(25 points)

A single-phase generator consists of a coil on the stator and a coil on the rotor with a mutual inductance variation with θ as shown in the figure below. The rotor is being driven at a constant speed of 377 radians per second and the rotor coil has a constant dc current $i_r = 5$ A. The self inductances are constants and you may assume a linear magnetic core.

(a) Plot the open circuit voltage ($i_s = 0$) as a function of θ (label all points)

 $V_{s} = -\frac{d^{2}}{dt}$ V_{s

(b) What is the torque of electrical origin when $i_s = 10$ Amps and $\theta = 45^{\circ}$?

Wm = 26sis+ (0.1- 70) isir+ + (, i) Te= - 7 isir

$$|T^{e}| = -\frac{0.2}{7} \times 10 \times 5 = -\frac{10}{17} \times 10^{-17}$$

$$|S=10| \quad 17=5 \quad \theta=95^{\circ}$$

The machine of problem 1 is being operated such that the currents i_s and i_r can be assumed to be constants at $I_s \neq 10$ Amps, and $I_r \neq 5$ Amps respectively while the shaft is rotated from θ equals zero to θ equals $\pi/2$.

For this change from "point a" to point b", find:

- a) The energy transferred from the electrical system into the coupling field as the system moved from point a to point b with constant currents.
- b) The energy transferred from the mechanical system into the coupling field as the system moved from point a to point b with constant current.

a)
$$EFE = \begin{cases} 1017s + 567r = -5-5 = (-10) \\ 4is + 0.1x5 \end{cases}$$
 $\frac{1}{1017s} + \frac{1}{1017}$

lineary so was = was = 2 2 Ls is 2 + 10.1 = 07 is in + 2 la cre 2 / was = 2 Ls is 2 + 10.1 - 0) is in + 2 la cre 2 /

Change
$$W_n = \frac{1}{2} l_s i_s^2 + l_0 i_1 - \frac{1}{17} l_0 i_1 + \frac{1}{17} l_1 i_1 = \frac{10}{17} l_1 i_2 = \frac{10}{17} l_1 i_1 = \frac{10}{17} l_1 i_2 = \frac{10}{17} l_1 i_2 = \frac{10}{17} l_1 i_2 = \frac{10}{17} l_1 i_2 = \frac{10}{17} l_2 i_3 = \frac{10}{17} l_1 i_3 = \frac{10}{17} l_2 i_3 = \frac{10}{17} l_1 i_3 = \frac{10}{17} l_2 i_3 = \frac{10}{17} l_3 i_3 = \frac{10}{17} l_1 i_3 = \frac{1$$

3. (25 points)

For the system shown above:

- when $x_1 = l_1$, the force due to the linear spring with constant k_1 is 0,
- when $x_2=l_2$, the force due to the linear spring with constant k_2 is 0, and
- when $d-x_1-x_2=l_3$, the force due to the linear spring with constant k_3 is 0.
- a) Write the system state-space equations taking x_1 , x_2 and their time derivatives as state variables.
- b) Assume $f_I(t) = 0$ for t<0, and $f_I(t) = F_I$ for t ≥ 0 ; and $f_2(t) = 0$ for t<0, and $f_2(t) = F_2$ for $t \geq 0$, where F_I and F_2 are constant. Find the equilibrim point for t > 0.

$$\frac{dv_1}{dt} = V, \qquad \frac{dv_2}{dt} = V_2$$

$$m, \frac{d\nu}{3+} = f, -k_1/x_1 - l_1/- l_2/+ k_3(d-x_1-x_2-l_3) + B(-1/-1/2)$$

$$0 = f_1 - k_1(x_1 - l_1) + k_3(d - x_1 - x_2 - l_3)$$

$$0 = -f_2 + k_3(d - x_1 - x_2 - l_3)$$

$$0 = f_1 - k_1(x_1 - l_1) + k_3(d - x_1 - x_2 - l_3)$$

$$0 = f_1 - k_1(x_1 - l_1) + k_3(d - x_1 - x_2 - l_3)$$

Blank page for work

For the system show above:

a) Find the force of electrical origin $f^e(i,x)$ on the plate in the x-direction.

(you may reglect, b) Write the system state-space equations taking i, x and the time derivative of x as state variables.

c) Find the equilibrim point of the system when f(t)=0.

d) Show graphically whether the equilibrium point is stable or not.

Equilibriu posi i=I Mb= Mond N2;2

dt zh mdy = mb - Moningiz Jisphill ment to down goes down mpossible Jisplacemers

up goes up