Last lecture

Reliability & Union Bound(Ch 2.12)

- Examples network outage
- Examples Array code

Continuous RV (Ch 3)

- Motivation
- Cumulative Distribution Function (Ch 3.1)
- Examples

Agenda

Cumulative Distribution Function (Ch 3.1)

- Examples
- CDF to PMF and probabilistic density function (PDF)

Continuous RV & Probability Density Function (Ch 3.2)

- Definition
- Facts

Examples

- Find all u where $P\{X = u\} > 0$
- Find $P\{X \le 0\}$
- Find $P\{X < 0\}$

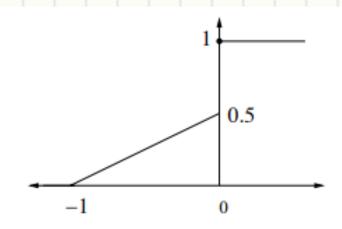
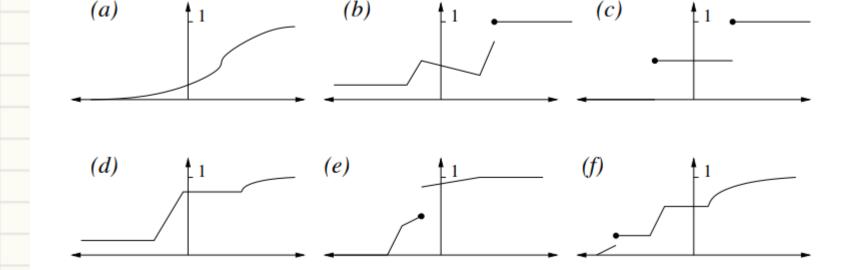


Figure 3.2: An example of a CDF.

CDF Properties

A function F is a CDF of some RV iif

- *F* is none-decreasing
- $\lim_{c \to \infty} F(c) = 1$ and $\lim_{c \to -\infty} F(c) = 0$
- *F* is right-continuous



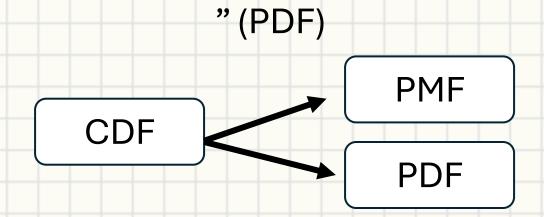
CDF to PMF and PDF

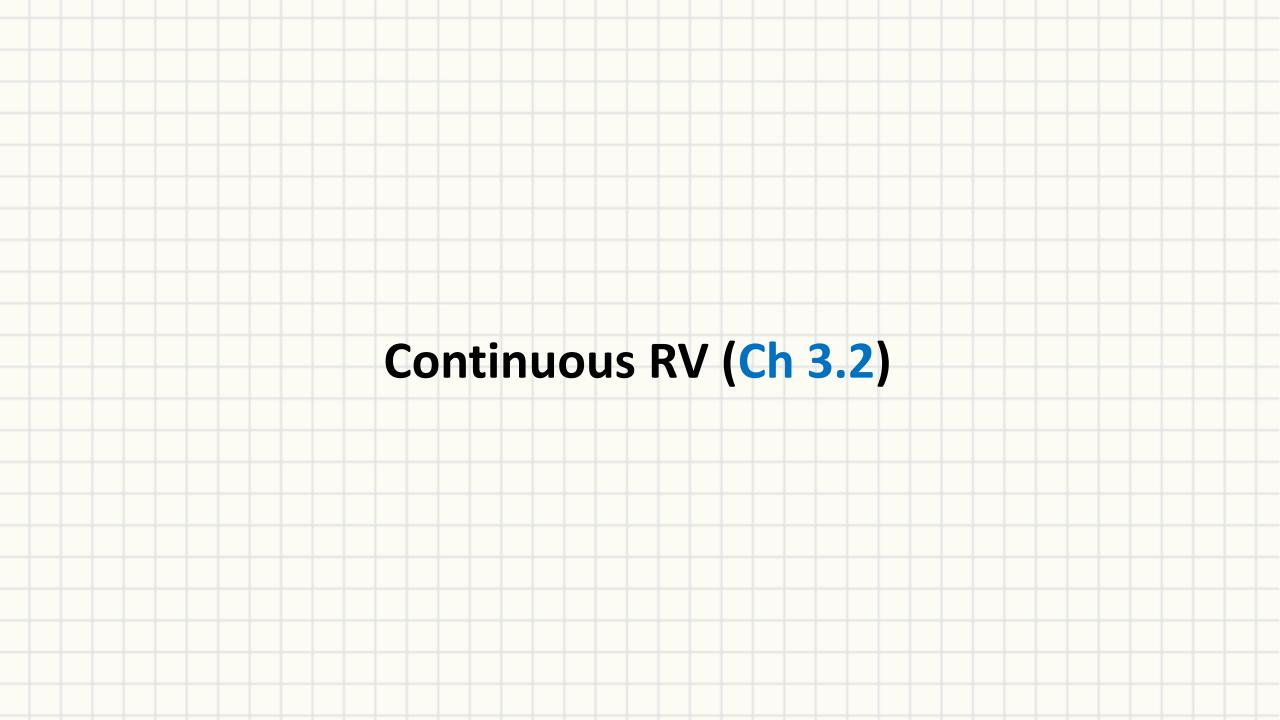
For discrete RV

- $F_X(c) =$ $p_X(u) =$

For continuous RV

- $F_X(c) =$
- $f_X(u) =$
- $f_X(u)$ is called "





Continuous RV and PDF

X is a continuous RV if its pdf f_X follows

- $F_X(c) = \int_{-\infty}^c f_X(u) du$ for all $c \in \mathbb{R}$
- Support $\{u: f_X(u) > 0\}$
- If $F_X(c)$ is continuous and differentiable, $f_X=F_X{}^{\prime}$
 - Since there is no jump in $F_X(c)$, $P\{X=c\}$
- $P{a < X \le b} = F_X(b) F_X(a) =$
- $\int_{-\infty}^{\infty} p_X(u) du$

Why P "density" F

By definition,
$$f_X = F_X'$$

• Let
$$\epsilon = 2h > 0$$

$$f_X(u_0) = \lim_{h \to 0} \frac{F(u_0 + h) - F(u_0)}{h}$$

$$f_X(u_0) = \lim_{h \to 0} \frac{F(u_0) - F(u_0 - h)}{h}$$

$$f_X(u_0) = \lim_{h \to 0} \frac{F(u_0 + h) - F(u_0 - h)}{2h}$$

•
$$f_X(u_0) = \lim_{h \to 0} \frac{F(u_0 + \frac{\epsilon}{2}) - F(u_0 - \frac{\epsilon}{2})}{\epsilon}$$

•
$$P\left\{u_0 - \frac{\epsilon}{2} < X < u_0 + \frac{\epsilon}{2}\right\} = \epsilon f_X(u_0) + O(\epsilon)$$

"Density of the probability"

Expectation and Variance

- $\mu_X = E[X] = \int_{-\infty}^{\infty} u f_X(u) du$
- LOTUS still applies, $E[g(x)] = \int_{-\infty}^{\infty} g(u) f_X(u) du$
- E.g. $E[aX^2 + bX + c] = aE[X^2] + bE[X] + c$
- $\sigma_X^2 = Var(X) = E[(X \mu_X)^2] = E[X^2] \mu_X^2$

Example

•
$$f_X(u) = \begin{cases} A(1-u^2) & if -1 \le u \le 1 \\ 0 & else \end{cases}$$

• Find
$$A$$
, $P\{-0.5 < X < 1.5\}$, F_X , μ_X , σ_X^2