \cdot \bar{I}^{*}=\frac{V^{2}}{\bar{Z}^{*}}=\frac{100^{2}}{28 L-45^{\circ}}= \\
& \bar{\Psi}=\frac{\bar{V}}{\xi} \gamma \\
& =0.357 \angle 45^{\circ} \mathrm{KVA} \\
& \theta_{1}=\cos ^{-1}(0.8)=36.9^{\circ} \\
& \bar{S}_{1}=20<36.9^{\circ} \mathrm{kVA} \\
& \bar{S}_{t}=16+j 12+0.252+j 0.25=16.25+j 12.25= \\
& =20: 35 \angle 37^{\circ} \mathrm{kVA} \\
& \bar{I}=\left(\frac{20.35 K \angle 37^{\circ}}{100 \angle 0^{\circ}}\right)^{*}=203.5 \angle-37^{\circ} \mathrm{A} \\
& P F=\cos \left(37^{\circ}\right)=0.8 \mathrm{log} .
\end{aligned}
$$

Q2:

$$
\begin{aligned}
& \text { a) } \bar{S}_{3 p}=\bar{S}_{13 p}+\bar{S}_{33 p}+\bar{S}_{33 p} \\
& \bar{S}_{13 \phi}=120 \angle 369^{\circ} \mathrm{kVA}=96+j 72 \mathrm{kVA} \quad \theta_{1}=\cos ^{-1}(0.8)=36.9^{\circ} \\
& S_{33 \phi}=\frac{p}{p F}=\frac{180}{0.7}=257 \mathrm{kVA} \\
& \theta_{2}=\cos ^{-1}(0.7)=45.5^{\circ} \\
& \bar{S}_{23 \phi}=257 \angle 45.5^{\circ} \mathrm{kVA}=180+j 183 \mathrm{kVA} \\
& \bar{S}_{33 \phi}=3 V \angle I_{\phi} \angle \theta=\theta_{3}=0^{\circ} \\
& =3.4160 \cdot 13 \angle 0^{\circ}=162 \quad \angle 0^{\circ} \mathrm{kVA}=162 \mathrm{kVA} \\
& \bar{S}_{3 \phi}=96+j 72+180+j 103+162= \\
& =438+j 255 \mathrm{kVA}
\end{aligned}
$$

b)

$$
\begin{aligned}
S_{3 \phi} & =\sqrt{3} V_{L} \cdot I_{L} \\
I_{L} & =\frac{S_{3 \phi}}{\sqrt{3} V_{L}}=\frac{507 K}{\sqrt{3} 4160}=70 \mathrm{~A}
\end{aligned}
$$

Problem 3 (25 Points)

An iron core with a depth into the page of 5 cm and permeability $\mu=2500 \mu_{0}$ has a coil with 250 turns wrapped around it as shown. If the air gap $g=10 \mathrm{~mm}$, what is the inductance of the coil? Neglect fringing effects.

An iron core with a depth into the page of 5 cm and permeability $\mu=2500 \mu_{0}$ has a coil with 250 turns wrapped around it as shown. If the air gap $g=10 \mathrm{~mm}$, what is the inductance of the coil?

$$
\begin{aligned}
& R_{1}=\frac{14 \mathrm{~cm}}{250 \mu_{0}\left(40 \mathrm{~cm}^{2}\right)}=1.114 \times 10^{4} \mathrm{At} / \mathrm{\omega l}_{0} \\
& R_{2}=\frac{14 \mathrm{~cm}}{2500 \mu_{0}\left(20 \mathrm{~m}^{2}\right)}=2.228 \times 10^{4} \mathrm{At} / 10 \mathrm{~b} \\
& R_{3}=\frac{22 \mathrm{~cm}}{2500 \mathrm{~m}_{0}\left(20 \mathrm{ca}^{2}\right)}=3.501 \times 10^{4} \mathrm{At} / \mathrm{Wb} \\
& R_{g}=\frac{10 \mathrm{~mm}}{\mu_{0}\left(20 \mathrm{~m}^{2}\right)}=3.979 \times 10^{6} \mathrm{At} / \mathrm{\omega b}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\text {Tot }}=R_{1}+R_{3}+2 R_{2}+2 R_{g} \\
& R_{\text {TOT }}=8.048 \times 10^{6} \mathrm{At} / \mathrm{wb} \\
& \phi=\frac{N i}{R_{\text {ToT }}} \\
& \lambda=N \phi=\frac{N^{2}}{R_{\text {TOT }}} i=L i \\
& L=\frac{N^{2}}{R_{\text {TOT }}} \\
& L=7.765 \mathrm{mH}
\end{aligned}
$$

Problem 4 (25 Points)

You have been hired by a stealth-mode startup to develop a superconducting transformer for a possible mission to Mars.

The transformer is built out of magnetic super alloy, and immersed in a liquid coolant. The super alloy is so magnetically permeable that its permeability is essentially infinite ($\mu_{\mathrm{r}} \rightarrow \infty$) while the coolant is a factor of five times more permeable than vacuum ($\mu_{r}=5$). The two coils are connected to a resonant power converter circuit with the voltage and current labels as shown. The first coil has $\mathrm{N}_{1}=20$ turns while the second coil has $\mathrm{N}_{2}=10$ turns.

a) We computed $\mathrm{Ra}=200 \mathrm{At} / \mathrm{Wb}$ and $\mathrm{Rb}=800 \mathrm{At} / \mathrm{Wb}$ by neglecting the effects of fringing. Use these figures to compute the mutual inductance between the two coils, and state the unit.
b) If we were to account for the effects of fringing in the calculation above, would the mutual inductance increase or decrease? Please explain your reasoning. (Your answer should take into consideration the effects of fringing in both gaps.)
c) Now, we connect the two coils in series, by connecting the negative terminal of the first coil onto the positive terminal of the second coil as shown. What is the combined inductance of this structure? (Neglect fringing and use $\mathrm{Ra}=200 \mathrm{At} / \mathrm{Wb}$ and $\mathrm{Rb}=800 \mathrm{At} / \mathrm{Wb}$.)

d) The purpose of our transformer is to drive a 2Ω load from a source that is connected through a 10Ω wire, as shown below. If $\mathrm{v}(\mathrm{t})=\cos (\mathrm{t}) \mathrm{V}$ and we model the transformer as ideal, what is the average power delivered to the load? What could we do to deliver more power to the load?

a)

$$
\begin{aligned}
& \phi_{2}=\frac{N_{2}}{R_{a}} i_{2}-\frac{N_{1}}{R_{a}} i_{1} \\
& \lambda_{2}=\frac{\widehat{N}_{2}^{2}}{R_{a}} i_{2}-\frac{N_{1} N_{2}}{R_{a}} i_{1} \\
& M
\end{aligned}
$$

$$
\left(20011800=\frac{(200)(800)}{200+800}=\frac{160000}{1000}=160\right)
$$

1) Draw electrical diagram.
2) Magnetic circuit:
\rightarrow RHR for polarities of mme
$\rightarrow \phi_{1}, \phi_{2}$ pointing outwards from t terminal
3) Pick a "gravel" and label all "nobel woltays"
4) Write KCL eqns

$$
\underbrace{\frac{0-\left(N_{1} i_{1}-N_{2} i_{2}\right)}{R_{a}}}_{\phi_{2}}+\underbrace{\frac{0-N_{1} i_{1}}{R_{b}}}_{\phi_{c}}+\phi_{1}=0
$$

$$
\phi_{1}=\frac{N_{1} i_{1}}{R_{b}}+\frac{N_{1} i_{1}}{R_{a}}-\frac{N_{2} \hat{i}_{2}}{R_{a}}
$$

$$
\lambda_{1}={\underset{L_{1}}{\frac{N_{1}^{2}}{R_{a} \| R_{b}}} i_{1}-\frac{N_{1} N_{2}}{R_{a}} i_{2} .}_{M}
$$

$$
L_{1}=N_{1}^{2} /\left(R_{a} \| R_{b}\right)
$$

$$
=400 /(20011800)
$$

$$
=400 / 160
$$

$$
=5 / 2=2.5 \mathrm{H}
$$

$$
\begin{array}{rlrl}
L_{2} & =N_{2}^{2} / R_{a} & M & =N_{1} N_{2} / R_{a} \\
& =100 / 200 & & =200 / 200 \\
& =0.5 \mathrm{H} & & =1 H \\
& =160) & & M=1 H
\end{array}
$$

b) If account for fringing, then R_{a}, R_{b} decrease. (More path to take)
 M is inversely proportional to R_{a}.
fringing $R_{\text {noflinge }} \| R_{\text {fringe }}<R_{\text {nofinges }} \quad M$ must increase
c)

(See also HW 4, Prob 3.17)

1) Label the dots, terminds of two untrue inductors.
2) Draw equiv circuit diagram, label terminals.
3) Connect the terminals correctly.
4) Solve circuit model.

$$
\begin{aligned}
& V_{a}=L_{1} \frac{d i_{a}}{a t}+M \frac{d i_{b}}{d t} \\
& V_{b}=M \frac{d i_{a}}{d t}+L_{2} \frac{d i_{b}}{d t} \\
& i_{a}=-i_{b}=i_{\text {tot }} \\
& \Rightarrow V_{a}=L_{1} \frac{d i_{\text {tot }}}{d t}-M \frac{d i_{\text {tot }}}{d t} \\
& \quad V_{b}=M \frac{d i_{\text {tot }}}{d t}-L_{2} \frac{d_{i_{\text {tot }}}}{d t} \\
& V_{\text {tot }}=V_{a}-V_{b}=\left(L_{1}+L_{2}-2 M\right) \frac{d i_{\text {dot }}}{d t}
\end{aligned}
$$

Inductance of combined stinatuce is $L_{1}+L_{2}-2 M=1 H$
d)

$$
N_{1}=20, N_{2}=10 \text {, }
$$

To increase power: 1) Decrease R_{1};
2) Increase $R_{2}($ up to $2.5 \Omega) ; 3$) Increase a

$$
P_{\text {out }}=0.0123 \mathrm{~W}
$$ (up to $\sqrt{5}$) ; 4) Increase voltage.

$$
\begin{aligned}
& \begin{array}{ll}
0 \\
R_{1}=10 \Omega & \bar{I}=\frac{\bar{V}}{R_{1}+R_{2}!}
\end{array} \\
& P_{\text {load }}=I^{2} R_{2}^{\prime}=\frac{V^{2} R_{2}^{\prime}}{\left(R_{1}+R_{2}^{\prime}\right)^{2}} \\
& =\frac{V^{2} a^{2} R_{2}}{\left(R_{1}+a^{2} R_{2}\right)^{2}} \\
& \left.\begin{array}{c}
t-u- \\
\frac{1}{\sqrt{2}} \\
\lambda- \\
\text { not }
\end{array}\right\} \begin{array}{l}
R_{2}^{\prime} \\
=u^{2} R_{2} \\
=8 \Omega
\end{array} \\
& \text { Pout }=\frac{1}{2} \frac{(4)(2)}{(10+(4)(2))^{2}}=\frac{4}{(18)^{2}}=\frac{1}{81} \mathrm{~W}
\end{aligned}
$$

