

Last lecture

Probability Event (Ch 1.2)

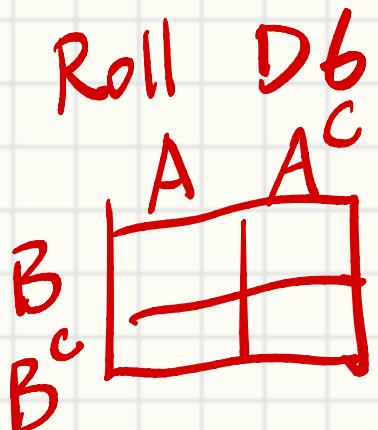
- Experiments, outcomes, trials

- Sample space Ω , events, complement

$$\{1, 2, 3, \dots, 6\}$$

$$A_{\text{even}} = \{2, 4, 6\}$$

- Karnaugh Map



- De Morgan's Law

$$(A \cup B)^c = A^c B^c$$

$$A^c = \Omega \setminus A$$

$$= \{1, 3, 5\} = B_{\text{odd}}$$

Corrections.

HWD will not be graded.

HWI will be released Jan 23

Due next Friday.

Agenda

Probability Event (Ch 1.2)

- Axioms of Probability

Counting the size of events (Ch 1.3)

- Independent events
- Dependent but countable

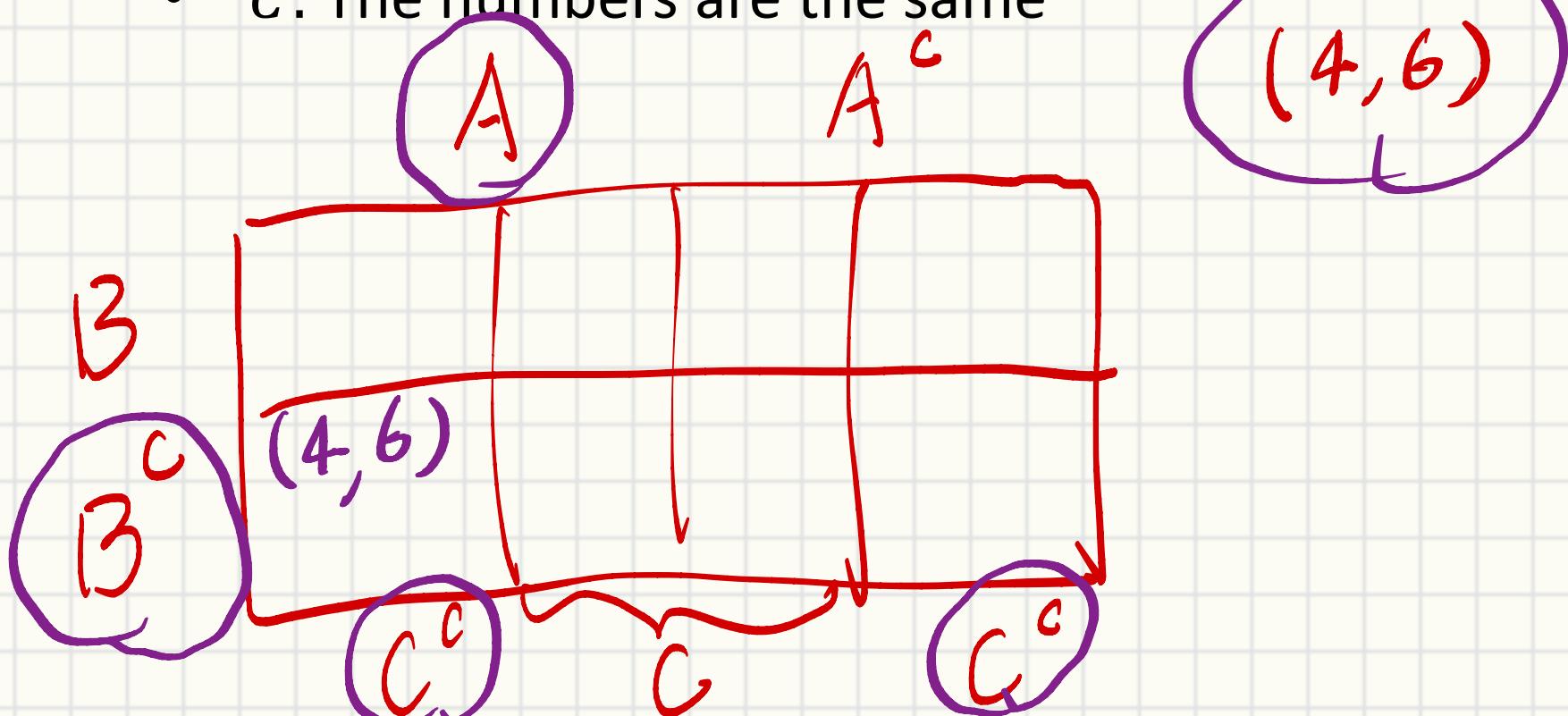
Probability with equally likely outcomes (Ch 1.4)

- Draw socks from the drawer
- Poker hands

Karnaugh Map Recap

(Ex. 1.4.2) Roll two fair dice

- *A*: Sum is **even**
- *B*: Sum is **multiple of 3**
- *C*: The numbers are the same



$$2^3 = 8 \text{ cells.}$$

Karnaugh Map Recap

(Ex. 1.4.2) Roll two fair dice

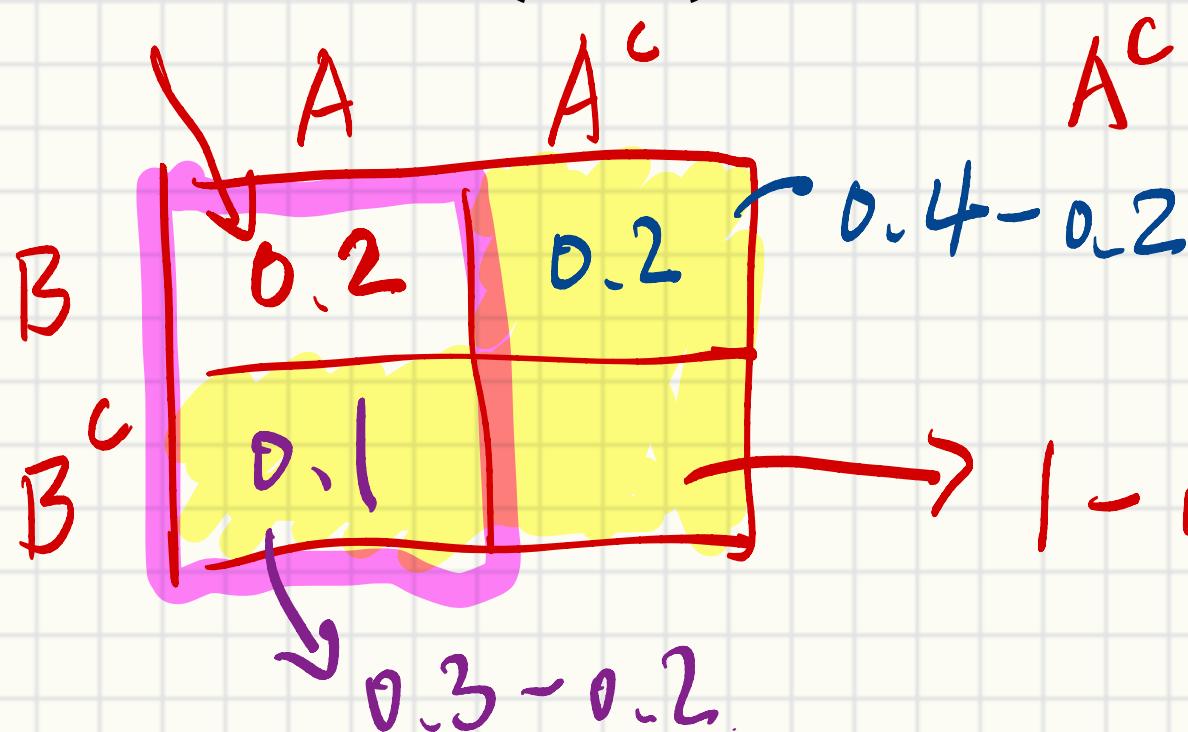
- A : Sum is **even**
- B : Sum is **multiple of 3**
- C : The numbers are the same

B^c		B		A^c	A	
C^c		C		C^c		
14,16,23,25 32,34,41,43, 52,56,61,65				12,21,36,45, 54,63		
13,26,31,35, 46,53,62,64	11,22,44,55	33,66		15,24,42,51		

Karnaugh Map on Probability

- Inclusion / Exclusion of events
- Example:
 - $P(A) = 0.3, P(B) = 0.4, P(A^c \cup B^c) = 0.8$, what is $P(A^c B^c)$?

$$1 - 0.8$$

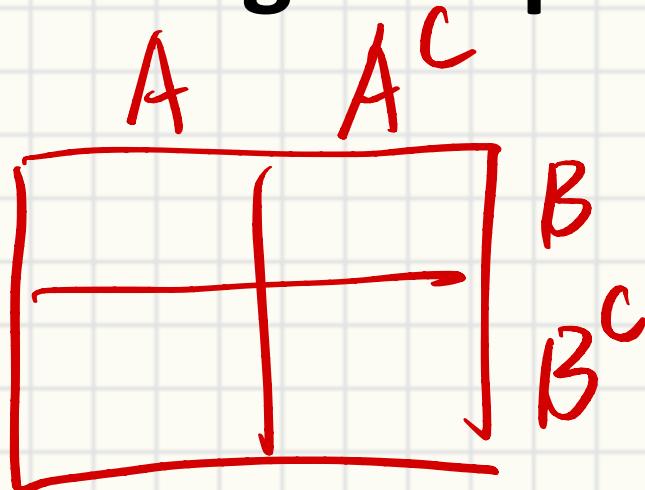
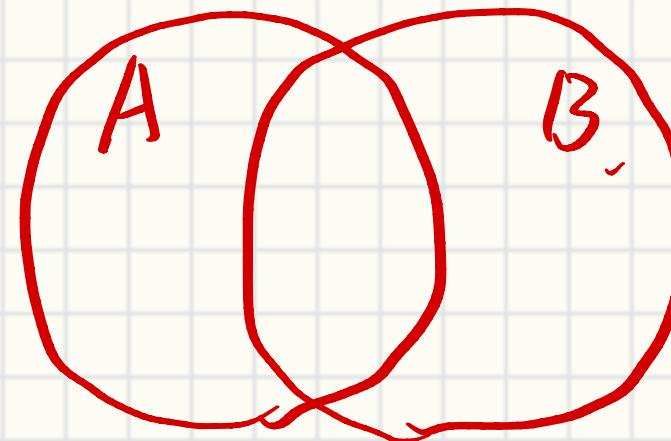


$$A^c \cup B^c = (A \cap B)^c$$

$$1 - 0.2 - 0.2 - 0.1 \neq 0.5$$

◻

Karnaugh Map vs. Venn Diagram



Not on exam

→ Emphasize intersection
(Positive event)

Axioms of Probability

Probability Space

- An experiment can be modeled by a triplet

$$\{\Omega, \mathcal{F}, P\}$$

- Ω : Sample space.
- \mathcal{F} : Event sets / Set of subsets (events)
- P : Probability of events

Axioms on both \mathcal{F} and P

$$P = \{ p(f_1), p(f_2), \dots \}$$

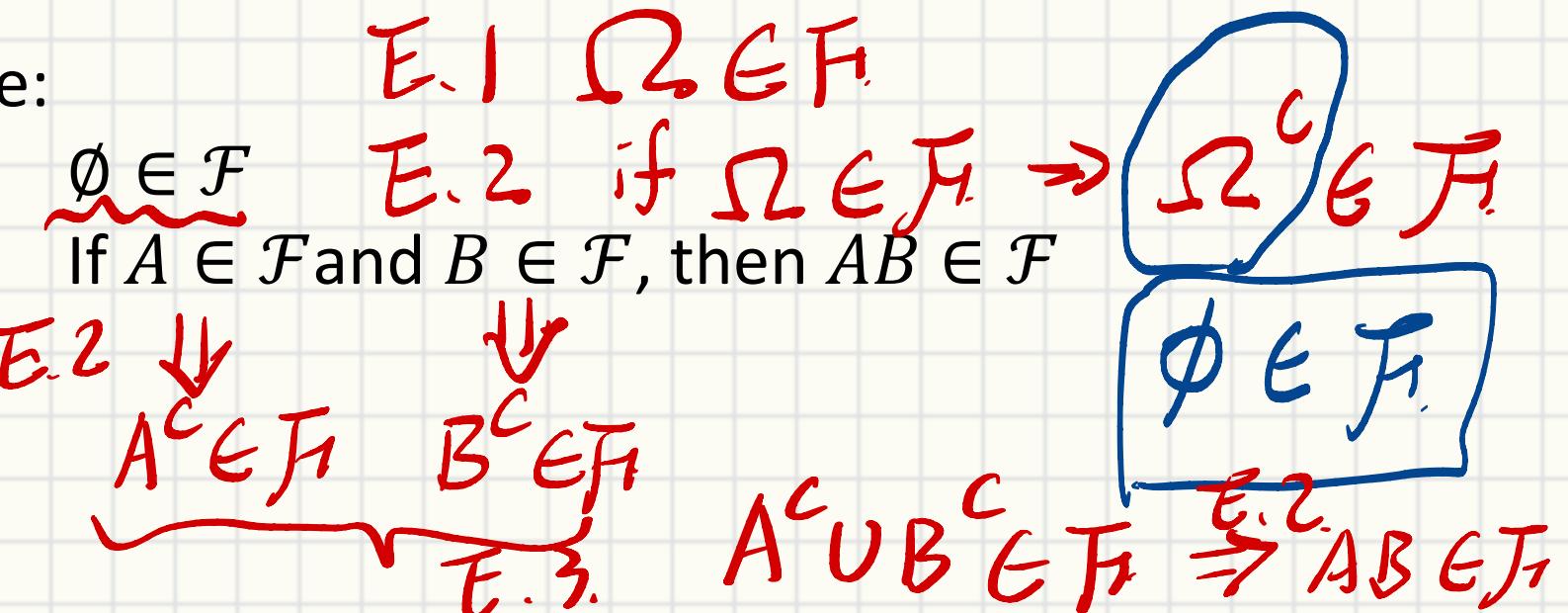
$$\mathcal{F} = \{ f_1, f_2, \dots \}$$

Event Axioms on \mathcal{F} .

- Some interpretation of “Set”, \mathcal{F} is “*Set of events*”
- Axiom E.1 $\Omega \in \mathcal{F}$ is an event
- Axiom E.2 If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$
- Axiom E.3 If $A \in \mathcal{F}$ and $B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$

Try to proof these:

- e.4
- e.5



Probability Axioms

- Axiom P.1
- Axiom P.2
- Axiom P.3

$$\forall A \in \mathcal{F}, P(A) \leq 1$$

If $A, B \in \mathcal{F}$ and A, B are mutually exclusive

$$\text{then } P(A \cup B) = P(A) + P(B)$$

$$P(\Omega) = 1$$

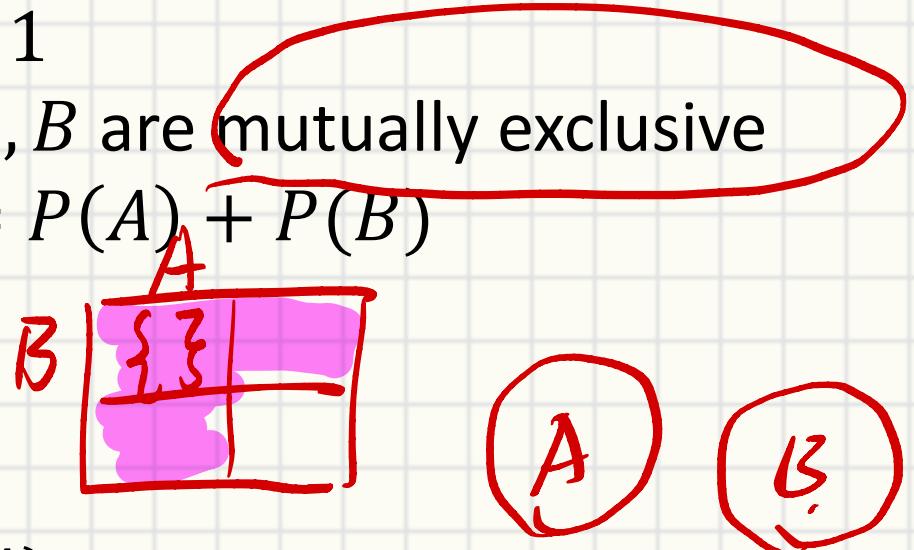
Try to proof these:

- p.4
- p.8

$$P(A^c) = 1 - P(A)$$

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

- More on textbook p.9



A^c and A are
mutually exclusive

Slido!

Select the correct ones

A. $(A^c B) \cup (\underline{AB^c}) \cup (\underline{AB}) = \Omega$

$$\Omega - A^c B^c$$

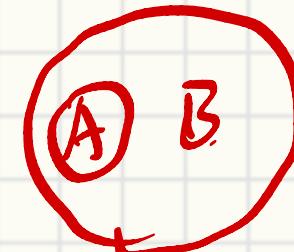
B. If $A \subset B$, $(A^c B) \cap (\underline{AB^c}) = \emptyset$

\cancel{B}

\emptyset

C. If A, B are disjoint, $A^c = (\underline{AB^c}) \cup (\underline{A^c B})$

$\Rightarrow A^c B^c$

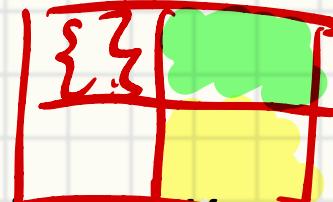


D. If A, B, C are mutually exclusive, at most ~~3~~ entries in Karnaugh map is none-empty

$$ABC^c = \{\}$$

$$ABC = \{\}$$

A A^c #3956532



$$AB^c C^c$$

$$A^c B C^c$$

$$A^c B^c C$$

$$A^c B^c C^c$$

Counting the size of events

How large is A and Ω

- If events contain *equally probable* outcomes
 - $P(A) = \frac{||A||}{||\Omega||}$
- But how large is $||A||$ and $||\Omega||$?
- Independent experiments
 - Toss a coin and roll a die
 - Roll a die twice
- Dependent
 - Bin of balls $\Omega = \{\text{Red, Red, Red, Green, Green}\}$
 - Draw two balls
 - Pokers

Independent experiments

- If we toss a coin and roll a die
- $\Omega_c = \{H, T\}$ $\Omega_d = \{1, 2, \dots, 6\}$
- $\Omega = \{H1, H2, \dots, H6, T1, T2, \dots, T6\}$
- $|\Omega| = |\Omega_c| \times |\Omega_d| = 2 \times 6 = 12$
- $|A| = |\{H2, H4, H6, T2, T4, T6\}| = |\Omega_c| \times$
- Independent events $P(\underline{AB}) = P(A)P(\underline{B})$ $\frac{|\Omega_d|}{|\Omega|}$
 $= 2 \times 3 = 6$

Principle of counting

- If there are m ways to select one variables, and n ways to select the other.
- If these two variables are selected *independently*.
- Then there are $m \times n$ ways to make the pair of selections

Dependent experiments

- What if the first draw affects the second one?
- Example:
 - I have 4 pairs of black socks and 2 pairs of white socks
 - $P(\text{Draw two socks, color is the same})?$ ↳ ignore L/R foot
 - $\Omega_1 = \{B1, B2 \dots B8, W1, W2 \dots W4\}$
 - $A = \{B1B2, B1B3 \dots B7B8, W1W2, W1W3 \dots W3W4\}$
- We need a tool – Combination / permutation

$$P = \frac{|A|}{|\Omega_1|}$$

Overcounting

Permutation

- The **# of ways** to order n different items $4 \times 3 \times 2 \times 1$
- How many ways can you order letters A, B, C, D ?

$$E = \{ABCD, ABDC, \dots\} \quad |E| = ? \quad \square \square \square \square$$

- N letters $\rightarrow N! \xrightarrow{\text{factorial}} = N \times (N-1) \dots \times 1 = 4!$
- What if I want to order " $A, B, C \dots G$ " 7 letters, but only pick the first 4?

$$\square \square \square \square = 7 \times 6 \times 5 \times 4 = \frac{7!}{3!}$$

- What if I want to order letters ILLINI?

$$\frac{\# \text{ of } L}{2!3!} \quad \# \text{ of } I$$

$$\begin{matrix} I^1 & L^2 & L^3 & I^4 & N^5 & I^6 \\ | & | & | & | & | & | \\ I & L & L & I & N & I \end{matrix}$$