Last lecture

Markov and Chebychev inequalities (Ch 2.9)

- Chebychev inequality
- Confidence interval

Binary Hypothesis Testing (Ch 2.11)

- Definition
- Likelihood table

Correction

Midtern # 1 range until

HWK#4 => Poisson

NO MLE/confidence interval.

Agenda

Binary Hypothesis Testing (Ch 2.11)

- Likelihood table
- Maximum likelihood decision rule
- · Maximum A Posteriori

Maximum Likelihood Table

• Table showing likelihood of two hypotheses

$$X = 0$$
 $X = 1$ $X = 2$ $X = 3$
 $P(X | H_1) \rightarrow H_1$ 0 0.1 0.3 0.6 $1 \neq \sum P(X | H_1)$
 $P(X | H_0) \rightarrow H_0$ 0.4 0.3 0.2 0.1 $1 \Rightarrow \sum = 1$

If Alice has tumor, P{Alice ultraspund scan

• Decision rule can be shown on the table has 2 circles | H,]

by under lining a cell per column

False alarm and missing

Metrics for rules

	X = 0	X = 1	X = 2	X = 3
H_1	0	0.1	0.3	0.6
H_0	0.4	0.3	0.2	0.1

- · Pfalse alarm = P{Claim H1/H0} = 0.3+0.2+0.1 = 0.6
- · P_{miss} = P { Claim Ho| H₁ 3 = 0 (Type I error

Another policy

Pfalse alarm = 0.2+0.1 = 0.3

	X = 0	X = 1	X = 2	X = 3
H_1	0	0.1	0.3	0.6
H_0	0.4	0.3	0.2	0.1

Maximum Likelihood (ML) decision rule

Pick whichever is higher per column!

$\Delta(1)=$						
	X = 0	X = 1	X = 2	X = 3		
H_1	$p_1(0)=0$	0.1	0.3	0.6		
H_0	0.4	0.3	0.2	0.1		

$$\Lambda(0) = \frac{0}{0.4} = 0 \qquad \Lambda(1) = \frac{3}{2}$$

Likelihood Ratio Test (LRT) $\Lambda(k) = \frac{p_1(k)}{p_0(k)}$

A LRT with threshold τ :

Maximum Likelihood (ML) decision rule

Pick whichever is higher per column!

What's the problem?

vnat's the problem?

3) If
$$P_{false}$$
 alarm \uparrow $P(H_0)$ \uparrow
 \downarrow P (claim $H_1 | H_0$) \Rightarrow (arge (Type I)

error

 $P_{m\bar{i}}$ ss \uparrow $P(H_1)$ \uparrow count

Slidos – Midterm Review and Early Feedback

Midterm Review

- This Friday class time
- Vote for the contents!

#2124287

Early Feedback

- Suggest improvement
- Anonymous by default

#9021295

Maximum A Posteriori (MAP) decision rule

Let's pick based on P(H|X) or joint probability P(H,X)

- Pick the higher P(H,X) per column
- Lowest total error rate p_e _ Total error
- But how do we get the joint probability?
- Recall conditional probability

Recatt conditional probability
$$P(A,B) = P(B|A) P(A)$$
 $P(H_1,X=k) = P(X=k|H_1) \times P(H,X) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(X=k|H_1) \times P(H,X) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(X=k|H_1) \times P(H,X) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(X=k|H_1) \times P(H,X) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(X=k|H_1) \times P(H_1,X) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(X=k|H_1) \times P(H_1,X) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(X=k|H_1) \times P(H_1,X) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(X=k|H_1) \times P(H_1,X) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(X=k|H_1) \times P(H_1,X) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(X=k|H_1) \times P(H_1,X) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(X=k|H_1) \times P(H_1,X) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(H_1,X) = P(H_1,X) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(H_1,X) = P(H_1,X) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(H_1,X) = P(H_1,X) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(H_1,X=k) = P(H_1,X=k) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(H_1,X=k) = P(H_1,X=k) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(H_1,X=k) = P(H_1,X=k) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(H_1,X=k) = P(H_1,X=k) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(H_1,X=k) = P(H_1,X=k) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(H_1,X=k) = P(H_1,X=k) = 0 \quad X=1 \quad X=2 \quad X=3$
 $P(H_1,X=k) = P(H_1,X=k) = P(H_1,X=k) = 0 \quad X=1 \quad X=3$

Prior and Posterior

$$P(H_1, X = k) = P(X = k|H_1)P(H_1)$$

- $P(H_1) \triangleq \underline{\pi_1}$: "prior probability, probability assumed before observation X
- $P(H_0) \triangleq \pi_0$
- Bayes' rule revisited (Param/Hypothesis vs. Observation)

Terminologies

Exam Safe

$$P(\boldsymbol{\theta}|X) = \frac{P(X|\boldsymbol{\theta})P(\boldsymbol{\theta})}{P(X)}$$

+(Likelihood	$P(X \theta)$	Tractable, well defined	Toss $p=0.3$ coin
	Posterior	$P(\boldsymbol{\theta} X)$	Typical goal	$x_{1:3} = \{H, T, T\}, p = ?$
1	Prior	$P(\theta)$	Domain knowledge	# coins $p = 0.3$ in world
	Evidence	P(X)	Approx. with large data	# H in world

Likelihood table to joint probability

Assume
$$\pi_1 = P(H_1) = 0.2$$
, $\pi_0 = P(H_0) = l - \pi_1 = 0.3$

Decide on joint probability is same as posterior probability

• MAP rule = LRT rule with
$$\tau = \frac{\pi_0}{\pi_1} = \frac{0.8}{0.2} = 4$$

$$P(X/H,) P(X/H,) = \frac{\pi_0}{\pi_1} = \frac{0.8}{0.2} = 4$$

		4.3		
Λ	0	0.33	1,5	6

P(X H)	X = 0	X = 1	X = 2	X = 3		P(H,X)
H_1	0, .	0.1	0.3	0.6	V. 2	H_1
H_0	0.4	0.3	0.2	0.1	0.8	H_0

	P(H,X)				X = 3
V. 2	H_1	G	0.02	0,06	0.12
0.8	H_0	10.32	10.24	0.16	0,08