Lecture 1 : Charge, Current, Voltage

Learning Objectives:

- 1. Intuitively define charge and current
- 2. Use fluid flow analogy to identify current magnitude and direction
- **3.** Identify three electrical elements and sketch circuit schematic

1. Charge:

Charge is an intrinsic property of matter. Analogous to a ball experiencing gravitational force, the presence of charge in a material results in the material experiencing force in an electromagnetic field.

While gravitational force is always attractive, the force experienced by charged material can be of two types - attractive or repulsive. This indicates that charge can be of two types:

Recall that matter is made up of atoms. Atoms have:

- Electrons- Negative charge
- Electrons Positive Charge (magnitude same as charge on electron)
- Neutrons Neutral or no charge

<u>Unit of Charge</u>: The fundamental unit of charge is called Coulomb (C). A charge of one Coulomb (1C) represents the combined charge of 6.24×10^{18} electrons. Hence the charge of one electron:

$$1e^{-1} = -1.6 \times 10^{-19}$$

2. Current:

Charge in motion represents current. More precisely current is defined as the rate of flow of charge through an area "a" as shown in figure above,

$$i = \frac{dq}{dt}$$

<u>Unit of current:</u> The unit of current is Amperes (A). A current of 1 A = 1 C/s.

Current in a conductor has both <u>magnitude and direction</u> associated with it. Direction of conventional current is taken to be opposite to the flow of electrons.

For the direction of flow of electrons shown in the figure above, current i_1 is taken as positive.

Example:

3. Fluid Analogy:

We can visualize current flowing in a conductor by comparing it to fluid flowing in a pipe as shown below:

4. Electric Circuit, Elements, and Schematics:

An electrical circuit is an interconnection of electrical elements through which current can flow. Electrical elements can be seen as a model or an abstraction of electrical devices. For example, let us say we would like to light up an LED using a battery. We may sketch a physical arrangement of this set-up as shown below.

A circuit schematic is a representation of the above physical circuit using standard circuit element representations. The circuit elements we will see in this class are shown below.

1.	Resistor	~~~·
2.	Voltage Source	(+) ^{Vs}
3.	Current Source	
4.	Capacitor	~~11 ^C
5.	Inductor	
6.	Diode	•
7.	BJT	
8.	OpAmps	
		-4

Lecture 1 Page 3

The figure below shows the circuit schematic for the physical circuit shown earlier.

