Last lecture

Maximum Likelihood Estimation (MLE) (Ch 2.8)

- Definition
- Motivation and Examples
- Method

Markov and Chebychev inequalities (Ch 2.9)

- Markov inequality
- Chebychev inequality

Agenda

Markov and Chebychev inequalities (Ch 2.9)

- Chebychev inequality
- Confidence interval

Binary Hypothesis Testing (Ch 2.11)

- Definition
- Likelihood table
- Maximum likelihood decision rule

Chebychev Inequality

Give information regarding Var(X)

If X is a RV, for d > 0

$$P\{|X - \mu_X| \ge d\} \le \frac{\sigma_X^2}{d^2}$$

•
$$P\{|X - \mu_X| \ge a\sigma_X\} \le \frac{1}{a^2}$$

Proof - Extension of Markov inequality

Confidence Interval

How close is our estimate \hat{p} to the real parameter p

- Do a poll of 200 people X denotes # of people agree
- $X \sim Bi(n = 200, p)$

•
$$P\{|X - np| \ge a\sigma\} \le \frac{1}{a^2}$$

•
$$P\{|X - np| \ge a\sigma\} \le \frac{1}{a^2}$$

• $P\{\left|\frac{X}{n} - p\right| \le \frac{a\sigma}{n}\} \ge 1 - \frac{1}{a^2}$

•
$$(\hat{p} - a\sqrt{\frac{p(1-p)}{n}}, \hat{p} + a\sqrt{\frac{p(1-p)}{n}})$$
 is called **Confidence interval**

Closer look – confidence interval

•
$$(\hat{p} - a\sqrt{\frac{p(1-p)}{n}}, \hat{p} + a\sqrt{\frac{p(1-p)}{n}})$$
 is called **Confidence interval**

$$P\left\{p \in \left(\hat{p} - a\sqrt{\frac{p(1-p)}{n}}, \hat{p} + a\sqrt{\frac{p(1-p)}{n}}\right)\right\} \le 1 - \frac{1}{a^2}$$

- Before starting the poll, if we take a = 5,
 - we have $1 \frac{1}{25} = 96\%$ confidence that p will locate at this interval
 - But we don't know p(1-p)? Replace it with a loose bound p(1-p) <

•
$$P\left\{p \in \left(\hat{p} - \frac{a}{2\sqrt{n}}, \hat{p} + \frac{a}{2\sqrt{n}}\right)\right\} \le 1 - \frac{1}{a^2}$$

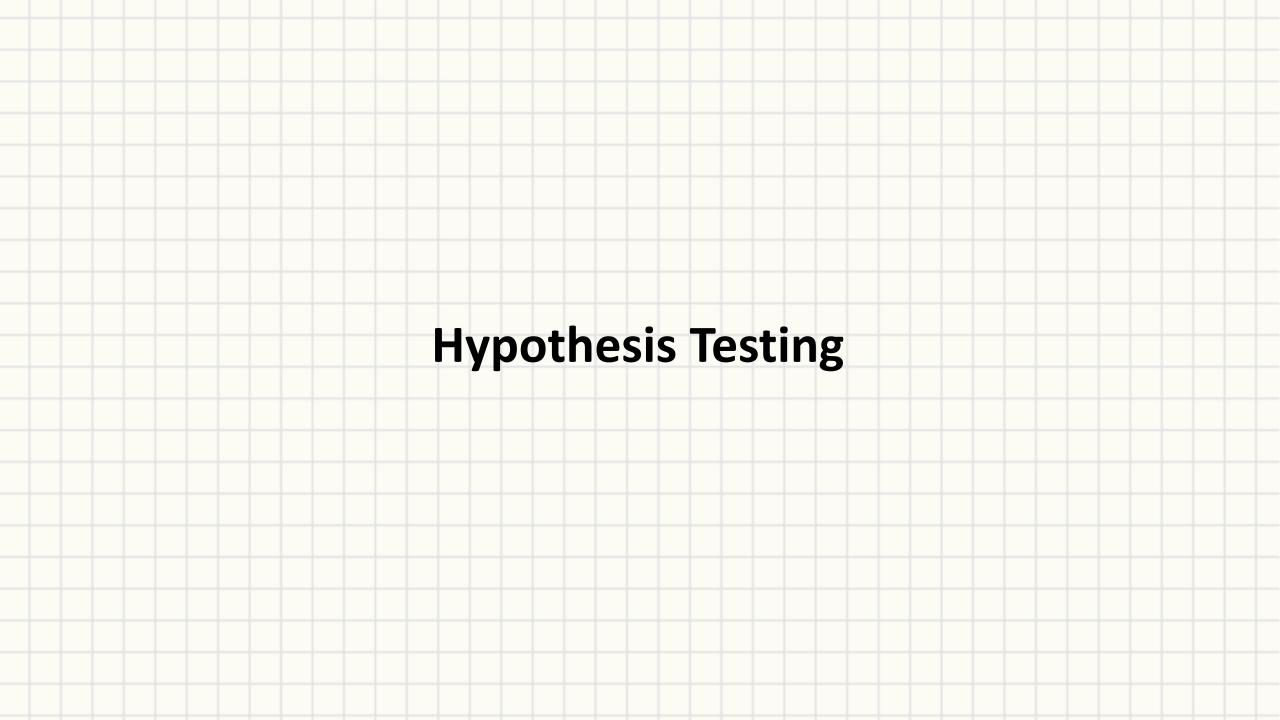
Example

We want to do an opinion poll of size n for a policy.

- *X* is # of positive votes
- $\hat{p} = \frac{X}{n}$ be the estimate of the support rate.
- If we want true p within 0.1 with 96% confidence
- How many participants n do we need?

#1 Midterm Reminder

- Oct 6 (Mon.) 7-8:30 PM @ 1002/1013/1015 ECEB
 - Conflict Oct 7 8-9:30AM @ 2015 ECEB
- All topics until confidence intervals (HERE)
- 1 Letter size HAND-WRITTEN notes
- No calculator
- Exam will be scanned and graded on Gradescope



Binary Hypothesis Testing with Discreet Observations

Given two hypotheses H_1 and H_0 where $H_0 = H_1^C$

- E.g., $H_1 ext{ } ext{$\stackrel{\circ}{=}$ }$ "Patient has tumor(s)"; $H_0 ext{$\stackrel{\circ}{=}$ }$ "Patient has no tumor"
- Decision rule
 - Decide H_1 or H_2 given X
 - E.g., $X \triangleq$ "Suspect circles in ultrasound scan"
 - How can we pick the best rule?

Maximum Likelihood Table

Table showing

of two hypotheses

	X = 0	X = 1	X = 2	X = 3
H_1	0	0.1	0.3	0.6
H_0	0.4	0.3	0.2	0.1

Decision rule can be shown on the table

False alarm and missing

	X = 0	X = 1	X = 2	X = 3
H_1	0	<u>0.1</u>	<u>0.3</u>	0.6
H_0	<u>0.4</u>	0.3	0.2	0.1

- $P_{false\ alarm} =$
- $P_{miss} =$

	X = 0	X = 1	X = 2	X = 3
H_1	0	0.1	0.3	0.6
H_0	0.4	0.3	0.2	0.1

Maximum Likelihood (ML) decision rule

Pick whichever is higher per column!

	X = 0	X = 1	X = 2	X = 3
H_1	0	0.1	0.3	0.6
H_0	0.4	0.3	0.2	0.1

What's the problem?