Last lecture

Uniform Distribution (Ch 3.3)

- Definition
- Properties

Exponential Distribution (Ch 3.4)

- Definition
- Properties
- Connection with Geometric RV

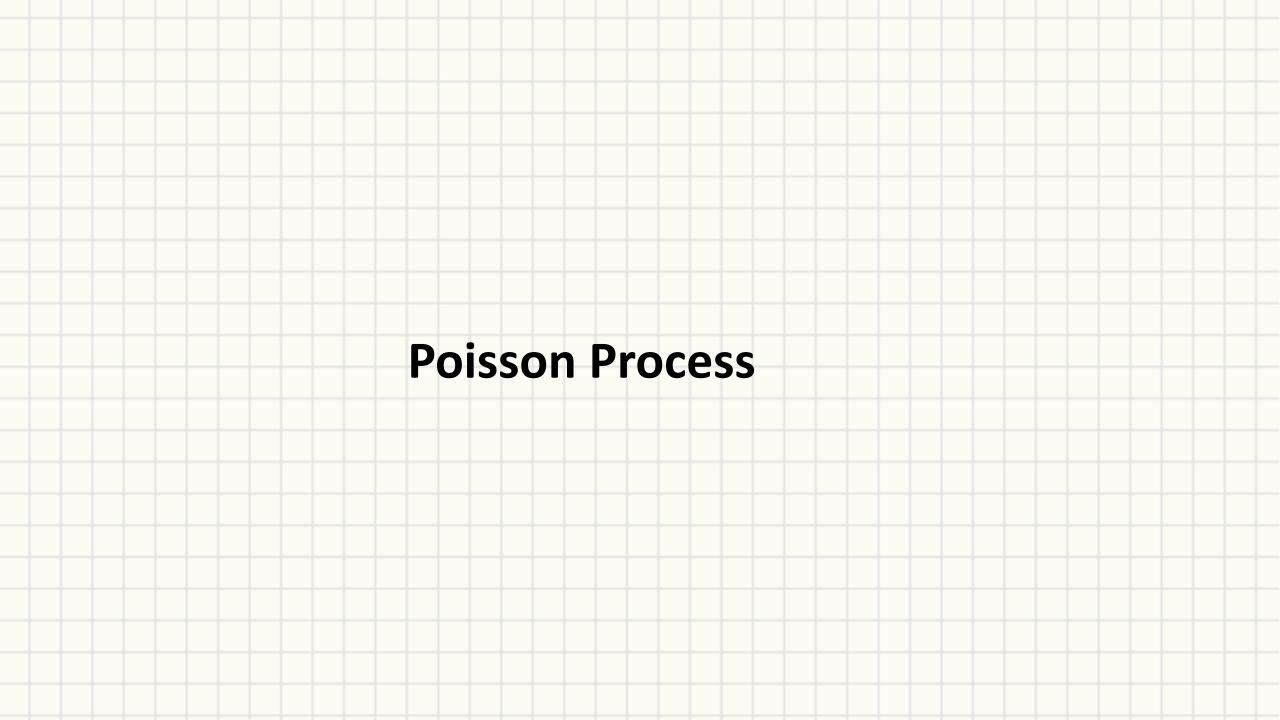
Agenda

Poisson process (Ch 3.5)

- Motivation
- Bernoulli process to Poisson process
- Definition
- Properties

Erlang Distribution (Ch 3.5.3)

- Definition
- Properties



Motivation

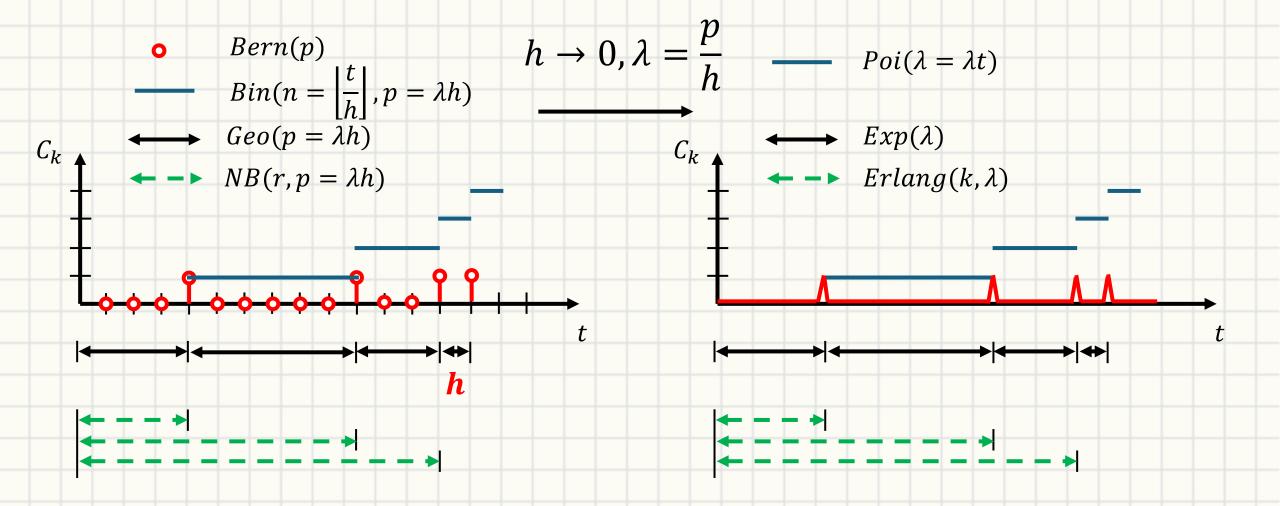
- Model the process of customer coming inside a coffee shop
- The process of incoming calls for customer service
 - If a customer (call) only comes at the of every minutes -> Bernoulli process
 - But what if we want to model the time
 - Define a small h between Bernoulli trials

Bernoulli Process

$$h \to 0, \lambda = \frac{p}{h}$$

Poisson Process

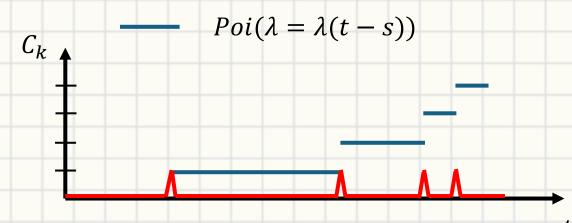
Assume each trial takes h time to complete



Definition

A Poisson process with rate λ is a random counting process $N = (N_t : t \ge 0)$ s.t.

- $N_t N_s$ follows Poisson distribution $Poi(\lambda = \lambda(t s))$
- For $0 \le t_1 \le t_2 \dots \le t_k$, $N_{t_k} N_{t_{k-1}}$ the increments are independent with each other



Consider a Poisson process with rate $\lambda > 0$ in time interval [0, T]

- X is the total number of count during [0, T]
- X_1 is the count during $[0, \tau]$, $0 < \tau < T$
- X_2 is the count during $[\tau, T]$
- Solve $P\{X = n\}$, $P\{X_1 = i\}$ and $P\{X_2 = j\}$

Consider a Poisson process with rate $\lambda > 0$ in time interval [0, T]

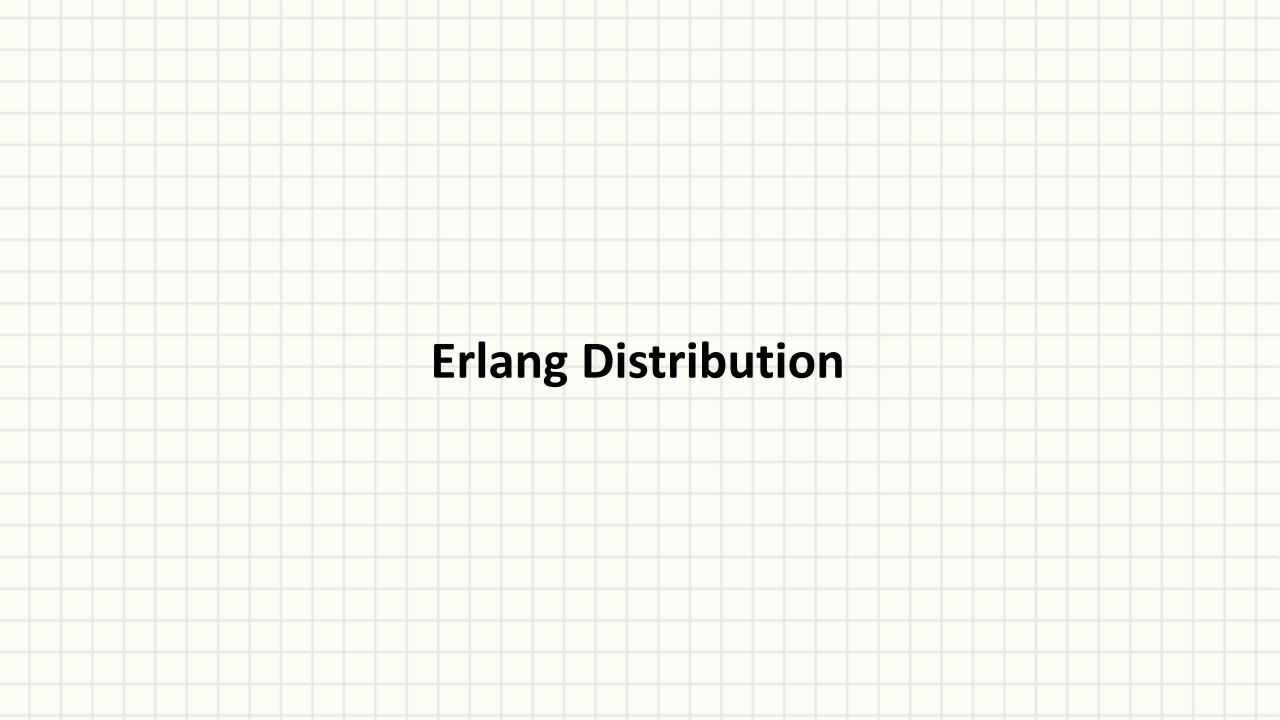
- X is the total number of count during [0, T]
- X_1 is the count during $[0, \tau]$, $0 < \tau < T$
- X_2 is the count during $[\tau, T]$
- Let n = i + j
- Solve $P(X = n | X_1 = i)$

Consider a Poisson process with rate $\lambda > 0$ in time interval [0, T]

- X is the total number of count during [0, T]
- X_1 is the count during $[0, \tau]$, $0 < \tau < T$
- X_2 is the count during $[\tau, T]$
- Let n = i + j
- Solve $P(X_1 = i | X = n)$

Calls arrive to a support center at rate $\lambda=2$ calls per minute. Let N_t denotes the number of calls until time t (mins)

- $N_t \sim$
- $P_{N_t}(k) =$
- *P*{ No calls arrive in the first 3.5 minutes }
- $P\{$ The third call arrives after time $t = 3.\}$



Definition

Let T_r denotes the time of r^{th} count of a Poisson process

- $T_r = \sum_{i=1}^r U_i$, $U_i \sim Exp(\lambda)$
- $F_{T_r}^c(t) = P\{T_r > t\}$: "At most r 1 count by time t"
- $F_{T_r}^c(t) =$

•
$$f_{T_r}(t) = -\frac{dF_{T_r}(t)}{dt} =$$