
University of Illinois Fall 2025

ECE 313: Problem Set 5: Problems and Solutions
Due: Sunday, October 12 at 07:00:00 p.m. Note the later due date.
Reading: ECE 313 Course Notes, Section 2.8, 2.9.

Note on reading: For most sections of the course notes, there are short-answer questions at
the end of the chapter. We recommend that after reading each section, you try answering the
short-answer questions. Do not hand in; answers to the short answer questions are provided in the
appendix of the notes.
Note on turning in homework: You must upload handwritten homework to Gradescope. Alter-
natively, you can typeset the homework in LaTeX. However, no additional credit will be awarded
to typeset submissions. No late homework will be accepted. Please write on the top right corner
of the first page:
NAME
NETID
SECTION
PROBLEM SET #
Page numbers are encouraged but not required. Five points will be deducted for improper head-
ings.

1. [A Variant of Geometric Distribution]
In class, we defined a geometric random variable (XTrials) as the number of trials needed to
get the first success in a sequence of independent Bernoulli trials with probability of success
p. Another way of defining a geometric random variable (XFailures) could be to count the
number of failures before the first success. Do the following.

(a) Find the pmf of XFailures and verfiy that it is indeed a pmf.

Solution: A realization XFailures = k means k failures followed by one success:

P (XFailures = k) = (1− p)k p, k = 0, 1, 2, . . .

Verification:
(1− p)k p ≥ 0, k = 0, 1, 2, . . .

∞∑
k=0

(1− p)kp = p · 1

1− (1− p)
= 1.

(b) Express XFailures in terms of XTrials. Calculate the mean and variance of XFailures.

Solution: Relationship:
XTrials = XFailures + 1.

Since XTrials ∼ Geom(p),

E[XTrials] =
1

p
, Var(XTrials) =

1− p

p2
.

Therefore,

E[XFailures] = E[XTrials]− 1 =
1− p

p
, Var(XFailures) = Var(XTrials) =

1− p

p2
.



(c) Calculate the maximum likelihood estimate of p based on a single observation from
XFailures. How does it compare to the maximum likelihood estimate of p based on a
single observation from XTrials?

Solution: For one observation k from XFailures, the likelihood is

L(p) = (1− p)kp, 0 < p < 1.

Log-likelihood:

ℓ(p) = k ln(1− p) + ln p, ℓ′(p) = − k

1− p
+

1

p
.

Setting ℓ′(p) = 0 gives

p̂MLE =
1

k + 1
.

For a single observation t from XTrials, the likelihood is

L(p) = (1− p)t−1p, 0 < p < 1.

Log-likelihood:

ℓ(p) = (t− 1) ln(1− p) + ln p, ℓ′(p) = − t− 1

1− p
+

1

p
.

Setting ℓ′(p) = 0 gives

p̂MLE =
1

t
.

Since t = k + 1, the two MLEs agree numerically:

1

k + 1
=

1

t
.

Thus, both formulations yield the same maximum likelihood estimate of p.

2. [Maximum Likelihood Parameter Estimation]
A biased coin when tossed shows a Heads with probability p and Tails with probability 1− p.

(a) The biased coin is tossed 10 times, and 6 Heads are observed. What is the maximum
likelihood estimate p̂ML of p given this observation?

Solution: Let X denote the number of Heads observed in 10 independent tosses. Then

X ∼ Binomial(n = 10, p).

The pmf is

P (X = k) =

(
10

k

)
pk(1− p)10−k.

For the observed data X = 6, the likelihood is

L(p) =

(
10

6

)
p6(1− p)4.
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Taking the log-likelihood:

ℓ(p) = lnL(p) = ln

(
10

6

)
+ 6 ln p+ 4 ln(1− p).

Differentiating and setting equal to zero:

ℓ′(p) =
6

p
− 4

1− p
= 0 ⇒ 6(1− p) = 4p.

Hence,
6− 6p = 4p ⇒ 10p = 6 ⇒ p̂ML = 0.6.

(b) Suppose it is known that p = 0.05. The biased coin is now tossed an unknown number
n times during which 6 Heads are observed. What is the maximum likelihood estimate
n̂ML of n given this observation?

Solution: If X has binomial distributed with parameters (n, 0.05), and we observe
X = 6. Thus, the likelihood of observing X = 6 is zero if n < 6. The likelihood function
L(n) for n ≥ 7 is given by:

L(n) = P{X = 6} =

(
n

6

)
(0.05)6(0.95)n−6. (1)

Taking the ratio:

L(n)

L(n+ 1)
> 1 =⇒ n− 5 > (n+ 1)(0.95) =⇒ n > 119. (2)

This implies that L(n) strictly decreases for n ≥ 120. Similarly, one can show that L(n)
strictly increases for n ≤ 119. Thus, n̂ML = 119 or 120.

3. [Markov Inequality]
Let X denote the outcome of rolling a fair die. We define two random variables Y = X2 and
Z = X2 − 15.

(a) Find E[Y ] and E[Z]

Solution: By LOTUS, we have

E[Y ] =

6∑
x=1

x2pX(x) =
1

6

6∑
x=1

x2 = 15.17

E[Z] = E[Y − 15] = E[Y ]− 15 = 0.17

(b) Find the exact probability for {Y ≥ c} as a function of c for c ∈ {1, 10, 100}, and verify
if the Markov inequality holds for all these c.
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Solution: We can compute the target probability by summing all the probabilities of
outcomes satisfying the condition.

P{Y ≥ 1} =
∑

{x:x2≥1}

pX(x) =

6∑
x=1

pX(x) = 1

P{Y ≥ 10} =
∑

{x:x2≥10}

pX(x) =

6∑
x=4

pX(x) =
3

6
= 0.5

P{Y ≥ 100} =
∑

{x:x2≥100}

pX(x) = 0

The corresponding Markov inequalities are

P{Y ≥ 1} = 1 ≤ E[Y ]

1
= 15.17 ✓

P{Y ≥ 10} = 0.5 ≤ E[Y ]

10
= 1.517 ✓

P{Y ≥ 100} = 0 ≤ E[Y ]

100
= 0.1517 ✓

(c) Find the exact probability for {Z ≥ c} as a function of c for c ∈ {1, 10, 100}, and verify
if the Markov inequality holds for all these c. Why does Markov inequality not hold for
Z?

Solution: We can compute the target probability by summing all the probabilities of
outcomes satisfying the condition.

P{Z ≥ 1} =
∑

{x:x2−15≥1}

pX(x) =
6∑

x=4

pX(x) =
3

6
= 0.5

P{Z ≥ 10} =
∑

{x:x2−15≥10}

pX(x) =

6∑
x=5

pX(x) =
2

6
=

1

3

P{Z ≥ 100} =
∑

{x:x2−15≥100}

pX(x) = 0

The corresponding Markov inequalities are

P{Z ≥ 1} = 0.5 ≰
E[Z]

1
= 0.17 ✗

P{Z ≥ 10} =
1

3
≰

E[Z]

10
= 0.017 ✗

P{Z ≥ 100} = 0 ≤ E[Z]

100
= 0.0017 ✓

The Markov inequality does not hold because Z is not always non-negative. For X ≤ 3,
Z = X2 − 15 < 0.

4



4. [Chip Testing]
Alice is a graduate student who has designed an integrated circuit (IC) implementing an
machine learning accelerator IC in a 45 nm semiconductor process as part of her graduate
research. She has just received 50 packaged chips and is getting ready to test them to see
if it is working properly. Alice wants to show that her design can classify images with high
accuracy pa. To do that she tests her chip with n images and counts the number E that are
incorrectly classified. She obtains an accuracy estimate p̂a = 1− E

n . Alice hopes to write-up
a research paper on her design and submit it to ISSCC, a top circuits conference. All she
needs is one working chip that classifies images from the test set with high accuracy in order
to report the results (yield is not an issue in papers from academia). However, testing a chip
is a slow process and Alice wants to minimize the testing time so she can submit the paper
before the deadline.

(a) Determine the probability distribution of the random variable E representing the mis-
classification error count.

Solution: The error count E can be obtained by running n independent trials of a
Bernoulli random variable with parameter pa. Thus, E is a binomial random variable
with parameters (n, 1− pa), i.e., E ∼ Bi(n, 1− pa).

(b) Alice tests the first chip using n = 100 test images and finds that 95 images are correctly
classified. Is it ok for Alice to report that her design gives an accuracy of pa = 0.95?
Give reasons.

Solution: No. Suppose the true accuracy is 0 ≤ pa ≤ 1, then testing 100 images will
provide an estimate p̂a which will differ from pa. Alice needs to test with sufficiently
large number of test images so that the pa lies in a small interval (confidence interval)
around p̂a with high probability (high confidence level) and report both.

(c) How many test vectors should Alice test her chip with so that she can report that the
true accuracy of her design pa lies in the interval p̂a± 1% with a confidence level greater
than 95%?

Solution: Treating each decision of the machine learning accelerator as the outcome of
an independent Bernoulli trail with an unknown parameter pa, we have (see equation
(2.15) in the course notes):

Pr

{
pa ∈

(
p̂a −

a

2
√
n
, p̂a +

a

2
√
n

)}
≥ 1− 1

a2
. (3)

Thus, a 95% confidence level implies a =
√
20. Furthermore, a 1% confidence interval

around the estimated accuracy implies the number of test images required are n =
(
√
20)2/(4× (0.01)2) = 50000.

(d) Since testing is a slow process, Alice decides to do a quick pass through all of her 50
chips by testing with 2500 images to find ”good parts” which she will then test with
large number of vectors as in Part (c). She would still like to achieve a high confidence
level of 96%? What confidence interval can she achieve?

Solution: A 96% confidence interval implies a = 5. Hence, with n = 2500 images, Alice
can obtain a confidence interval of:

5

2
√
2500

= ±5%.

Thus, if p̂a = 90%, then her test ensures that the true accuracy pa ∈ (85%, 95%) with a
probability greater than 95%.
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5. [Airline industries]
Each airplane has capacity for 150 passengers, and overbooking is a common practice in these
industries.

(a) To sell more tickets than available seats, the airline needs to estimate the probability
that each passenger will attend the flight. Suppose that each passenger will attend the
flight with probability p. The airline uses p̂n = X/n as the estimate of p, where n is
the number of sold tickets and X is the number of people who attended the flight. How
large n should be to estimate p within 0.1 with confidence of 0.99?

Solution: Notice that

P

(
p ∈

(
p̂− a

2
√
n
, p̂+

a

2
√
n

))
≥ 1− 1

a2
.

Hence to get a confidence of 0.99, we should have 1− 1
a2

= 0.99 ⇒ a = 10.

To estimate within 0.1, we have

a

2
√
n
≥ 0.1 ⇒

√
n ≥ 50 ⇒ n ≥ 2500.

(b) According to the historical data, each passenger will attend a flight with probability
pattend = 0.9. What is the maximum number of tickets the airline can sell to ensure that
no one is left behind with probability 0.75? (Hint: Use Chebyshev’s inequality, roots of
0.9x2 + 0.6x− 150 = 0 are −13.25 and 12.58.)

Solution: Let X denote the number of passengers that will attend the flight. Let n
denote the number of sold tickets.

By Chebyshev’s inequality we have:

P (|X − np| ≥ aσ) ≤ 1

a2
⇒ P (X ∈ (np− aσ, np+ aσ)) ≥ 1− 1

a2
,

where σ =
√
np(1− p).

If we want to make sure that with probability 0.75, no one is left behind, we should
have:

i) 1− 1

a2
= 0.75 ⇒ a = 2,

ii) np+ aσ ≤ 150 ⇒ 0.9n+ 2
√
0.09n ≤ 150.

Let x =
√
n. Then the condition becomes:

0.9x2 + 0.6x = 150.

Roots are −13.25 and 12.58. For any x ∈ (−13.25, 12.58), we have 0.9x2+0.6x−150 ≤ 0.

Hence n is the largest integer smaller than (12.58)2, i.e.

n = 158.

6. [Discrete Random Variable on Even Integers]
Let X denote a discrete random variable that takes on even integer values 0, 2, 4, . . . , n, and
zero otherwise.
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(a) Let the pmf of X be given by

pX(k) =
3(2k)

4(2n)− 1
, for even integer values k ∈ {0, 2, 4, . . . , n},

where the value of n is unknown. Find the maximum-likelihood estimate n̂ML from the
observation that X = 10 on a trial of the experiment.

Solution: The likelihood of observing X = 10 is

pX(10) =
3(210)

4(2n)− 1
.

As n increases, the denominator increases, so pX(10) decreases. Thus, to maximize the
likelihood, we choose the smallest even n such that X = 10 is possible. That is n = 10.

n̂ML = 10.

(b) Now, let
pX(k) = a, for even integer values k ∈ {0, 2, 4, . . . , n},

and zero otherwise. Find the constant a that makes this a valid pmf and compute its
mean.

Solution: For a valid pmf we must have

1 =

n/2∑
k=0

pX(2k) =

n/2∑
k=0

a = a
(n
2
+ 1

)
.

So

a =
1

n
2 + 1

=
2

n+ 2
.

Since all values are equally likely, the mean is the midpoint:

µX = E[X] =
n

2
.

Alternatively, using the definition:

E[X] =

n/2∑
k=0

(2k) · a = 2a

n/2∑
k=0

k = 2a ·
n
2

(
n
2 + 1

)
2

= a · n(n+ 2)

4
=

n

2
.
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