Last lecture

Probability with equally likely outcomes (Ch 1.4)

Poker hands

Random Variables (RV) (Ch 2.1)

- Definition
- Probability Mass Function (pmf)

Agenda

Random Variables (RV)

- Probability Mass Function (pmf)
- Mean and Variance (Ch 2.2)

Probability Mass Function (PMF)

- Let S be the sum of rolling two dice
 - $p_S =$

- Let *M* be the max number of rolling two dice
 - $p_M =$

Probability Mass Function (PMF)

• Let *N* be the # of toss until getting first tail

• Let *M* be the # of heads observed until getting first tail

Mean and Variance (Ch 2.2)

Mean

Do we need detailed p_{height} ?

- In many cases, we just need mean μ_X instead of p_X
- $\mu_X = E[X] = \sum_i x_i p_X(x_i)$

- X is the number for a die roll
- Y = 2X
- Z = |X 3|

Function of RV - LOTUS

X is RV uniformly sampled from $\{-1, 0, 1, 2, 3\}$

•
$$p_X(x) =$$

$$Y = X^2$$

$$Y = X^2$$
• $\mu_y = E[Y] =$

Function of RV - LOTUS

X is RV uniformly sampled from $\{-1,0,1,2,3\}$, $Y=X^2$ But we can also compute E[Y] from p_X !

Mean of RV function g(X) is

$$E[g(X)] =$$

Law of the unconscious statistician (LOTUS)

LOTUS examples

X is rolling a D6, Y is rolling a D8 (8-sided die)

$$E[XY] = ?$$

Variance and Standard Deviation

Do you want your salary to be

$$p_X(10K) = 1$$
 or $p_Y(0) = 0.99, p_Y(1000K) = 0.01$

Mean is important... but not complete enough

- Variance Var(X) is how PMF spreads apart from μ_X
- $Var(X) \triangleq E[(X \mu_x)^2] =$

Variance and Standard Deviation

Standard deviation
$$\sigma_X \triangleq \sqrt{Var(X)}$$
; $Var(X) = \sigma_X^2$

 σ_X is of the same unit as X

$$Var(X + c) =$$

$$Var(aX + c) =$$

Standardized RV

For any RV X

• $\frac{X-\mu_X}{\sigma_X}$ is a

RV – Mean 0, variance 1