Last lecture

Geometric distribution (Ch 2.5)

Property – memoryless

Bernoulli Process (Ch 2.6)

- Definition
- Properties
- Negative binomial distribution

Poisson Process (Ch 2.6)

Definition

$$\mu_{Pois} =$$

$$Var(Pois) = \sigma_{Pois}^2 =$$

Agenda

Maximum Likelihood Estimation (MLE) (Ch 2.8)

- Definition
- Motivation and Examples
- Method

Markov and Chebychev inequalities (Ch 2.9)

- Markov inequality
- Chebychev inequality
- Confidence interval

Maximum Likelihood Estimation (MLE)

Definition

How a distribution is of parameter θ given the observation k.

- $\operatorname{argmax}_{\theta} p_{\theta}(k)$
- If I get $\{H, H, H, T, H\}$ out of unfair coin toss, what's p

Likelihood $p_{\theta}(k)$

- $P(k|\theta)$ for different θ
- How likely there will be 1R2B if I draw $\{R, R, B\}$

MLE

• Find θ that "Maximize" the likelihood given k

Motivation

In real cases, we often do not know the parameters

- Mean of binomial/ Poisson
- But we can measure
- Not limited to distributions...

Examples

- Estimate no-show rate in flight
- Estimate the mean time failure
- Estimate the win-rate of a bandit machine
- Fitting a curve (e.g. income curve)

Example – Unfair coin

We have an unfair coin of p probability getting H. If we toss n=1000 times and get k heads

- Guess p?
- $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$

•
$$\frac{dp_X(k)}{dp} = \left(\frac{k}{p} - \frac{n-k}{1-p}\right)p^k(1-p)^{n-k} = (k-np)p^{k-1}(1-p)$$

Max at

Example – Unknown interval

Draw a number between [1, n] where n is an unknown parameters. If we observe k being drawn. Find the MLE of n

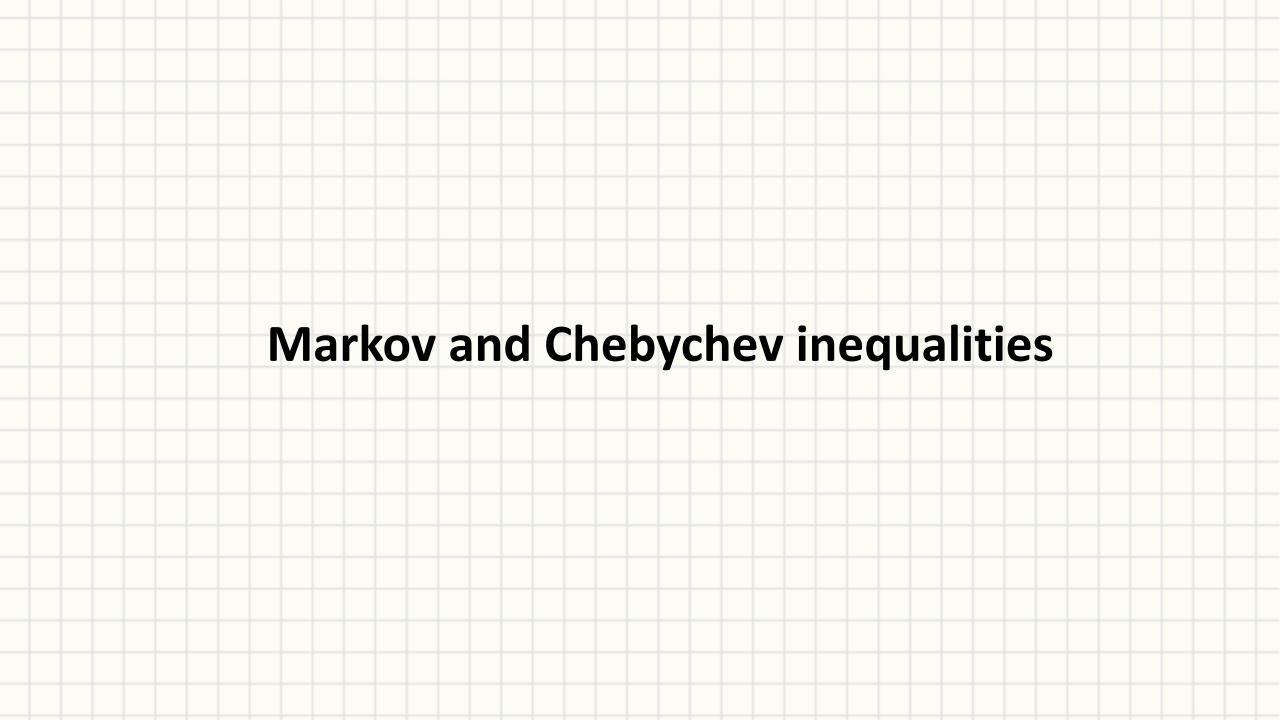
•
$$p_n(k) =$$

Example – Special Lottery

In the first draw, the customer has a probability of θ to win (W) and $(1 - \theta)$ to lose (L).

For each L ticket drawn in a sequence, the winning rate is doubled. E.g. If Alice draws $\{L, L\}$, she has the probability 4θ to draw a W ticket.

Estimate θ if Alice draw $\{L, L W\}$



Markov Inequality

What if we only know E[Y] or Var(Y)?

Can we know more?

Markov inequality – If Y is a non-negative RV, for c>0

•
$$P\{Y \ge c\} \le \frac{E[Y]}{c}$$

$$E[Y] = \sum_{i} u_{i} p_{Y}(u_{i})$$

$$= \sum_{u_{i} < c} u_{i} p_{Y}(u_{i}) + \sum_{u_{i} \ge c} u_{i} p_{Y}(u_{i})$$

$$\ge \sum_{u_{i} < c} 0 \times p_{Y}(u_{i}) + \sum_{u_{i} \ge c} c p_{Y}(u_{i})$$

$$= c \sum_{u_{i} \ge c} p_{Y}(u_{i}) = c P(Y \ge c)$$

Equality holds iif
$$p_Y(0) + p_Y(c) = 1$$

Example

Through 200 balls into 100 bins randomly. At most how many bins can contain $c \ge 5$ balls?

- Intuitive solution
- Markov inequality

 - E[Y] =• $P\{Y \ge 5\} \le$

Chebychev Inequality

Give information regarding Var(X)

If X is a RV, for d > 0

$$P\{|X - \mu_X| \ge d\} \le \frac{\sigma_X^2}{d^2}$$

•
$$P\{|X - \mu_X| \ge a\sigma_X\} \le \frac{1}{a^2}$$

Proof - Extension of Markov inequality

Confidence Interval

How close is our estimate \hat{p} to the real parameter p

- Do a poll of 200 people X denotes # of people agree
- $X \sim Bi(n = 200, p)$
- $P\{|X np| \ge a\sigma\} \le \frac{1}{a^2}$ $P\{\left|\frac{X}{n} p\right| \le \frac{a\sigma}{n}\} \ge \frac{1}{a^2}$
- $(\hat{p} a\sqrt{\frac{p(1-p)}{n}}, \hat{p} + a\sqrt{\frac{p(1-p)}{n}})$ is called **Confidence interval**