```
ECE 313 / MATH 362 PROBABILITY WITH ENGINEERING APPLICATIONS
LECTURE 20 : RELIABILITY AND UNION BOUND
   · TOPICS TO COVER (BASED ON CH 2.12)
     > RELIABILITY AND UNION BOUND
   > RELIABILITY AND UNION BOUND
                                                                ASSUMPTION
                                  C, Prob. of failure = p,
                                                                ALL LINK FAILURES ARE
                                                               INDEP OF EACH OTHER'
                                           TERMINAL
                       SOURCE
          NETWORK 1:
                                  C2, P2
                                                              F. : EVENT THAT LINK C; FAILS
                                                       DEF:
         P(NETWORK OUTAGE) = P(BOTH C, AND C2 FAIL) = P(F, F2) = p, b2
                                c_1, e_1 c_2, e_2
                        SOURCE ---
                                                  -> TERMINAL
          NETWORK 2:
         P(NETWORK OUTAGE) = P(EITHER C, OR C2 FAILS)
                                P( F, UF2)
                                P(F_1) + P(F_2) - P(F_1F_2)
                                        + p_2 - p_1 p_2
                             =
                                   P1
          NETWORK 3:
                        SOURCE
```

$$= (p_1 + p_2 - p_1 p_2) (p_3 + p_4 - p_3 p_4)$$

- UNION BOUND :

$$P(A \cup B) \leq P(A) + P(B) \cdots (*)$$

$$P(A \cup B) = P(A) + P(B)$$

IN GENERAL !

WE ALSO KNOW THAT: P(AVB) = P(A) + P(B) - P(AB)

IF A AND B ARE INDEP THEN P(AB) 20 : P(A) P(B) 20

> FITHER P(A) ≈0 OR P(B) ≈0

IF THE PROB. OF INDIVIDUAL EVENTS ARE SMALL: UNION BOUND GIVES A GOOD

APPROXIMATION

 $P(NETWORK OUTAGE) = P(EITHER C_1 OR C_2 FAILS)$ $= P(F_1 \cup F_2) = P(F_1) + P(F_2) - P(F_1F_2)$ $= P_1 + P_2 - P_1P_2$

UNION BOUND $\longrightarrow \subseteq P(F_1) + P(F_2) = P_1 + P_2$

P(NETWORK OUTAGE) = P(
$$C_{12}$$
 AND C_{34} FAIL)

= P(C_{12} FAILS) · P(C_{34} FAILS)

= ($P_1 + P_2 - P_1 P_2$) ($P_3 + P_4 - P_3 P_4$)

ALGO :

NETWORK OUTAGE =
$$C_{12}$$
 AND C_{34} FAIL

= C_{12} FAILS AND C_{34} FAILS

= $(C_1 \text{ OR } C_2 \text{ FAILS})$ AND $(C_3 \text{ OR } C_4 \text{ FAILS})$

= $(F_1 \cup F_2) \cap (F_3 \cup F_4)$

= $(F_1 F_3 \cup F_1 F_4 \cup F_2 F_3 \cup F_2 F_4)$

$$\Rightarrow P(NETWORK OUTAGE) = P(F_1F_3 \cup F_1F_4 \cup F_2F_3 \cup F_2F_4)$$

$$UNION BOUND \longrightarrow = P(F_1F_3) + P(F_1F_4) + P(F_2F_3) + P(F_2F_4)$$

$$= P(P_1 + P_2) (P_3 + P_4)$$

$$= (P_1 + P_2) (P_3 + P_4)$$