ECE 313: Lecture 35 Correlation and covariance: scaling properties and covariances of sums (Ch 4.8)

So far, need
$$f_{\chi,y}(u,v)$$

=> Motivation: a number that quantifies the statistical relation between X+Y

Covariance between
$$Cor(X, Y) = E[(X$$

$$Cor(X,Y) = E[(X-E[X])(Y-E[Y])]$$

$$C_{r}(x, y) = E[(x - E$$

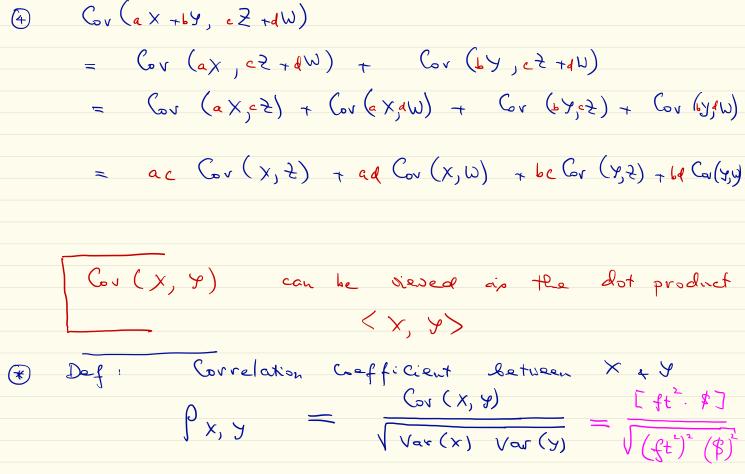
Preperties

Var (x) =
$$E[(x - E[x])^2] = E[x^2 - 2E[x].X + E[x]]$$

Cor (x, x)

$$= E[x^2] - (E[x])^2$$

$$= E[x^2] - 2E[x].E[x] + E[x]$$


Properties (cont.)

Con (5, 4) = E[(5-E[5]) (7-E[7])] E[X] = a E[X] + b E[X] + c

7-E[Z] = a (X-E[X]) + b (Y-E[Y]) + C.O

E[(f-E[f])(A-E[A])] = a E[(x-E[X])(A-E[A])]

+ PEL (A-ECAJ) (A-ECAJ)]

Consider random variables X and Y on the same probability space.

(b) In part (a), determine $\rho_{X,Y}$ if $Var(X) = 2 \cdot Var(Y)$.

(a) If
$$Var(X + 2Y) = 40$$
 and $Var(X - 2Y) = 20$, what is $Cov(X, Y)$?

a)
$$Var(x+2y) = Cor(x+2y), x+2y)$$

 $= Cor(x,x) + 4 Cor(x,y) + 4 Cor(y,y)$
 $Var(x-2y) = Cor(x,y) - 4 Cor(x,y) + 4 Cor(x,y)$
 $Var(x+2y) - Var(x-2y)$ 40.20
 $Var(x+2y) - Var(x-2y)$ 40.20

(c) Find $E[(X + Y)^2]$.

Note Hot:

/ Y+X, X+X) wa =

Var (x)

> E[x] = E[7] = E[7] = 0

Suppose X, Y, and Z are random variables, each with mean zero and variance 20, such that Cov(X,Y) = Cov(X,Z) = 10 and Cov(Y,Z) = 5. Be sure to show your work, as usual, for Nar (x) = Nar (x) = Nar(x)

all parts below.

(a) Find
$$Cov(Y + V, Y - V)$$

Cov(X,Y) = Cov(X,Z) = 10 and parts below.	$d \operatorname{Cov}(Y, Z) = i$	o. Be sure
(a) Find $Cov(X + Y, X - Y)$.		

 $Var(X+Y) = E[(X+Y)^2]$

= Cov(X,X) + 2 Cov(X,Y) + Cov(Y,Y)

(a) Find
$$Cov(X + Y, X - Y)$$
.
(b) Find $Cov(3X+Z,3X+Y)$. $= {\binom{1}{2}} {\binom{1$

- (E(x+x1)=

(ECX7 + ETY 1)

= 20

+ Cor (X f)