Last lecture

Poisson process (Ch 3.5)

- Motivation
- Bernoulli process to Poisson process
- Definition
- Properties

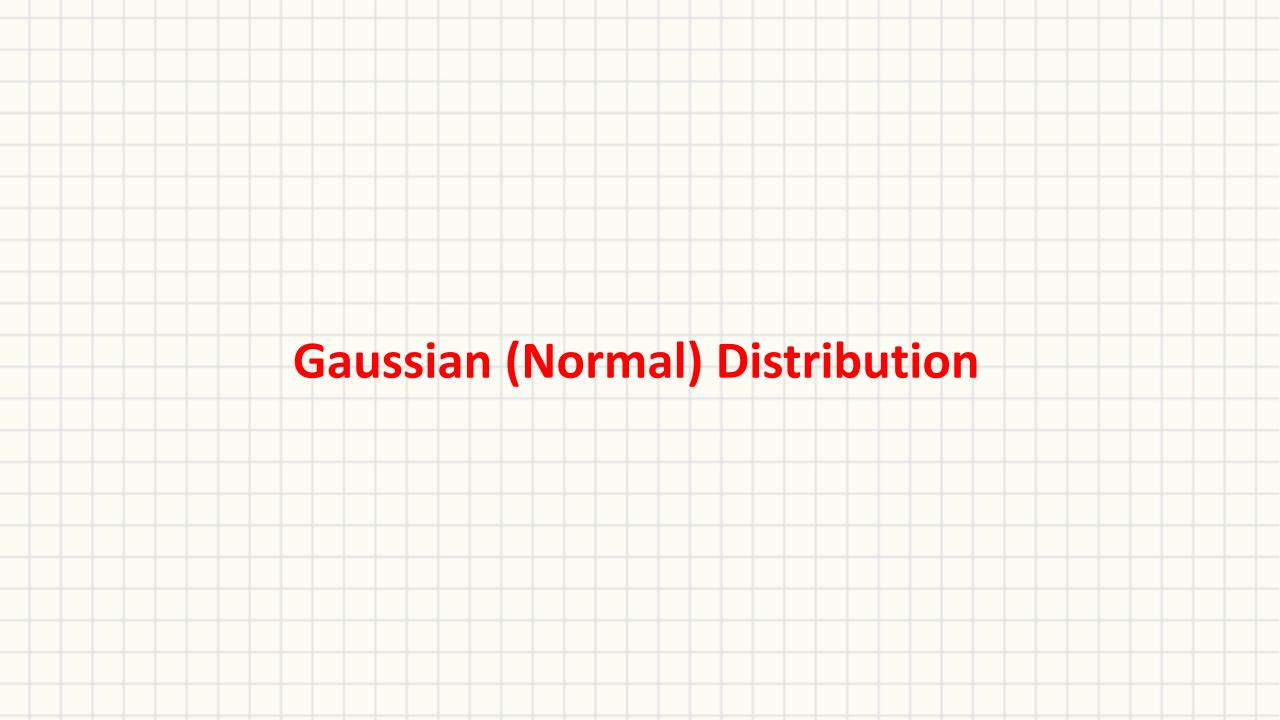
Agenda

Gaussian (normal) Distribution (Ch 3.6.2)

- Motivation and Definition
- Examples

The Central Limit Theorem and Gaussian Approximation (Ch 3.6.3)

- Definition
- CDF Approximation
- Examples

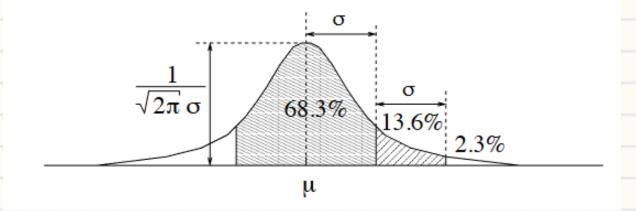


Definition

A normal distribution is defined by μ_X and σ_X^2 , Let $X \sim N(\mu, \sigma^2)$

•
$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- Usage model "Sum of many small independent events"
- E.g. Sum of many binomial distributions



Standard normal distribution

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

$$X \sim N(\mu = 0, \sigma^2 = 1) \sim N(0,1)$$

•
$$\Phi(u) \triangleq F_X(u) =$$

•
$$Q(u) = 1 - \Phi(u)$$

Pre-computed tables!

Φ and Q tables

Z	-0.00	-0.01	-0.02	-0.03	-0.04	-0.05	-0.06	-0.07	-0.08	-0.09
-3.9	0.00005	0.00005	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00003	0.00003
-3.8	0.00007	0.00007	0.00007	0.00006	0.00006	0.00006	0.00006	0.00005	0.00005	0.00005
-3.7	0.00011	0.00010	0.00010	0.00010	0.00009	0.00009	0.00008	0.00008	0.00008	0.00008
-0.1	0.46017	0.45620	0.45224	0.44828	0.44433	0.44038	0.43644	0.43251	0.42858	0.42465
-0.0	0.50000	0.49601	0.49202	0.48803	0.48405	0.48006	0.47608	0.47210	0.46812	0.46414
Z	-0.00	-0.01	-0.02	-0.03	-0.04	-0.05	-0.06	-0.07	-0.08	-0.09
Z	+ 0.00	+ 0.01	+ 0.02	+ 0.03	+ 0.04	+ 0.05	+ 0.06	+ 0.07	+ 0.08	+ 0.09
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994	0.52392	0.52790	0.53188	0.53586
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962	0.56360	0.56749	0.57142	0.57535
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0.99995	0.99995
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0.99997	0.99997
Z	+0.00	+0.01	+0.02	+0.03	+0.04	+0.05	+0.06	+0.07	+0.08	+0.09

Scaling the Gaussian RV

$$f(u) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{u^2}{2})$$

$$X \sim N(\mu = 0, \sigma^2 = 1) \sim N(0,1)$$

•
$$Y = \sigma X + \mu$$

•
$$f_Y(y) =$$

Examples

Given $\Phi(u) \triangleq F_X(u)$ and $Q(u) = 1 - \Phi(u)$ for $X \sim N(0,1)$

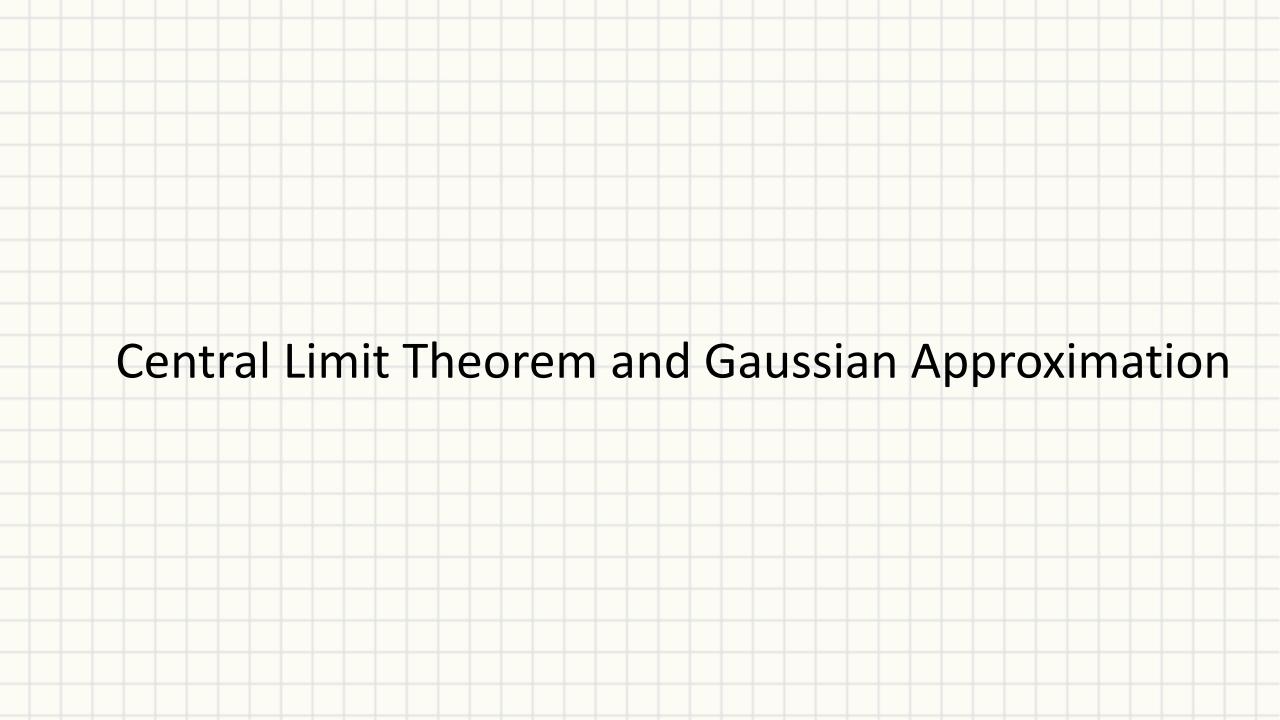
- Let $Y = N(\mu = 10, \ \sigma^2 = 16)$
- Find $P\{Y>15\}$, $P\{Y\leq 5\}$, $P\{Y^2\geq 400\}$ and $P\{Y=2\}$ in terms of Φ or Q

Examples

Suppose $\mu_X = 10$ and $\sigma_X^2 = 3$. Compute $P\{X < 10 - \sqrt{3}\}$ if

- X is a Gaussian RV in terms of Q
- X is a uniform RV

(Hint: $10 - \sqrt{3} \approx 8.27$)

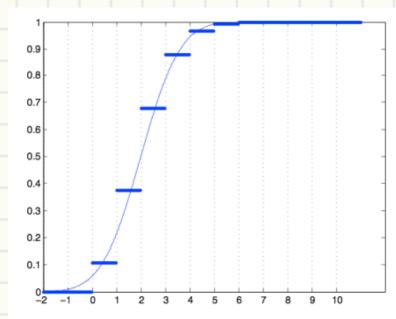


Central Limit Theorem (CLT)

If many independent random variables are added together, and if each of them is small in magnitude compared to the sum, then the sum X has an approximately Gaussian distribution X.

- $P\{X \le v\} \approx P\{\tilde{X} \le v\}$
- E.g., $X \sim Binomial(n, p)$ when np and n(1-p) are not small
 - (n,p) = (10,0.2)

 - $\mu_X =$ $\sigma_X^2 =$
 - What if np is small?



Gaussian Approximation - 1

Approximate $X \sim Bin(10, 0.2)$ with $\tilde{X} \sim N(2, 1.6)$

- $F_X(2) = F_X(2.1) = F_X(2.9)$
- $F_{\tilde{X}}(2) \neq F_{\tilde{X}}(2.9)$
- How should we approximate?
- $P\{X \leq k\} \approx$
- $P\{X < k\} \approx$
- $P\{X \ge k\} \approx$
- $P\{X > k\} \approx$

