
University of Illinois Fall 2025

ECE 313: Problem Set 3: Problems and Solutions
Due: Friday, September 26 at 07:00:00 p.m.
Reading: ECE 313 Course Notes, Sections 2.3, 2.10, 2.4.1-2.4.2

Note on reading: For most sections of the course notes, there are short-answer questions at
the end of the chapter. We recommend that after reading each section, you try answering the
short-answer questions. Do not hand in; answers to the short answer questions are provided in the
appendix of the notes.
Note on turning in homework: Homework is assigned on a weekly basis on Fridays, and is
due by 7 p.m. on the following Friday. You must upload handwritten homework to Gradescope.
Alternatively, you can typeset the homework in LaTeX. However, no additional credit will be
awarded to typeset submissions. No late homework will be accepted. Please write at the top right
corner of the first page:
NAME
NETID
SECTION
PROBLEM SET #
Page numbers are encouraged but not required. Five points will be deducted for improper headings.
Please assign your uploaded pages to their respective question numbers while submitting your
homework on Gradescope. 5 points will be deducted for incorrectly assigned pages.

1. [The Biased Coin Game]
You are playing a game with two coins:

• Coin A is fair: it has a probability of 1
2 of landing heads.

• Coin B is biased: it has a probability of 3
4 of landing heads.

One of the coins is randomly selected (with equal probability), and then flipped three times.
You observe the following outcome:

Two heads and one tail

What is the probability that the coin used was Coin B, given the observed outcome?

Solution: Let CA and CB denote the events that Coin A and Coin B were chosen, respec-
tively. Let E be the event that the outcome is two heads and one tail.

We want to compute:

P (CB | E) =
P (E | CB) · P (CB)

P (E)

Since the coin is chosen at random:

P (CA) = P (CB) =
1

2

Compute the likelihoods:



P (E | CA) =

(
3

2

)
·
(
1

2

)2

·
(
1

2

)
= 3 · 1

4
· 1
2
=

3

8

P (E | CB) =

(
3

2

)
·
(
3

4

)2

·
(
1

4

)
= 3 · 9

16
· 1
4
=

27

64

Now compute the total probability of observing two heads and one tail:

P (E) = P (E | CA) · P (CA) + P (E | CB) · P (CB)

P (E) =
3

8
· 1
2
+

27

64
· 1
2
=

3

16
+

27

128
=

24

128
+

27

128
=

51

128

Finally, apply Bayes’ Theorem:

P (CB | E) =
27
64 · 1

2
51
128

=
27
128
51
128

=
27

51
=

9

17

2. [Mutually Exclusive and Independent Events]
Prove that two events with positive probabilities cannot simultaneously be mutually exclusive
and mutually independent.

Solution: Let A, B be events.

If A and B are independent, then

P (A ∩B) = P (A)P (B).

Since P (A) > 0 and P (B) > 0, it follows that P (A ∩ B) > 0. Thus, A and B cannot be
mutually exclusive (which would require P (A ∩B) = 0).

If A and B are mutually exclusive, then

P (A ∩B) = 0.

But independence would require

P (A ∩B) = P (A)P (B) > 0,

since both probabilities are positive. This is a contradiction. Therefore, mutually exclusive
events with positive probability cannot be independent.

3. [Monty Hall Problem]
In a game show, a contestant is presented with three doors. Behind one door is a car, and
behind the other two doors are goats. The contestant selects Door 1. ats, the host selects
one at random.

In this instance, the host opens Door 3, revealing a goat. The contestant is then offered the
chance to switch their choice to Door 2.
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(a) Use Bayes Theorem to compute the probability that the car is behind Door 2, given that
the host opened Door 3 to reveal a goat.

Solution: Let Ci denote the event that the car is behind Door i (i = 1, 2, 3). Let H3

denote the event that the host opens Door 3.

We want:

P (C2 | H3) =
P (H3 | C2)P (C2)

P (H3)
.

Since the car is equally likely to be behind any door:

P (C1) = P (C2) = P (C3) =
1
3 .

As the contestant selects Door 1, if the car is behind Door 2, the host must open Door
3, therefore:

P (H3 | C2) = 1

We can also obtain:

P (H3 | C1) =
1
2 (host opens Door 2 or 3 at random),

P (H3 | C3) = 0 (host would not open the car door).

The total probability of H3 is computed by:

P (H3) = P (H3 | C1)·P (C1)+P (H3 | C2)·P (C2)+P (H3 | C3)·P (C3) =
1
2 ·

1
3+1·13+0·13 = 1

6+
1
3 = 1

2 .

Finally, apply Bayes Theorem:

P (C2 | H3) =
1 · 1

3
1
2

=
2

3
.

(b) Based on your calculation, should the contestant switch or stay with their original choice
(Door 1)? Justify your answer using the probabilities you computed.

Solution: If the contestant stays with Door 1, the probability of winning is

P (C1 | H3) =
P (H3 | C1)P (C1)

P (H3)
=

1
2 · 1

3
1
2

= 1
3 .

If the contestant switches to Door 2, the probability of winning is

P (C2 | H3) =
2
3 .

Therefore, the contestant should switch.

Another solution, albeit longer, to parts (a) and (b) is to enumerate the sample space Ω
which is given by:

Ω = {(i, j, k) : i, j, k ∈ {1, 2, 3}, k ̸= i, k ̸= j}

where i is the door behind which there is a car (car door), j is the door chosen by the
contestant, and k is the door opened by the host.
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The cardinality |Ω| = 3 × 2 × 1 + 3 × 1 × 2 = 12 where the first term is the number of
outcomes in which the contestant does not choose the car door, and the second term is
the number of ways in which the contestant does choose it. Enumerating all 12 outcomes
below:

Ω ={(1, 1, 2), (1, 1, 3), (1, 2, 3), (1, 3, 2),
(2, 2, 1), (2, 2, 3), (2, 1, 3), (2, 3, 1),

(3, 3, 1), (3, 3, 2), (3, 1, 2), (3, 2, 1)}

However, the outcomes are not equally likely, e.g.,

P{(1, 1, 2)} =
1

3
× 1

3
× 1

2
=

1

18
;P{(1, 1, 3)} =

1

3
× 1

3
× 1

2
=

1

18
;

P{(1, 2, 3)} =
1

3
× 1

3
× 1 =

1

9
;P{(1, 3, 2)} =

1

3
× 1

3
× 1 =

1

9

i.e., singleton events with outcomes having i = j occur with probability 1/18 otherwise
they occur with probability 1/9.

Now, define event A as ”contestant chooses door 1 and host opens door 3”. Then,
A = {(1, 1, 3), (2, 1, 3)}. Also, define C1 as the event that car is behind door 1. Thus,

P{C1|A} =
P{(1, 1, 3)}

P{(1, 1, 3)}+ P{(2, 1, 3)}
=

1
18

1
18 + 1

9

=
1

3

Similarly,

P{C2|A} =
P{(2, 1, 3)}

P{(1, 1, 3)}+ P{(2, 1, 3)}
=

1
9

1
18 + 1

9

=
2

3

The use of Bayes rule is simpler but it requires a proper definition of the events of
interest. The direct method is longer but provides good intuition.

4. [Medical Diagnostics]
A certain disease affects 2% of a population. A diagnostic test is used to detect the disease.
The test has the following properties:

• If a person has the disease, the test returns positive with probability 0.95 (true positive
rate).

• If a person does not have the disease, the test returns positive with probability 0.10
(false positive rate).

Let D be the event that a randomly selected person has the disease, and T be the event that
the test result is positive.

(a) Compute the following probabilities: P (D), P (T | D), P (T | Dc), and P (T ).

Solution:

P (D) = 0.02, P (Dc) = 0.98, P (T | D) = 0.95, P (T | Dc) = 0.10.

P (T ) = P (T | D)P (D) + P (T | Dc)P (Dc) = 0.95 · 0.02 + 0.10 · 0.98 = 0.117.

4



(b) Compute the probability that a person has the disease given a positive test.

Solution: Apply Bayes’ Theorem:

P (D | T ) = P (T | D)P (D)

P (T )
=

0.95 · 0.02
0.117

=
0.019

0.117
=

19

117
≈ 0.1624.

(c) Determine whether the events D and T are independent.

Solution: They are not independent since

P (D | T ) = 19

117
̸= P (D) = 0.02

(d) Suppose a second, independent test is administered. Let T2 be the event that the second
test is positive. Assume the second test has the same accuracy as the first and is
conditionally independent of the first test, given the disease status. Compute: P (D |
T ∩ T2).

Solution: Conditional independence given disease status gives

P (T ∩ T2 | D) = 0.952 = 0.9025, P (T ∩ T2 | Dc) = 0.102 = 0.01.

Using Law of Total probability:

P (T ∩ T2) = 0.9025 · 0.02 + 0.01 · 0.98 = 0.02785.

Apply Bayes’ Theorem:

P (D | T ∩ T2) =
0.9025 · 0.02

0.02785
=

0.01805

0.02785
=

361

557
≈ 0.6481.

5. [More on Throwing Dice]
Two fair dice are thrown. Let E denote the event that the sum of the dice is 7. Let F denote
the event that the first die equals 4 and let G be the event that the second die equals 3.

(a) Are E and F independent events? Are E and G independent events?

Solution: There are 6 outcomes where E is satisfied: (1,6),(2,5),(3,4), and their oppo-
sites. Therefore P (E) = 1

6 . Also, P (F ) = 1
6 . The intersection between these two events

is one outcome, (4,3). Therefore because P (E ∩ F ) = P (E)P (F ), the two events are
independent.

Like for F , there are 6 outcomes where G is satisfied. The intersection between E
and G is again (4,3). Therefore because P (E ∩ G) = P (E)P (G), the two events are
independent.

(b) Are E and F ∩G independent events?

Solution: Another way to show independence is to show that P (E|F ∩G) = P (E). If
we know that F and G are both satisfied, we know that the outcome must have been
(4,3). So P (E|the roll was (4,3)) is obviously 1. However, P (E) = 1

36 as we previously
showed. So E and F ∩G are not independent.

(c) Are the events E, F and G mutually independent events?

Solution: Mutual independence of three events, E, F and G, requires all pairs, namely,
E and F , F and G, and E and G to be independent and that P (E ∩ F ∩ G) =
P (E)P (F )P (G). From (a), note that we have all pairs to be independent. But, from
(c), we have P (E ∩ F ∩ G) ̸= P (E)P (F )P (G). Hence, E, F , and G are not mutually
independent.
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6. [Reliable Bit Transmission with Majority Voting]
In a digital communication system, each data bit is transmitted multiple times to reduce
the impact of noise. Suppose each copy of a bit is independently corrupted with probability
p = 0.1 during transmission.

To improve reliability, the system uses redundant transmission: each data bit is sent 10
times. The receiver applies majority voting, which means it decides the original bit based
on the value that appears more than half the time among the received copies.

Let X ∼ Binomial(n = 10, p = 0.1), where X is the number of corrupted copies of a single
bit.

(a) What is the probability that the receiver correctly detects the original bit using majority
voting?

Solution: Majority voting is correct if X ≤ 4, i.e., 4 or fewer corrupted copies.

P (X ≤ 4) =

4∑
k=0

(
10

k

)
(0.1)k(0.9)10−k ≈ 0.998

So, the probability of correct detection is approximately 99.8%.

(b) Suppose the system is upgraded and now each bit is sent 15 times. What is the
minimum number of corrupted copies that would cause an incorrect detection?

Solution: Majority voting fails if more than half the copies are corrupted.⌊
15

2

⌋
+ 1 = 8

Therefore, if 8 or more copies are corrupted, the majority vote will be incorrect.

(c) For a general number of repetitions n, derive a formula for the probability of correct
detection assuming corruption probability p and majority voting.

Solution: Let X ∼ Binomial(n, p). Majority voting is correct if:

X ≤
⌊
n− 1

2

⌋
So the probability of correct detection is:

Pcorrect(n, p) =

⌊n−1
2 ⌋∑

k=0

(
n

k

)
pk(1− p)n−k

(d) If the receiver observes that in 1000 transmitted bits, the majority vote was incorrect
120 times, estimate the corruption probability p using the binomial model.

Solution: Given: 1000 transmissions, 120 incorrect majority votes.

Estimate:

q =
120

1000
= 0.12

We want to find p such that:
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P (X > 4) = 0.12 for X ∼ Binomial(10, p)

Using trial-and-error:

p ≈ 0.28

So, the estimated corruption probability is approximately 28%.

7. [Sum of Bernoulli Random Variables]
Answer the following.

(a) Let X1, . . . , Xn be n Bernoulli random variables each with parameter p. Consider a new
random variable, S1 = X1 + · · ·+Xn. Calculate E(S1).

Solution:

E(S1) = E(X1 + · · ·+Xn)

= E(X1) + · · ·+ E(Xn) (Linearity of expectation)

= p+ · · ·+ p

= np

(b) Let S2 be a Binomial random variable with parameters n and p. Calculate E(S2).

Solution: Refer to the book. E(S2) = np

(c) Is E(S1) = E(S2)? If so, is it sufficient to conclude that S1 is also a Binomial random
variable with parameters n and p? Justify your answer.

Solution: Yes. No, just because the expectations of two random variables are the same,
it does not mean they have the same distribution.
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