

Last lecture

Probability Event (Ch 1.2)

- Experiments, outcomes, trials
- Sample space Ω , events, complement
- Karnaugh Map
- De Morgan's Law

Agenda

Probability Event (Ch 1.2)

- Axioms of Probability

Counting the size of events (Ch 1.3)

- Independent events
- Dependent but countable

Probability with equally likely outcomes (Ch 1.4)

- Draw socks from the drawer
- Poker hands

Karnaugh Map Recap

(Ex. 1.4.2) Roll two fair dice

- A : Sum is **even**
- B : Sum is **multiple of 3**
- C : The numbers are the same

Karnaugh Map Recap

(Ex. 1.4.2) Roll two fair dice

- A : Sum is **even**
- B : Sum is **multiple of 3**
- C : The numbers are the same

B^c		B		A^c	A	
14,16,23,25				12,21,36,45, 54,63		
32,34,41,43, 52,56,61,65						
13,26,31,35, 46,53,62,64	11,22,44,55	33,66	15,24,42,51			
C^c		C		C^c		

Karnaugh Map on Probability

- / of events
- Example:
 - $P(A) = 0.3, P(B) = 0.4, P(A^c \cup B^c) = 0.8$, what is $P(A^c B^c)$?

Karnaugh Map vs. Venn Diagram

Not on exam

Axioms of Probability

Probability Space

- An experiment can be modeled by a triplet
 - Ω :
 - \mathcal{F} :
 - P :

Axioms on both \mathcal{F} and P

Event Axioms

- Some interpretation of “Set”, \mathcal{F} is “ ”
- Axiom E.1 $\Omega \in \mathcal{F}$ is an event
- Axiom E.2 If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$
- Axiom E.3 If $A \in \mathcal{F}$ and $B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$

Try to proof these:

- e.4 $\emptyset \in \mathcal{F}$
- e.5 If $A \in \mathcal{F}$ and $B \in \mathcal{F}$, then $AB \in \mathcal{F}$

Probability Axioms

- Axiom P.1 $\forall A \in \mathcal{F}, P(A) \leq 1$
- Axiom P.2 If $A, B \in \mathcal{F}$ and A, B are mutually exclusive
then $P(A \cup B) = P(A) + P(B)$
- Axiom P.3 $P(\Omega) = 1$

Try to proof these:

- p.4 $P(A^c) = 1 - P(A)$
- p.8 $P(A \cup B) = P(A) + P(B) - P(AB)$
- More on textbook p.9

Slido!

Select the correct ones

A. $(A^c B) \cup (AB^c) \cup (AB) = \Omega$

B. If $A \subset B$, $(A^c B)(AB^c) = \emptyset$

C. If A, B are disjoint, $A^c = (AB^c) \cup (A^c B)$

D. If A, B, C are mutually exclusive, at most 3 entries in Karnaugh map is none-empty

#3956532

Counting the size of events

How large is A and Ω

- If events contain outcomes
 - $P(A) =$
- But how large is $||A||$ and $||\Omega||$?
- Independent experiments
 - Toss a coin and roll a die
 - Roll a die twice
- Dependent
 - Bin of balls $\Omega = \{\text{Red, Red, Red, Green, Green}\}$
 - Draw two balls
 - Pokers

Independent experiments

- If we toss a coin and roll a die
- $\Omega_c =$ $\Omega_d =$
- $\Omega =$
- $|\Omega| =$
- $|\Omega_A| =$
- Independent events $P(AB) =$

Principle of counting

- If there are m ways to select one variables, and n ways to select the other.
- If these two variables are selected .
- Then there are ways to make the pair of selections

Dependent experiments

- What if the first draw affects the second one?
- Example:
 - I have 4 pairs of black socks and 2 pairs of white socks
 - $P(\text{Draw two socks, color is the same})?$
- $\Omega_1 =$
- $A =$
- We need a tool – /

Overcounting

Permutation

- The to order n different items
- How many ways can you order letters A, B, C, D ?

- N letters ->
- What if I want to order " $A, B, C \dots G$ " 7 letters, but only pick the first 4?

- What if I want to order letters ILLINI?

Principle of over-counting

- What if I want to order letters ILLINI?
- For an integer $K \geq 1$, if each element of a set is counted K times, then the number of elements in the set is the total count divided by K

Combination

- $\binom{n}{k}$ or $C(n, k)$
 - The to choose k out of n different items
 - $\binom{n}{k} =$
- Draw 3 balls out of 5 balls replacement

The Socks Problem

I have 4 pairs of black socks and 2 pairs of white socks

$P(\text{Draw two socks, color is the same})$?

Slido!

A bag contains $\{R, R, R, B, B, G\}$

What's the probability that I draw 3 balls all different colors?

A. $\frac{3 \times 2 \times 1}{6!}$

B. $\frac{3 \times 2 \times 1}{\binom{6}{3}}$

C. $\frac{3 \times 2 \times 1}{6 \times 5 \times 4}$

D. None of the above

#3956532

Poker Problem

$$\Omega_{card} =$$

Draw 5 cards out of 52 cards

FULL HOUSE = 3 same numbers, other 2 same numbers

$$P(FULL\ HOUSE) =$$

Sample space with infinite cardinality

Interval probability space

- $\Omega = \{\omega: 0 \leq \omega \leq 1\}$ $P([a, b]) = b - a$
- $A = [0.2, 0.8]$

And others...