Caveats

- Problems in the slide will be independent from midterm problems
 - $P(p_1|p_1' \text{ in slide}) = P(p_1)$
- All numbers will be replaced by symbols in the slide
 - In midterm, you may need to compute
- We will cover top-K options from the Slido survey
 - Survey does not cover all topics
 - You still need to review all topics by yourself

Agenda & Survey result

- Poisson Process
 - Exponential Distribution
- Scaling of PDF
- Markov and Chebyshev
- PDF/CDF

Bernoulli Process

$$h \to 0, \lambda = \frac{p}{h}$$

Poisson Process

discrete

• Assume each trial takes h duration to complete

Bern(p) $Poi(\lambda = \lambda t)$ $Exp(\lambda)$ $Geo(p = \lambda h)$ $NB(r, p = \lambda h)$ ightharpoonup Erlang (k, λ)

Properties

CCDF

Variance

PDF/PMF

CDF

Example

Special

 $Exp(\lambda)$

 $f_{X}(t) = \lambda e^{-\lambda t}$ $1 - e^{-\lambda t}$ Sust

System lifetime

Memorylers

 $Poi(\lambda = \lambda_{ref}t)$

Event occurrence within t

Memoryless

Poisson Process

Poisson RV.
$$\lambda = \lambda_{ref} t$$

- None-overlapped process are megandent.

A support center is receiving λ call/mins. Probability of

- Exactly 4 calls in 2 mins $\gg \lambda' = \lambda \times 2$ $P_{x}(4)$
- At least 3 calls in 1 min $\Rightarrow \chi' = \chi \times |= \chi$
- 5 calls in 5 mins, given 2 calls in the third mins
- 5 calls in 5 mins, among which 2 calls in the third min

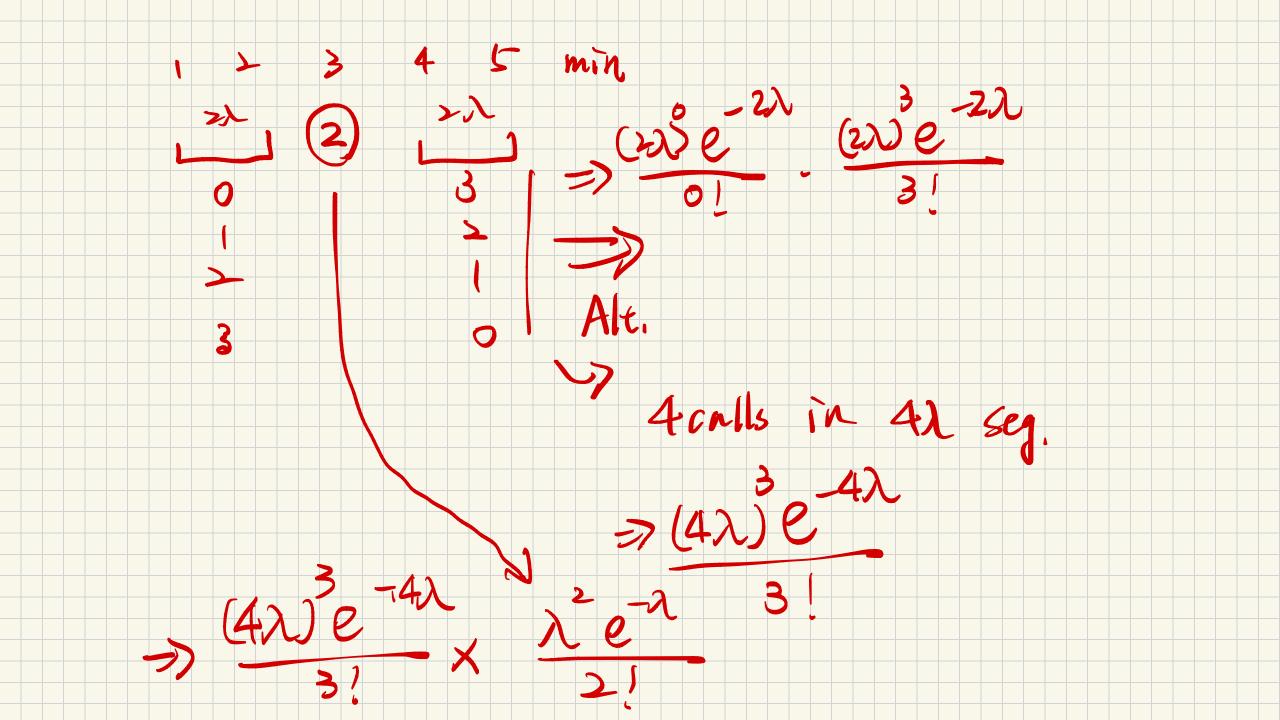
$$\frac{1}{1-\sum_{k=0}^{2}P_{k}(k)}$$

$$\frac{\lambda\lambda\lambda\lambda\lambda\lambda}{2}$$

$$\frac{\lambda\lambda\lambda\lambda\lambda\lambda}{2}$$

$$\frac{\lambda\lambda\lambda\lambda\lambda\lambda}{2}$$

$$\frac{\lambda\lambda\lambda\lambda\lambda\lambda}{2}$$



Scaling of PDF Topand X support Let Y = aX + b, where X, Y are RV and a, b are constants -> density I by a Solve E[Y] and σ_Y^2 $\sigma_Y = 4$ E[Y] = 2E[X] + 1

Markov

- Check whether Y is none-negative 2.
- Compute E[Y] and σ_X carefully

Markov

•
$$P\{Y \ge c\} \le \frac{E[Y]}{c}$$

$$p_X(k) = \begin{cases} 1/6 & 1 \le k \le 6 \end{cases}$$

$$P\{|X - \mu_X| \ge a\sigma_X\} \le \frac{1}{a^2}$$

$$P\{X\geq 4, \} \leq \frac{E[X]}{4} = \frac{3.5}{4} = 0$$

$$\frac{75}{\sigma_{x}} = \frac{1}{a^{2}}$$

PDF/ CDF

CDF

- Properties None-decreasing/output span [0,1]/ right cont.
- $F_X(c) = \int_{-\infty}^{c} f_X(u) du$ Remember the constant
- "Jump" at c ($F_X(c) > F_X(c-)$) implies $p_X(c) > 0$

PDF

- $f_X = F_X'$ $\int_{-\infty}^{\infty} f_X(u) du = 1$

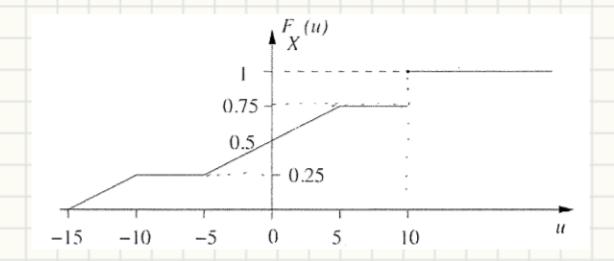
$$P\{a < X \le b\} = F_X(b) - F_X(a) = \int_a^b f_X(u) du$$

PDF/ CDF

$$f_X(x) = \begin{cases} c^2 e^{-5x} \\ 0 \end{cases}$$

$$f_X(x) = \begin{cases} c^2 e^{-5x} & x \ge 0 \\ 0 & else \end{cases}$$
, find $c, F_X(x), P\{1 \le X \le 3\}$

PDF/ CDF



• Solve
$$P\{X \le -5\}$$
, $P\{X = 10\}$, $P\{X^2 \le 4\}$, $E[X]$

