Last lecture

Markov and Chebychev inequalities (Ch 2.9)

- Chebychev inequality
- Confidence interval

Binary Hypothesis Testing (Ch 2.11)

- Definition
- Likelihood table

Agenda

Binary Hypothesis Testing (Ch 2.11)

- Likelihood table
- Maximum likelihood decision rule

Maximum Likelihood Table

Table showing

of two hypotheses

	X = 0	X = 1	X = 2	X = 3
H_1	0	0.1	0.3	0.6
H_0	0.4	0.3	0.2	0.1

Decision rule can be shown on the table

False alarm and missing

	X = 0	X = 1	X = 2	X = 3
H_1	0	<u>0.1</u>	<u>0.3</u>	0.6
H_0	<u>0.4</u>	0.3	0.2	0.1

- $P_{false\ alarm} =$
- $P_{miss} =$

	X = 0	X = 1	X = 2	X = 3
H_1	0	0.1	0.3	0.6
H_0	0.4	0.3	0.2	0.1

Maximum Likelihood (ML) decision rule

Pick whichever is higher per column!

	X = 0	X = 1	X = 2	X = 3
H_1	$p_1(0) = 0$	0.1	0.3	0.6
H_0	0.4	0.3	0.2	0.1

Likelihood Ratio Test (LRT) $\Lambda(k) = \frac{p_1(k)}{p_0(k)}$

A LRT with threshold τ :

Maximum Likelihood (ML) decision rule

Pick whichever is higher per column!

	X = 0	X = 1	X = 2	X = 3
H_1	0	0.1	0.3	0.6
H_0	<u>0.4</u>	0.3	0.2	0.1

What's the problem?

Maximum A Posteriori (MAP) decision rule

Let's pick based on P(H|X) or joint probability P(H,X)

- Pick the higher P(H,X) per column
- Lowest total error rate p_e
- But how do we get the joint probability?
- Recall conditional probability

$$P(A,B) =$$

$$P(H_1, X = k) =$$

P(H,X)	X = 0	X = 1	X = 2	X = 3
H_1	0	0.02	0.06	0.12
H_0	0.32	0.24	0.16	0.08

Prior and Posterior

$$P(H_1, X = k) = P(X = k|H_1)P(H_1)$$

- $P(H_1) \triangleq \pi_1$: ", probability assumed before observation
- $P(H_0) \triangleq \pi_0$
- Bayes' rule revisited (Param/Hypothesis vs. Observation)

$$P(H|X) = \frac{P(X|H)P(H)}{P(X)}$$

Terminologies

Exam Safe

$$P(\boldsymbol{\theta}|X) = \frac{P(X|\boldsymbol{\theta})P(\boldsymbol{\theta})}{P(X)}$$

Likelihood	$P(X \theta)$	Tractable, well defined	Toss $p = 0.3$ coin
Posterior	$P(\boldsymbol{\theta} X)$	Typical goal	$x_{1:3} = \{H, T, T\}, p = ?$
Prior	$P(\theta)$	Domain knowledge	# coins $p = 0.3$ in world
Evidence	P(X)	Approx. with large data	# H in world

Likelihood table to joint probability

Assume
$$\pi_1 = P(H_1) = 0.2$$
, $\pi_0 =$

- Decide on joint probability is same as posterior probability
- MAP rule = LRT rule with τ =

P(X H)	X = 0	X = 1	X = 2	X = 3
H_1	0	0.1	0.3	0.6
H_0	0.4	0.3	0.2	0.1

P(H,X) X = 0	X = 1	X = 2	X = 3
H_1			
H_0			

Example

X: Draw a coin from the bag and toss it 5 times

- Likelihood table
- Joint probability table
- Describe ML and MAP rule, compute
 - p_{false_alarm}
 - p_{miss}
 - \bullet p_e

$$H_1: p = \frac{2}{3} \text{ coin}$$

$$H_0: p = \frac{1}{2} \operatorname{coin}$$