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Conditional Probability (Ch 2.3) P(B|A) = LA 20
e Examples | i
* Solver WLJE]QMC HA) 2
3 doors problem revisited
Law of Total Probability (Ch 2.10) P(A) = Z P(A EC)
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Agenda

Bayes formula (Ch 2.10)
e Examples

Independent Events/ RVs (Ch 2.4)
e Definition
* Motivation
 Examples and Facts

e Distributions (Ch 2.4)
e Bernoulli
e Binomial



Disease problems

Assume there is a disease A, and the corresponding tes’_c__T_:_
 What do the followings mean?
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Disease problems

S) =18
According to CDC survey on smoker v ( ) %
e 18% of adults are smokers

SlW)= (L8
* 15% of women are smokers PC ’ ) I /° |
 Population =50% men + 50% women ? (w) £00/
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e What fractlon of adult smokers are women
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Disease problems ¢ ¢ 5% P (s|w)= IS4
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According to CDC survey on smoker vs. lung cancer P L&bw)
* 15% of women are smokerﬁN (2
e Compared to nonsmokers;*women who smokesare 13
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times likely to get lung cancer
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If | pick a female lung cancer patient, how I|ker sheis a }
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Independent Events/ RVs




Definition

A and B are events, they are mmlla Wlm,)zn.i, if
+ P(B|A) = P(B) or—__
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Definition

A and B are events, they are MW‘% M&M

« P(B|A) =P(B)or
. P(AB) = P(A)P(B)

5\_/'5 X and Y are independent if A and B are independent for any
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Motivation [OMED Ab rll ode

Vi 20 = S2p) ¢
Independent i6 a commohn W property
:/vP(AB) = P(AYP(B)” Jectorize. the pmf
 Compute the pmf easily
 Will skip Ch 2.3 affect only my HW2 and Midterm 17?
* Ifljoin this club, will it affect my GPA?

 Decide the model complexity
 What really affects the results?
* What do | need to ask when reviewing a loan request?
e What input data do | need to predict the defect?




Examples

Physically independence — Toss a coin and roll a die (N, X)
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Probabilistic independence ¢ v v

7 A 2 Xis even ’{"’

> B £ {X =0 (mod 3)} 5_.{5 6}
P(B{ﬁ):é = p(8) ’

ﬁfﬁ

A ad @ we mdpmdont




Slido

Choose “independent” RVs/ Events
' Pick X from 52 playing card,
{X is RED} vs. {X is prime}

—— ——

B. {Xiseven}vs.{Xisprime} 3 *° 1 “/l& #4285709
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C. PickY from 325 days,
{Y is rainy at Champaign} vs. {Y%L}‘ v
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D. {Any midterms on Y} vs.{Y is hom
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