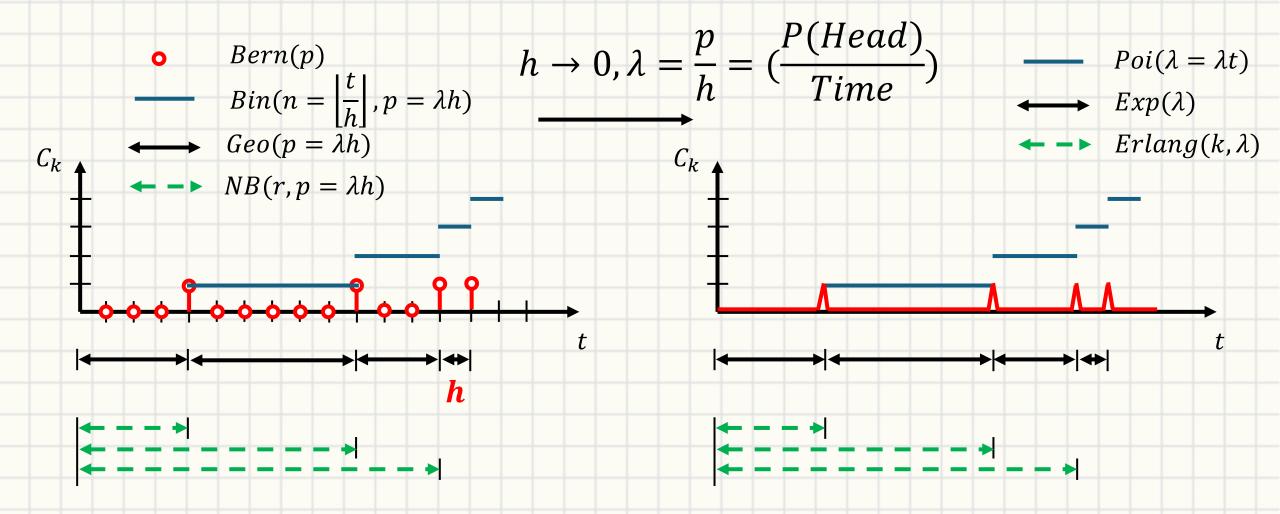
Caveats

- Problems in the slide will be independent from midterm problems
 - $P(p_1|p_1' \text{ in slide}) = P(p_1)$
- All numbers will be replaced by symbols in the slide
 - In midterm, you may need to compute
- We will cover top-K options from the Slido survey
 - Survey does not cover all topics
 - You still need to review all topics by yourself

Agenda & Survey result


- Poisson Process
 - Exponential Distribution
- Scaling of PDF
- Markov and Chebyshev
- PDF/CDF

Bernoulli Process

$$h \to 0, \lambda = \frac{p}{h}$$

Poisson Process

Assume each trial takes h duration to complete

Properties

	$Exp(\lambda)$	$Poi(\lambda = \lambda_{ref}t)$
Mean		
Variance		
PDF/ PMF		
CDF		
Example	System lifetime	Event occurrence within t
Special		

Poisson Process

- $\lambda = \lambda_{ref} t$
- None-overlapped process are

A support center is receiving λ call/ mins. Probability of

- Exactly 4 calls in 2 mins
- At least 3 calls in 1 min
- 5 calls in 5 mins, given 2 calls in the third mins
- 5 calls in 5 mins, among which 2 calls in the third min

Scaling of PDF

Let Y = aX + b, where X, Y are RV and a, b are constants

•
$$f_Y(u) = f_X\left(\frac{u-b}{a}\right) \times \frac{1}{|a|}$$

$$f_X(u) = \begin{cases} 1 & -0.5 \le u \le 0 \\ 1 - u & 0 \le u \le 1 \end{cases}$$
, let $Y = 2X + 1$

- Solve E[Y] and σ_Y^2
- $P\{Y \ge 2\}$

Markov and Chebyshev

- Check whether Y is none-negative
- Compute E[Y] and σ_X carefully

Markov

•
$$P\{Y \ge c\} \le \frac{E[Y]}{c}$$

•
$$p_X(k) = \begin{cases} 1/6 & 1 \le k \le 6 \\ 0 & else \end{cases}$$

Chebyshev

•
$$P\{|X - \mu_X| \ge a\sigma_X\} \le \frac{1}{a^2}$$

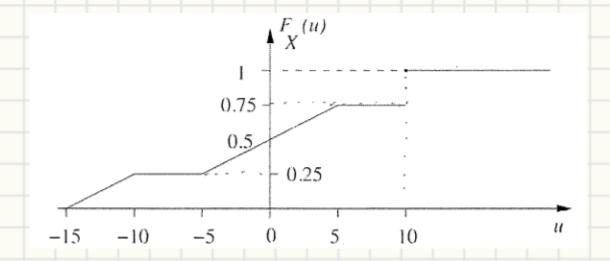
PDF/ CDF

CDF

- Properties None-decreasing/output span [0,1]/ right cont.
- $F_X(c) = \int_{-\infty}^{c} f_X(u) du$ Remember the constant
- "Jump" at c ($F_X(c) > F_X(c-)$) implies $p_X(c) > 0$

PDF

- $f_X = F_X'$ $\int_{-\infty}^{\infty} f_X(u) du = 1$


$$P\{a < X \le b\} = F_X(b) - F_X(a) = \int_a^b f_X(u) du$$

PDF/ CDF

$$f_X(x) = \begin{cases} c^2 e^{-5x} \\ 0 \end{cases}$$

$$f_X(x) = \begin{cases} c^2 e^{-5x} & x \ge 0 \\ 0 & else \end{cases}$$
, find $c, F_X(x), P\{1 \le X \le 3\}$

PDF/ CDF

• Solve
$$P\{X \le -5\}$$
, $P\{X = 10\}$, $P\{X^2 \le 4\}$, $E[X]$

