ECE 330 Exam #1, Fall 2018 Name: Solution 90 Minutes

Section (Check One)

MWF 9 am ___ MWF 10 am

Useful information

$$\sin(x) = \cos(x - 90^\circ)$$
 $\overline{V} = \overline{ZI}$ $\overline{S} = \overline{VI}^* = P + jQ$ $\overline{S}_{3\phi} = \sqrt{3}V_1I_1 \angle \theta$

$$\overline{V} = \overline{ZI}$$

$$\overline{S} = \overline{VI}^* = P + jQ$$

$$\overline{S}_{3\phi} = \sqrt{3}V_L I_L \angle \theta$$

$$0 < \theta < 180^{\circ} \text{ (lag)}$$
 $I_L = \sqrt{3}I_{\phi} \text{ (delta)}$
 $-180^{\circ} < \theta < 0 \text{ (lead)}$ $V_L = \sqrt{3}V_{\phi} \text{ (wye)}$

$$I_L = \sqrt{3}I_{\phi} \text{ (delta)}$$

$$\overline{Z}_Y = \overline{Z}_\Delta/3$$

$$\overline{Z}_Y = \overline{Z}_\Delta/3$$
 $\mu_0 = 4\pi \cdot 10^{-7} \text{ H/m}$

ABC sequence has A at zero, B at minus 120 degrees, and C at plus 120 degrees

$$\int_C \mathbf{H} \cdot \mathbf{dl} = \int_S \mathbf{J} \cdot \mathbf{n} da$$

$$\int_{C} \mathbf{H} \cdot \mathbf{dl} = \int_{S} \mathbf{J} \cdot \mathbf{n} da \qquad \int_{C} \mathbf{E} \cdot \mathbf{dl} = -\frac{\partial}{\partial t} \int_{S} \mathbf{B} \cdot \mathbf{n} da \qquad \Re = \frac{l}{uA} \qquad MMF = Ni = \phi \Re$$

$$\Re = \frac{l}{\mu A}$$

$$MMF = Ni = \phi \Re$$

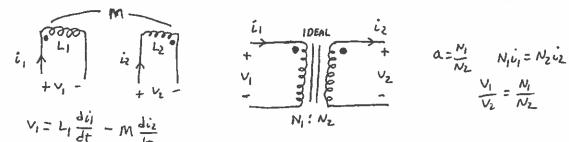
$$\varphi = B A$$

$$\lambda = N_{\varphi} = Li$$
 (if linear)

$$v = d\lambda/dt$$

$$k = \frac{M}{\sqrt{L_1 L_2}}$$

$$\varphi = B A$$
 $\lambda = N\varphi = Li \text{ (if linear)}$ $v = d\lambda/dt$ $k = \frac{M}{\sqrt{L_1 L_2}}$ 1 hp = 746 Watts



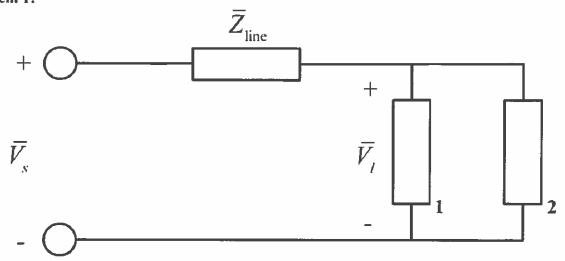
$$\alpha = \frac{N_i}{N_2} \qquad N_i \dot{v_i} = N_2 \dot{v_2}$$

$$\frac{V_1}{V_2} = \frac{N_i}{N_2}$$



(extra paper at the end)

Problem 1:

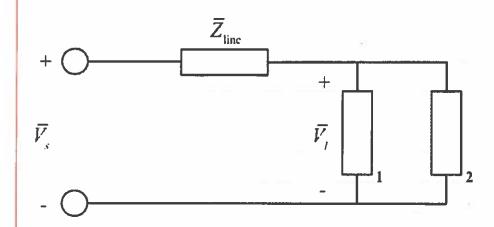


Two single-phase loads are connected in parallel to a voltage source through a feeder with impedance $\overline{Z}_{line} = 1 + j\sqrt{3} \ \Omega$. Load 1 consumes 1500 W of power at a power factor of 0.8 lagging. Load 2 consumes 1000 VA of power at a power factor of 0.6 lagging. The voltage at the loads is $v_i(t) = \sqrt{2} \left(120\right) \cos\left(377t\right) V$.

Using the given values, find:

- a) The total complex power consumed by both loads.
- b) The total current supplied by the source.
- c) The voltage as a function of time supplied by the source $v_s(t)$.
- d) If a capacitor is connected in parallel with the two loads, what power must be supplied to achieve a total power factor of 0.9 lagging?

Problem 1 Solution



522 1000 VA

C)
$$V_s = \overline{Z}_{lac} \overline{T}_{tot} + V_L \Rightarrow \overline{V}_s = (268)(23.74 \pm 42.51) + 1206 V$$

$$\overline{Z}_{lac} = 260 \qquad \overline{V}_s = 47.48 (17.49° + 1206° \Rightarrow 260° V)$$

PF_=0.6

Problem 2. (25 points)

A balanced, symmetrical, Wye-connected, three-phase load consumes a total of 1,000 Watts (3 phase) at a voltage of 208 V (line-line). The line current is 4 Amps and the power factor is lagging.

a) Find the capacitance needed for use in a Delta connection across the load to lower the line current to 3 Amps while the load still consumes the same real power. Assume a 60Hz supply.

$$S_0 = \sqrt{3} \times 208 \times 4 \left[\Theta_0 = 1000 + j \Theta_0 \right] \qquad \Theta_0 = 46^\circ$$

$$S_1 = \sqrt{3} \times 208 \times 3 \left[\Theta_1 = 1000 + j \Theta_1 \right] \qquad \Theta_0 = 1037 \times 208 \times 3 \left[\Theta_1 = 22.3^\circ \right]$$

$$Need 1037 - 400 = 627 \text{ VARS } 34 \qquad \Theta_1 = 22.3^\circ$$

$$627 = 3 \times \frac{208^2}{2000} \qquad \times 2000 \times 2000 = \frac{1}{20000} \qquad \times 2000 \times 2000 = \frac{1}{20000} \times 2000 = \frac{1}{200000} \times 2000 = \frac{1}{20000} \times 2000 = \frac{1$$

Delta?

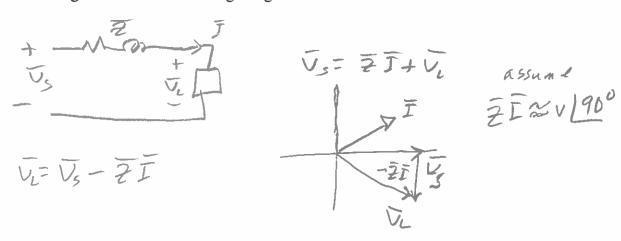
$$Q_{new} = 3 \times \frac{120^2}{207} = 209 \text{ VANS } 34$$

$$\overline{S}_2 = \sqrt{3} \times 208 \times I \quad | \mathcal{B}_2 = 1000 + \int (1037 - 209)$$

$$I = 3.6A$$

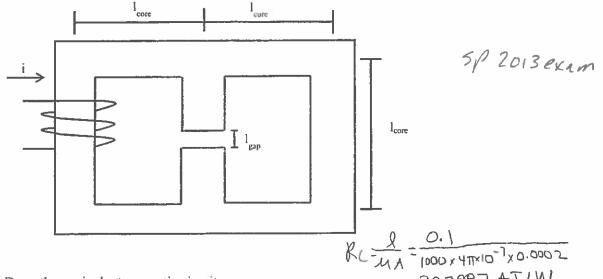
$$= 1060 + \int 828 = 1298 / 400$$

c) In the real world, the line that serves the load has a series inductive impedance. If the source voltage is fixed, the load voltage will depend on the load power and the capacitors that are added. Show with a "per-phase" phasor diagram that if enough capacitance is added, the load voltage magnitude can be larger than the source voltage magnitude.

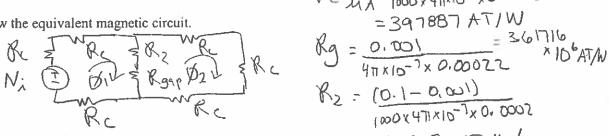


Problem 3. (25 points)

Consider the iron geometry given in the figure below. Assume fringing in the air gap such that $A_{gap} = 1.1 * A_{core}$, and assume the following values: lcore = 10 cm, lgap = 0.1 cm, $A_{core} = 2 \text{ cm}^2$, N = 100, and $\mu_r = 1000$.



Draw the equivalent magnetic circuit.



Find the inductance of the coil.

Req = 3Rc + [(Rz+Rg)//3Rc] Rg = 919906 AT/W Rz+Rg = 4,01107 x 106 AT/W Req = 2.11x 106 AT/W

$$\mathcal{D}_{1} = \frac{100i}{\text{Reg}} = \frac{100i}{\text{Reg}} = \frac{N^{2}}{10000473}$$

$$= 0.000473F$$
Continued on the next page
$$4.73 \text{ m H}$$

(c) Find the current needed to generate a flux in the middle leg of
$$5\times10^{-6}$$
 Wb.

$$(0,-0,2) = 5\times10^{-6} \Rightarrow 0_1 = 5\times10^{-6} + 0_2 \qquad 0_2 = \frac{MMF}{3RL}$$

$$5\times10^{-6}\times(R_2+R_9) = MMF = 20.0553$$

$$8_2 = 0.000017$$

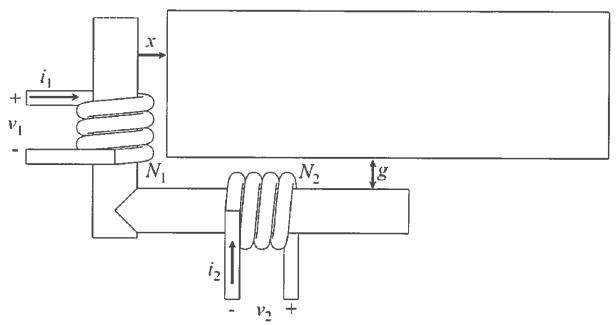
$$0_1 = 5\times10^{-6} + 0.000017 = 6.00022$$

$$Loop 1: -Nit 3Rc01+MMF = 0$$

$$i = (3Kc01+20.0553)/100 = 0.463 \text{ A}$$

(d) Find the flux density (Wb/m²) in the right leg corresponding to the values given in part c.

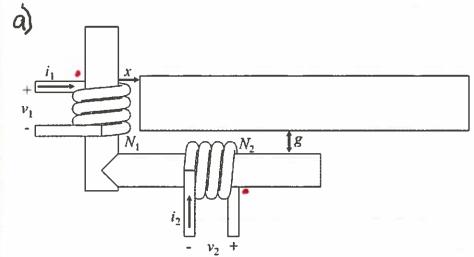
Problem 4: (25 points)



One type of magnetic actuator consists of a moving piston and two coils, as shown above. Coil 1 acts as a constant MMF source with constant current i_1 whose direction is given. Coil 2 can produce an MMF that is used to either open or close the actuator through current i_2 . The number of turns for each coil is given as N_1 and N_2 respectively. There is a constant air gap g between Coil 2 and the moving piston, whose position is given by x. The areas that the magnetic field acts through in the air gap and piston location are A_g and A_x respectively. Assume that the iron core and moving piston have infinite permeability, and that the magnetic flux acts all the way around a counter-clockwise loop. Using the current directions and polarity definitions given:

- a) Find the dot convention for the given coils.
 - b) Draw the magnetic equivalent circuit for the actuator.
- c) The self-inductance of coil 2, L_2 , and the mutual inductance M in terms of x, g, N_1 , N_2 , A_g , and A_x .
- d) Qualitatively, what happens to L_2 as the actuator opens (x increases from 0 to I): increase, decrease, or stay the same?
- e) Find i_2 needed for zero flux through the iron.

Problem 3 Solution



C)
$$N_1 \dot{o}_1 - N_2 \dot{o}_2 = \mathcal{G}(R_9 + R_X)$$

$$N_1 \dot{o}_1 - N_2 \dot{o}_2 = \mathcal{G}(R_9 + R_X)$$

$$\mathcal{G} = \frac{N_1 \dot{o}_1 - N_2 \dot{o}_2}{R_9 + R_X}$$

$$R_{3}+R_{x}$$

$$Q = N_{1}\dot{v}_{1}-N_{2}\dot{v}_{2}$$

$$\frac{9}{10A_{3}}+\frac{x}{10A_{x}}$$

$$\lambda_{2} = \frac{N_{1}N_{2}\dot{v}_{1}-N_{2}\dot{v}_{2}}{\frac{3}{10A_{3}}+\frac{x}{10A_{x}}} \Rightarrow \lambda_{2} = \frac{10A_{3}}{9+x(\frac{A_{3}}{A_{x}})}$$

$$\lambda_{2} = M\dot{v}_{1}-L_{2}\dot{v}_{2}$$

$$\lambda_{3} = M\dot{v}_{1}-L_{3}\dot{v}_{2}$$

Rg = JAgs Ru XA

$$\begin{array}{c|c} L_{12} & N_{2}^{2} & \Rightarrow & L_{2} = \underbrace{M_{1} A_{2} N_{2}^{2}}_{g + \chi(\underbrace{A_{1}}_{A_{1}})} \end{array}$$

e)
$$G = N_1 \dot{\iota}_1 - N_2 \dot{\iota}_2$$
 $G = 0$

$$R_c + R_g \qquad N_1 \dot{\iota}_1 - N_2 \dot{\iota}_2 = 0 \qquad \Rightarrow \qquad \boxed{\dot{\iota}_2 = \left(\frac{U_1}{N_2}\right) \dot{\iota}_1}$$