Last lecture

Conditional Probability (Ch 2.3)

$$P(B|A) =$$

- Examples
- Solver
- 3 doors problem revisited

Law of Total Probability (Ch 2.10)

$$P(A) =$$

Bayes formula

$$P(E_i|A) =$$

Agenda

Bayes formula (Ch 2.10)

Examples

Independent Events/RVs (Ch 2.4)

- Definition
- Motivation
- Examples and Facts
- Distributions (Ch 2.4)
 - Bernoulli
 - Binomial

Disease problems

Assume there is a disease A, and the corresponding test T

- What do the followings mean?
- P(T|A) = 0.9
- $P(T|A^c) = 0.05$
- P(A) = 0.01
- P(A|T) =

Disease problems

According to CDC survey on smoker

- 18% of adults are smokers
- 15% of women are smokers
- Population = 50% men + 50% women
- What fraction of adult smokers are women

Disease problems

According to CDC survey on smoker vs. lung cancer

- 15% of women are smokers
- Compared to nonsmokers, women who smoker are 13 times likely to get lung cancer
- If I pick a female lung cancer patient, how likely she is a smoker?

Definition

A and B are events, they are

- P(B|A) = P(B) or
- P(AB) = P(A)P(B)

Facts

- P(B|A) = P(B) implies P(A|B) = P(A)
- If P(A) = 0, B is independent of A

if

Definition

A and B are events, they are

- P(B|A) = P(B) or P(AB) = P(A)P(B)

RVs X and Y are independent if A and B are independent for any $X \in A$ and $Y \in B$

Motivation

Independent is a common but strong property

- P(AB) = P(A)P(B) the pmf
 - Compute the pmf easily
 - Will skip Ch 2.3 affect only my HW2 and Midterm 1?
 - If I join this club, will it affect my GPA?
- Decide the model complexity
 - What really affects the results?
 - What do I need to ask when reviewing a loan request?
 - What input data do I need to predict the defect?

Examples

Physically independence – Toss a coin and roll a die (N, X)

- $A \triangleq \{N = H\}$
- $B \triangleq \{X = 6\}$

Probabilistic independence

- $A \triangleq X$ is even
- $B \triangleq \{X \equiv 0 \pmod{3}\}$

Examples

Physically independence – Toss a coin and roll a die (N, X)

- $A \triangleq \{N = H\}$
- $B \triangleq \{X = 6\}$

Probabilistic independence

- $A \triangleq X$ is even
- $B \triangleq \{X \equiv 0 \pmod{3}\}$

Terms and Facts

- A, B, C are pairwise independent if (A, B), (B, C), (A, C) are mutually independent
 - Toss a fair coin twice
 - $A \triangleq \{ \text{First coin is Head} \}$
 - $B \triangleq \{\text{second coin is Head}\}$
 - $C \triangleq \{ \text{toss results are the same} \}$

Terms and Facts

• A, B, C are independent they are pairwise independent and P(ABC) = P(A)P(B)P(C)

• $A_1, A_2, ... A_i$ are independent if $P(A_{i_1} A_{i_2} ... A_{i_k}) = P(A_{i_1}) P(A_{i_2}) ... P(A_{i_k})$

Bernoulli Distribution

X is Bernoulli distribution with parameter p if

- $P\{X = 1\} = p \text{ and } P\{X = 0\} = 1 p$
- "Toss a (unfair) coin with p probability Head"
- Only possible outcomes, pmf contains bins
- E[X] =
- $E[X^2] =$
- $\sigma_x^2 =$

Binomial Distribution

X is binomial distribution with parameter (n, p) if

- X is sum of n Bernoulli trials with parameter p
- Draw the unfair coin n times and count the Head

• $p_X(k) =$

