ECE 313: Hour Exam II

Monday, November 3, 2025 7:00 p.m. — 8:30 p.m.

- 1. [25 points] Let X denote the outcome of rolling a fair die. Define the random variable Y = 2X + 1.
 - (a) (15 points) Bound $P(Y \ge 10)$ using Markov's inequality.

Solution:

$$Y = 2X + 1$$
, $\mathbb{E}[X] = 3.5 \implies \mathbb{E}[Y] = 2(3.5) + 1 = 8$.

By Markov's inequality:

$$P(Y \ge 10) \le \frac{\mathbb{E}[Y]}{10} = \frac{8}{10} = 0.8.$$

$$P(Y \ge 10) \le 0.8.$$

(b) (10 points) Bound $P(Y \ge 12)$ using Chebyshev's inequality.

Solution:

$$Var(X) = \frac{35}{12} \implies Var(Y) = 4 \cdot \frac{35}{12} = \frac{35}{3}.$$

$$\mu_Y = 8$$
, $P(Y \ge 12) = P(Y - 8 \ge 4) \le P(|Y - 8| \ge 4)$.

By Chebyshev:

$$P(|Y - 8| \ge 4) \le \frac{\text{Var}(Y)}{4^2} = \frac{35/3}{16} = \frac{35}{48}.$$

$$P(Y \ge 12) \le \frac{35}{48}.$$

- 2. [25 points] The ECE 313 instructors in wish to come up with decision rules that allows them to predict whether a student has taken ECE 210 previously or not based on their ECE 313 grade. The following historical data is available:
 - From the students who took ECE 210 previously, 45% earned an A, 45% earned a B, and 10% earned a C in ECE 313.
 - From the students who did not take ECE 210, 7.5% earned an A, 57.5% earned a B, and 35% earned a C in ECE 313.

Let X denote a student's letter grade in ECE 313, H_1 represent the hypothesis that the "student took ECE 210", and H_0 represent the hypothesis that "the student did not take ECE 210 previously".

(a) (10 points) Construct the likelihood matrix and find the ML decision rule.

 (b) (10 points) Assume 60% of the students took ECE 210 before, find the MAP decision rule using the joint probability matrix.

Solution: We compute $P(X, H_i) = P(X \mid H_i) \cdot P(H_i)$ for each x:

	X = A	X = B	X = C
H_1	0.27	0.27	0.06
H_0	0.03	0.23	<u>0.14</u>

(c) (5 points) Find $p_{\text{false-alarm}}$ and p_{miss} for the MAP rule.

Solution:

$$p_{\text{false-alarm}} = P(\text{Claim } H_1|H_0) = \frac{0.03 + 0.23}{0.4} = 0.65,$$

and

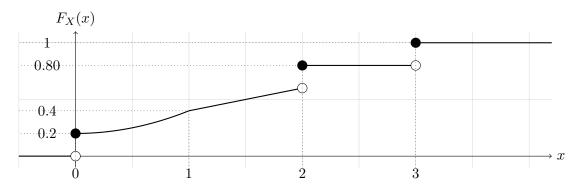
$$p_{\text{miss}} = P(\text{Claim } H_0|H_1) = \frac{0.06}{0.6} = 0.1$$

3. [25 points] The random variable X has the following cumulative distribution function (CDF):

$$F_X(x) = \begin{cases} 0, & x < 0, \\ 0.2 + 0.2x^2, & 0 \le x \le 1, \\ 0.4 + 0.2(x - 1), & 1 < x < 2, \\ 0.80, & 2 \le x < 3, \\ 1, & x \ge 3. \end{cases}$$

(a) (10 points) Sketch a plot of $F_X(x)$.

Solution:



(b) (15 points) Compute the probabilities of the following events: $P\{X=0\}$, $P\{0.5 < X < 1.5\}$, $P\{X=2\}$, $P\{X=0.7\}$, and $P\{0 < X \le 2\}$.

Solution:

$$P\{X=0\} = F_X(0) - F_X(0^-) = 0.2 - 0 = 0.2$$

$$P\{0.5 < X < 1.5\} = F_X(1.5^-) - F_X(0.5) = F_X(1.5) - F_X(0.5) = 0.5 - 0.25 = 0.25$$

$$P\{X=2\} = F_X(2) - F_X(2^-) = 0.8 - 0.6 = 0.2$$

$$P\{X=0.7\} = F_X(0.7) - F_X(0.7^-) = F_X(0.7) - F_X(0.7) = 0$$

$$P\{0 < X \le 2\} = F_X(2) - F_X(0) = 0.8 - 0.2 = 0.6$$

4. [25 points] Answer the following:

(a) (8 points) If $X \sim \mathcal{N}(1,4)$, find the probability $P\{2|X-1| \geq 4\}$. Express your answer in terms of the Q function.

Solution:

$$\begin{split} P\{2|X-1| \geq 4\} &= P\{|X-1| \geq 2\} = P\{\{X-1 \geq 2\} \cup \{X-1 \leq -2\}\} \\ &= P\{X-1 \geq 2\} + P\{X-1 \leq -2\} \\ &= P\left\{\frac{X-1}{2} \geq 1\right\} + P\left\{\frac{X-1}{2} \leq -1\right\} = Q(1) + \Phi(-1) \\ &= 2Q(1) \end{split}$$

(b) (9 points) A fisherman catches fish in a river according to a Poisson process with rate equal to 2 fishes per half hour. Find the probability that he will catch exactly one fish between 8 AM and 9 AM, and a total of exactly 3 fish by 9:30 AM? Leave your answers in terms of powers of e and its multiples.

Solution: Let X_2 denote the number of fish he catches between 8 AM and 9 AM, and X_3 denote the number of fish that he catches between 9 AM and 9:30 AM. Then, $X_2 + X_3 = 3$ where $X_2 \sim \text{Poi}(4)$ and $X_3 \sim \text{Poi}(2)$. By the independent increment property of the Poisson process, X_2 and X_3 are independent. Therefore, the desired probability is given by:

$$P\{X_2 = 1, X_3 = 2\} = P\{X_2 = 1\}P\{X_3 = 2\} = 4e^{-4} \times \frac{2^2e^{-2}}{2!} = 8e^{-6} \approx 19.83 \times 10^{-3}.$$

(c) (8 points) If Y = aX + b such that E[Y] = 11 and Var(Y) = 3 when $X \sim Unif[2, 4]$, determine the values of a and b and the pdf of Y, $f_Y(v)$.

Solution: Since $X \sim \text{Unif}[2, 4]$,

$$E[X] = \frac{2+4}{2} = 3; \quad Var(X) = \frac{(4-2)^2}{12} = \frac{1}{3}$$

From linearity of expectation,

$$E[Y] = aE[X] + b = 3a + b; \quad Var(Y) = a^{2}Var(X) = \frac{a^{2}}{3} \implies (a, b) = (3, 2) \text{ or } (-3, 20)$$

Since Y is a linearly scaled version of X, it is also a uniformly distributed random variable. Since the support of $Y \in [8,14]$ and hence $Y \sim \text{Unif}[8,14]$, i.e., $f_Y(v) = \frac{1}{6}$ for $v \in [8,14]$ and $f_Y(v) = 0$ otherwise.