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Maximum Likelihood Estimation (MLE) 



Definition

How                       a distribution is of parameter 𝜃 given the 
observation 𝑘.

• argmax𝜃 𝑝𝜃(𝑘)
• If I get {𝐻, 𝐻, 𝐻, 𝑇, 𝐻} out of unfair coin toss, what’s 𝑝

Likelihood 𝑝𝜃(𝑘)
• 𝑃(𝑘|𝜃) for different 𝜃
• How likely there will be 1𝑅2𝐵 if I draw {𝑅, 𝑅, 𝐵}

MLE
• Find 𝜃 that “Maximize” the likelihood given 𝑘



Motivation

In real cases, we often do not know the parameters
• Mean of binomial/ Poisson
• But we can measure
• Not limited to distributions… 

Examples
• Estimate no-show rate in flight
• Estimate the mean time failure
• Estimate the win-rate of a bandit machine
• Fitting a curve (e.g. income curve)



Example – Unfair coin

We have an unfair coin of 𝑝 probability getting 𝐻. If we toss 𝑛 =
1000 times and get 𝑘 heads 

• Guess 𝑝?

• 𝑝𝑋 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘

•
𝑑𝑝𝑋 𝑘

𝑑𝑝
=

𝑘

𝑝
−

𝑛−𝑘

1−𝑝
𝑝𝑘 1 − 𝑝 𝑛−𝑘 = 𝑘 − 𝑛𝑝 𝑝𝑘−1(1 − 𝑝)

• Max at



Example – Unknown interval

Draw a number between [1, 𝑛] where 𝑛 is an unknown parameters. 
If we observe 𝑘 being drawn. Find  the MLE of 𝑛 

• 𝑝𝑛 𝑘 =



Example – Special Lottery

In the first draw, the customer has a probability of 𝜃 to win (𝑊) and 
(1 −  𝜃) to lose (𝐿).
For each L ticket drawn in a sequence, the winning rate is doubled. 
E.g. If Alice draws {𝐿, 𝐿}, she has the probability 4𝜃 to draw a 𝑊 
ticket.

Estimate 𝜃 if Alice draw {𝐿, 𝐿 𝑊}



Markov and Chebychev inequalities



Markov Inequality

What if we only know 𝐸 𝑌  or 𝑉𝑎𝑟(𝑌)?
• Can we know more?

Markov inequality – If 𝑌 is a non-negative RV, for 𝑐 > 0

• 𝑃{𝑌 ≥ 𝑐} ≤
𝐸 𝑌

𝑐
  

𝐸 𝑌  = σ𝑖 𝑢𝑖𝑝𝑌 𝑢𝑖

  = σ𝑢𝑖<𝑐 𝑢𝑖𝑝𝑌 𝑢𝑖 + σ𝑢𝑖≥𝑐 𝑢𝑖𝑝𝑌 𝑢𝑖

  ≥ σ𝑢𝑖<𝑐 0 × 𝑝𝑌 𝑢𝑖 + σ𝑢𝑖≥𝑐 𝑐𝑝𝑌 𝑢𝑖

  = 𝑐 σ𝑢𝑖≥𝑐 𝑝𝑌 𝑢𝑖 = 𝑐𝑃(𝑌 ≥ 𝑐)

Equality holds iif 𝑝𝑌 0 + 𝑝𝑌 𝑐 = 1 



Example

Through 200 balls into 100 bins randomly. At most how many 
bins can contain 𝑐 ≥ 5 balls?

• Intuitive solution

• Markov inequality
• 𝐸 𝑌 =
• 𝑃{𝑌 ≥ 5} ≤



Chebychev Inequality

Give information regarding 𝑉𝑎𝑟(𝑋)

If 𝑋 is a RV, for d > 0

• 𝑃{|𝑋 − 𝜇𝑋| ≥ 𝑑} ≤
𝜎𝑋

2

𝑑2   

• 𝑃{ 𝑋 − 𝜇𝑋 ≥ 𝑎𝜎𝑋} ≤
1

𝑎2

• Proof - Extension of Markov inequality



Confidence Interval

How close is our estimate Ƹ𝑝 to the real parameter 𝑝
• Do a poll of 200 people - 𝑋 denotes # of people agree
• 𝑋~𝐵𝑖(𝑛 = 200, 𝑝)
• Ƹ𝑝 =

• 𝑃 |𝑋 − 𝑛𝑝| ≥ 𝑎𝜎 ≤
1

𝑎2

• 𝑃
𝑋

𝑛
− 𝑝 ≤

𝑎𝜎

𝑛
≥

1

𝑎2

• ( Ƹ𝑝 − 𝑎
𝑝 1−𝑝

𝑛
, Ƹ𝑝 + 𝑎

𝑝 1−𝑝

𝑛
) is called Confidence interval
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