ECE 330 Exam 1: Fall 2021

NAME

90 minutes

O. Mironenko, J. Schuh, R. Zhang

Section (Check one) MWF 10am MWF 12pm MWF 2pm

1. /25

2. /25

TOTAL /100

USEFUL INFORMATION

$$\sin(x) = \cos(x-90^\circ)$$

$$ar{V} = ar{Z}ar{I}ar{S} = ar{V}ar{I}^* = P + jQ$$
 $ar{S}_{3\varphi} = \sqrt{3}V_LI_L \angle \theta$ $I_L = \sqrt{3}I_{\varphi} ext{ (delta)}$ $ar{Z}_Y = ar{Z}_{\Delta}/3$ $V_L = \sqrt{3}V_{\varphi} ext{ (wye)}$ $\mu_0 = 4\pi \times 10^{-7} ext{H/m}$

$$\bar{S}_{3\varphi} = \sqrt{3}V_L I_L \angle \theta$$

$$I_L = \sqrt{3}I_{\varphi} \text{ (delta)}$$

$$\bar{Z}_Y = \bar{Z}_\Delta/3$$

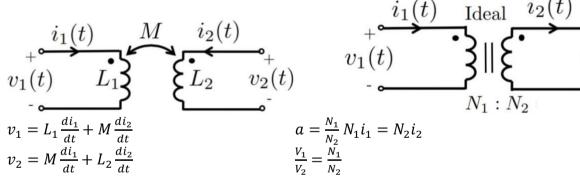
$$-180^{\circ} < \theta < 0 \text{ (lead)}$$

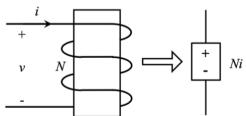
$$V_L = \sqrt{3}V_{\varphi} \text{ (wye)}$$

$$\mu_0 = 4\pi \times 10^{-7} \text{H/m}$$

ABC phase sequence has A at 0, B at -120°, and C at +120°

$$\int \underline{H} \cdot \underline{dl} = \int \underline{J_f} \cdot \hat{n} dA \int \underline{E} \cdot \underline{dl} = -\frac{d}{dt} \left(\int \underline{B} \cdot \hat{n} dA \right) \quad \mathcal{R} = \frac{l}{\mu A}$$


$$Ni = \mathcal{R}\varphi$$


$$\varphi = BA$$

$$\lambda = N\varphi = Li$$
 (if linear)

$$v = \frac{d\lambda}{dt} k = \frac{M}{\sqrt{L_1 L_2}}$$

1hp=746 W

Problem 1 (25 points)

克=0.22L63.4°小 $3 = \frac{P}{PF} = \frac{10 \times 10^{10}}{0.8} = 12.5 \times 10^{10}$ $A = \cos(10.1) = 36.9$

A feeder with an impedance of $0.1+j0.2 \Omega$ supplies a single-phase 10 kW 0.8 lagging power factor load. The voltage across the load is $v_I(t) = \sqrt{2} \sin(377t + 40^\circ)$ V. Calculate:

a) The source current phasor
$$\overline{I_s}$$

$$= \sqrt{2} \cos \left(347 + -40^{\circ} + 40^{\circ}\right) \Rightarrow \sqrt{L} = \sqrt{2} (2-50)^{\circ} =$$

b) The source (sending end) voltage phasor \overline{V}_s

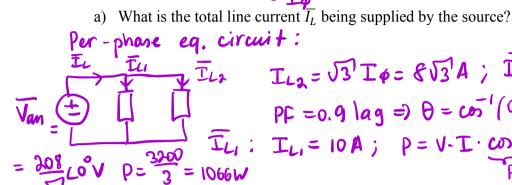
b) The source (sending end) voltage phasor
$$V_s$$
 $V_s = V_f + V_L = I_s \cdot f + V_L = 2521.64 - j \cdot 1096.76 = 2750 = 23.26$

12. $5 \times L - 86.9^{\circ} \cdot 0.22 = 263.4^{\circ} = 2521.64 - j \cdot 1096.76 = 2750 = 2750 = 23.26$

$$12.5 \times 2-86.9^{\circ} \cdot 0.32 \times 2 = 2521 - 1096 \times 2 = 2521 - 1000$$

c) The total complex power supplied by the source, $\overline{S_t}$

$$S_t = V_3 \cdot \overline{L}_s^* = 2750 L - 23.26^\circ \cdot 12.5 k L & 6.9^\circ = 34 L 63.64^\circ MVA$$


d) The power factor at the source (sending end). Specify whether it is lagging or leading.

Circle one: Lagging Leading

Problem 2 (25 points)

Two 3-phase loads are connected in parallel to a wye-connected source of 208V line to line. The loads are given as: > IL

Load 1: wye-connected, 10 A (line current), 3200 W (3-phase) (lagging) power factor Load 2: delta-connected, 8 A (phase current), 0.9 power factor lagging.

seq. circuit:

eq. circuit:

$$T_{L_{2}} = \sqrt{3} T_{\phi} = 8\sqrt{3} A; \quad T_{L_{3}} = 8\sqrt{3} (-25.8)^{\phi} A$$

$$PF = 0.9 \log \Rightarrow \theta = cos^{-1}(0.9) = 25.8 \Rightarrow \theta = -25.8$$

$$T_{L_{1}} : \quad T_{L_{1}} = 10A; \quad P = V \cdot T \cdot cos \theta \Rightarrow PF = V \cdot T = \frac{1066}{120 \cdot 10} = 0.68$$

$$T_{L_{1}} : \quad T_{L_{1}} = 10A; \quad P = V \cdot T \cdot cos \theta \Rightarrow PF = \frac{1066}{120 \cdot 10} = 0.68$$

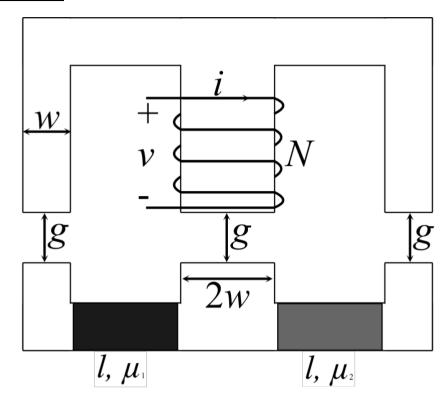
$$T_{L_{1}} = 10L - 28.8 \Rightarrow A = 10$$

= 8.8-j4.8 A

$$\bar{I}_{L} = \bar{I}_{L_{1}} + \bar{I}_{L_{2}} = 21.3 - \frac{1}{100} \cdot 8 = 23.8 L - 26.5^{\circ} A$$

b) How many capacitive VARs PER-PHASE needed to bring overall power factor to unity? Justify your answer. Answers without justification will receive no credit.

Justify your answer. Answers without justification will receive no credit.

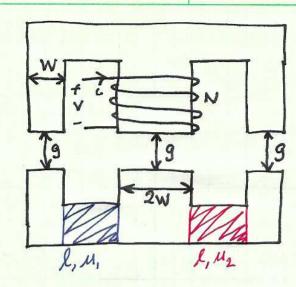

$$\overline{St_{14}} = \overline{Van} \cdot \overline{L}^* = \frac{201}{33} \angle 0^\circ \cdot 23.8 \angle 26.5^\circ = 2156 \angle 26.5^\circ$$

PF=1 > Or=Oi > Q=0 > add 1274 VARs of capacitance per-phase

$Q_c =$	1274	VARS	ef	capacitance	per-	phase
			-			

Reason:

Problem 3 (25 points)



An iron core with infinite permeability, width w=2 cm, air gap length g=3 mm, and depth into the page d=3 cm has a coil wrapped around it as given above with N=250. The iron core also has two inserts in it with length l=10 cm and permeabilities $\mu_1=2500\mu_0$ and $\mu_2=1250\mu_0$. Fringing effects can be neglected.

a) Draw the magnetic equivalent circuit for this system. (8 points)

b)	What is the flux through the coil? (12 points)							
φ =	=							
Ψ								
c)	What is the voltage drop across the coil in terms of the unknown current <i>i</i> ? (5 points)							
ν= <u></u>								

3)

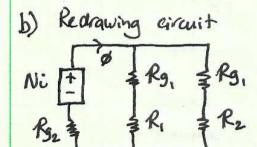
d= 3 cm

W= 2 cm

L= 10 cm

9 = 3mm

и,= 2500 мо


M2= 1250 No

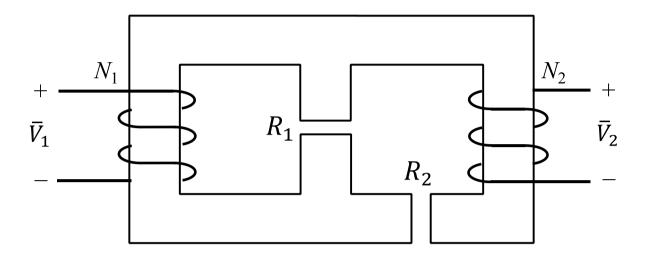
N= 250

Rg = 3mm = 3.979 x 10 At/Wb

 $R_{g_{1}} = \frac{3mm}{M_{o}(12cm^{2})} = 1.989 \times 10^{6} \text{At/wb}$ $R_{i} = \frac{10cm}{2500M_{o}(6cm^{2})} = 5.305 \times 10^{4} \text{At/wb}$

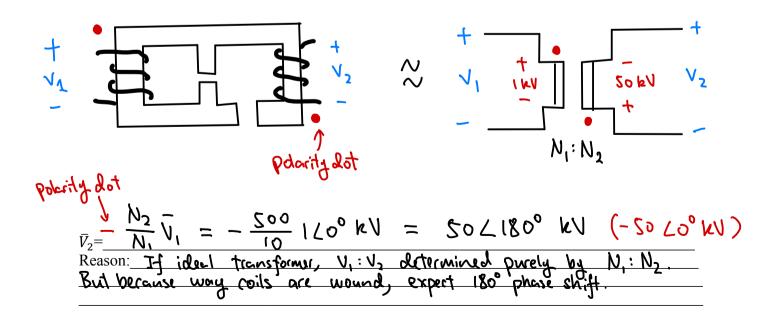
R2= 10cm = 1.06/x105 At/Wb

Reg=Rg2+ (Rg,+R, + Rg,+R2)
Reg= 4.019 × 106 At/Wb


c) V= d/

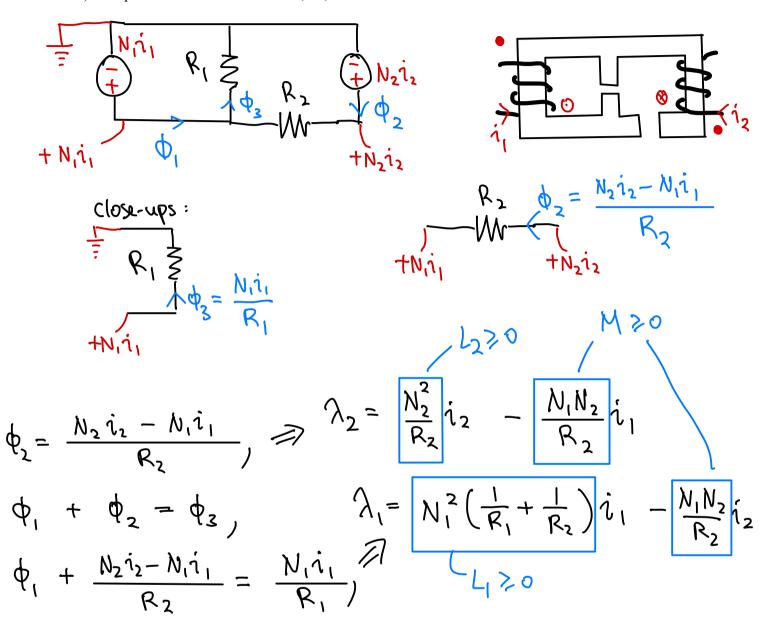
λ= NØ = λ= 0.0156i

V=0.0156di


Problem 4 (25 Points)

You are consulting for a wind farm company who is looking to install a high voltage transformer to minimize their transmission loss. A schematic of the transformer is shown below.

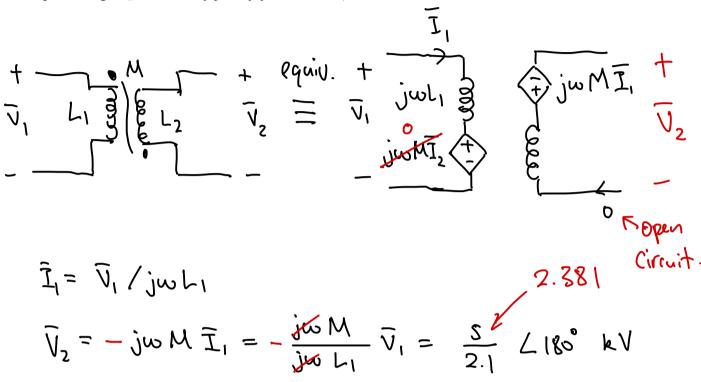
The first coil has $N_1 = 10$ turns while the second coil has $N_2 = 500$ turns. The transformer contains two air gaps, with reluctances $R_1 = 50$ At/Wb and $R_2 = 1000$ At/Wb as labeled. You may treat the permeability of the magnetic core as infinite.


a) Assuming for now that the transformer is ideal, what would the output voltage \bar{V}_2 be (at open circuit) with an input voltage $\bar{V}_1 = 1 \angle 0^\circ$ kV (rms) at 60 Hz? (Please specify both the <u>phase</u> and the <u>magnitude</u> of the output voltage \bar{V}_2 , and briefly justify your answer.)

Have to label current yourself.

Doesn't matter, so picke Casier choice.

b) Compute the self inductances L₁, L₂, and the mutual inductance M of the two coils.



$$L_{1} = \frac{N_{1}^{2}(R_{1}^{-1} + R_{2}^{-1})}{1 + R_{2}^{-1}} = 2.1 H$$

$$L_{2} = \frac{N_{2}^{2}/R_{2}}{1 + R_{2}^{-1}} = 250 H$$

$$M = \frac{N_{1}N_{2}/R_{2}}{1 + R_{2}^{-1}} = 5 H$$

c) Use the self and mutual inductance values you have just computed above as a more realistic model of the transformer. What would the output voltage \bar{V}_2 be (at open circuit) with an input voltage $\bar{V}_1 = 1 \angle 0^\circ$ kV (rms) at 60 Hz? (Please specify both the <u>phase</u> and the <u>magnitude</u> of the output voltage \bar{V}_2 , and briefly justify your answer.)

$$\bar{V}_2 = 2.381 \angle 180^{\circ} kV$$
Reason: $\bar{1}_2 = 0$ because of open circuit, so $M_{at}^{2} = 0$, and $\bar{1}_1$
 $\bar{1}_3 = 0$ because of open circuit, so $M_{at}^{2} = 0$, and $\bar{1}_1$
 $\bar{1}_3 = 0$ because of open circuit, so $M_{at}^{2} = 0$, and $\bar{1}_1$
 $\bar{1}_3 = 0$ because of open circuit, so $M_{at}^{2} = 0$, and $\bar{1}_1$
 $\bar{1}_3 = 0$ because of open circuit, so $M_{at}^{2} = 0$, and $\bar{1}_1$
 $\bar{1}_3 = 0$ because of open circuit, so $M_{at}^{2} = 0$, and $\bar{1}_1$
 $\bar{1}_3 = 0$ because of open circuit, so $M_{at}^{2} = 0$, and $\bar{1}_1$
 $\bar{1}_3 = 0$ because of open circuit, so $M_{at}^{2} = 0$, and $\bar{1}_1$
 $\bar{1}_3 = 0$ because of open circuit, so $M_{at}^{2} = 0$, and $\bar{1}_1$
 $\bar{1}_3 = 0$ because of open circuit, so $M_{at}^{2} = 0$, and $\bar{1}_1$
 $\bar{1}_3 = 0$ because of open circuit, so $M_{at}^{2} = 0$, and $\bar{1}_1$
 $\bar{1}_3 = 0$ because of open circuit, so $M_{at}^{2} = 0$, and $\bar{1}_1$
 $\bar{1}_3 = 0$ because of open circuit, so $M_{at}^{2} = 0$, and $\bar{1}_1$
 $\bar{1}_3 = 0$ because of open circuit, so $M_{at}^{2} = 0$, and $\bar{1}_1$
 $\bar{1}_3 = 0$ because of open circuit, so $M_{at}^{2} = 0$, and $\bar{1}_1$