
Geometric distribution (Ch 2.5)
• Property – memoryless

Bernoulli Process (Ch 2.6)
• Definition
• Properties
• Negative binomial distribution

Poisson Process (Ch 2.6)
• Definition
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Agenda

Maximum Likelihood Estimation (MLE) (Ch 2.8)
• Definition
• Motivation and Examples 
• Method

Markov and Chebychev inequalities (Ch 2.9)
• Markov inequality
• Chebychev inequality
• Confidence interval
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Maximum Likelihood Estimation (MLE) 



Definition

How                       a distribution is of parameter 𝜃 given the 
observation 𝑘.

• argmax𝜃 𝑝𝜃(𝑘)
• If I get {𝐻, 𝐻, 𝐻, 𝑇, 𝐻} out of unfair coin toss, what’s 𝑝

Likelihood 𝑝𝜃(𝑘)
• 𝑃(𝑘|𝜃) for different 𝜃
• How likely there will be 1𝑅2𝐵 if I draw {𝑅, 𝑅, 𝐵}

MLE
• Find 𝜃 that “Maximize” the likelihood given 𝑘
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Motivation

In real cases, we often do not know the parameters
• Mean of binomial/ Poisson
• But we can measure
• Not limited to distributions… 

Examples
• Estimate no-show rate in flight
• Estimate the mean time failure
• Estimate the win-rate of a bandit machine
• Fitting a curve (e.g. income curve)



Example – Unfair coin

We have an unfair coin of 𝑝 probability getting 𝐻. If we toss 𝑛 =
1000 times and get 𝑘 heads 

• Guess 𝑝?
• 𝑝𝑋 𝑘 = 𝑛

𝑘 𝑝𝑘 1 − 𝑝 𝑛−𝑘

• 𝑑𝑝𝑋 𝑘
𝑑𝑝

= 𝑘
𝑝

− 𝑛−𝑘
1−𝑝

𝑝𝑘 1 − 𝑝 𝑛−𝑘 = 𝑘 − 𝑛𝑝 𝑝𝑘−1(1 − 𝑝)
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Example – Unknown interval

Draw a number between [1, 𝑛] where 𝑛 is an unknown parameters. 
If we observe 𝑘 being drawn. Find  the MLE of 𝑛 

• 𝑝𝑛 𝑘 =
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Example – Special Lottery

In the first draw, the customer has a probability of 𝜃 to win (𝑊) and 
(1 −  𝜃) to lose (𝐿).
For each L ticket drawn in a sequence, the winning rate is doubled. 
E.g. If Alice draws {𝐿, 𝐿}, she has the probability 4𝜃 to draw a 𝑊 
ticket.

Estimate 𝜃 if Alice draw {𝐿, 𝐿 𝑊}
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Markov and Chebychev inequalities



Markov Inequality

What if we only know 𝐸 𝑌  or 𝑉𝑎𝑟(𝑌)?
• Can we know more?

Markov inequality – If 𝑌 is a non-negative RV, for 𝑐 > 0
• 𝑃{𝑌 ≥ 𝑐} ≤ 𝐸 𝑌

𝑐
  

𝐸 𝑌  = σ𝑖 𝑢𝑖𝑝𝑌 𝑢𝑖
  = σ𝑢𝑖<𝑐 𝑢𝑖𝑝𝑌 𝑢𝑖 + σ𝑢𝑖≥𝑐 𝑢𝑖𝑝𝑌 𝑢𝑖
  ≥ σ𝑢𝑖<𝑐 0 × 𝑝𝑌 𝑢𝑖 + σ𝑢𝑖≥𝑐 𝑐𝑝𝑌 𝑢𝑖
  = 𝑐 σ𝑢𝑖≥𝑐 𝑝𝑌 𝑢𝑖 = 𝑐𝑃(𝑌 ≥ 𝑐)

Equality holds iif 𝑝𝑌 0 + 𝑝𝑌 𝑐 = 1 
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Example

Through 200 balls into 100 bins randomly. At most how many 
bins can contain 𝑐 ≥ 5 balls?

• Intuitive solution

• Markov inequality
• 𝐸 𝑌 =
• 𝑃{𝑌 ≥ 5} ≤
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Chebychev Inequality

Give information regarding 𝑉𝑎𝑟(𝑋)

If 𝑋 is a RV, for d > 0

• 𝑃{|𝑋 − 𝜇𝑋| ≥ 𝑑} ≤ 𝜎𝑋
2

𝑑2   

• 𝑃{ 𝑋 − 𝜇𝑋 ≥ 𝑎𝜎𝑋} ≤ 1
𝑎2

• Proof - Extension of Markov inequality
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