
© 2022 Steven S. Lumetta, Romit Roy Choudhury and Abrita Chakravarty.

University of Illinois at Urbana-Champaign 
Dept. of Electrical and Computer Engineering 

 
ECE 101: Exploring Digital Information Technologies

for Non-Engineers Spring 2023

File Systems: 
Consistency and Cloud Storage

ECE 101: Exploring Digital Information Technologies for Non-Engineers Spring 2023 1

How do you store documents on your computer?

◦ On the Desktop

◦ In the Downloads folder

◦ Somewhere on your computer

◦ In a carefully organized folder structure

◦ On the cloud: Google Drive, iCloud, Dropbox
etc.

2

How do you retrieve your files?
◦ Navigate to the right folder - you
know exactly where you saved it.

◦ Search by keyword and date

3

◦ Technology has brought us effectively
unlimited virtual storage

◦ Also enables us to collaborate  
remotely on shared documents.

Do you worry about space and organization?

Getting to Your Files in the Cloud

 We assume that our files in the cloud are

◦ available (accessible at all times),

◦ reliable (no errors in stored content), and

◦ consistent (everyone sees the same thing,  
all the time).

But first, just to make sure you’re aware…

4

Cloud services are assumed to have several properties.

All Services Provided “As Is”, Without Warranty

 None of these companies guarantees you
anything—certainly not for free.*

 If they decide to stop doing business with you,

◦ whether because it’s not in their interest or

◦ because they go out of business, or

◦ they sell to another company  

who doesn’t want your business,

◦ your data are gone.

 You may want to have a copy somewhere?

 *If you pay, I suggest reading the fine print carefully.

5

Working on a Document

• You usually type stuff into a document

• If you type in something you didn’t mean to, you delete it

• If you accidentally deleted something you didn’t mean to, you
“UNDO” it.

6

A History of Operations needed to Undo

 To support “Undo”, programs must keep  
a log of operations.

 Each log entry

◦ could be undone (in reverse order)

◦ by inverting the operation:

◦ paste becomes cut, and

◦ key-press becomes backspace.	

7

LOG

1.Pressed ‘H’

2.Pressed ‘e’

3.Pressed ‘l’

4.Pressed ‘l’

5.Pressed ‘o’

6.Pasted “, world!”

Not All Operations can be Inverted

 Some operations have no exact inverse.

 Consider an image editing tool.

◦ A user blurs the image,

◦ which performs local averaging.

 Many possible original images

◦ produce the same final image, so

◦ the only way to undo a blur

◦ is to preserve a copy of the original.

8

Cheap Memory Broadens Set of Reversible Operations

 In early systems,

◦ operations of this type could not be undone:

◦ keeping a copy was too expensive.

 As memory became cheaper,

◦ programs started keeping snapshots—

◦ copies of earlier versions of the user’s data—

◦ so as to support undo.

9

Versioning Useful for Long-Term

 An undo log rarely persists across sessions.

 Example: open a file and undo the last
operation … from a week ago?

 Instead, create snapshots / versions are
more useful over the longer term.

10

v1

v2

…

merge?

v4

Merging Alternative Versions Can be Challenging

 But long-term storage 
introduces the problem of divergent versions…

 How can we merge changes?

11

v1

v3a v3b

v2

Automatic Merges Fail Frequently

 Making merge work without  
human oversight is difficult.

 Even today,

◦ shared code repositories such as Github

◦ support independent, disconnected
development,

◦ and automated merges do sometimes fail.

12

merge?

v1

v2

v3a v3b

v4

Order of Operations Matter in Final Result
 Consider banking operations.

 Your bank account contains $5.

 You have a $500 paycheck to deposit.

 And you want a $7 bubble tea.

 You decide

◦ to deposit the paycheck (requires communication from ATM or
bank to your account about your deposit),

◦ then buy a bubble tea (requires communication from Bubble
Tea store to your account).

Two operations to be merged.

13

Addition, the Underlying Operator, is Commutative

 Operations to be done on your account at the bank server …

1. Add $500 to balance.

2. Subtract $7 from balance.

 These operations can be reordered.

 However, reordering may have side effects.

14

Reordering Operations is Not Always Helpful

 In particular, many banks,

◦ seeing the “Subtract” operation first,

◦ approve the operation

◦ but also subtract an additional  
overdraft “protection”* fee of $50.

 In the end, your account has

 5 – 7 – 50 + 500 = $448.

15

Some Operations are Idempotent

◦ idem- = identical, -potent = power

◦ meaning that an operation has the same
effect no matter how many times one
performs the operation.

 In a social network, for example:

Mark X as friend of Y

 If I switch machines (phone/tablet/computer),
see an old version, and apply the same
operation again, no problem. Same result again.

16

friends

Many Tools Do Not Provide Strong Consistency

 But … wait a minute.

 Why would I ever “see an old version?”

 If a service is showing me data,

◦ which version do I see?

◦ which version do others see?

 Shouldn’t those questions have the same answer at all times?

 Yes, of course we’d like that. Life would be easy.

 But that’s not our universe.

17

One Simple Approach: Pick a Place for the Correct Version

 Often, the best solution

◦ is to define the version at some server

◦ (in one place)

◦ to be the correct one.

 To make changes, send  
operations to that server.

 The server

◦ serializes operations into some order

◦ and applies them one at a time.

18

opop

op
op server

Companies Design Operations to Reduce Inconsistency

 Companies need to think carefully

◦ about how to formulate operations

◦ so as to make them less prone to errors

◦ and less likely to lead to obviously inconsistent behavior.

19

Inconsistencies Do Still Occur with Many Tools

 You’ve probably still seen cases.

 For example, a social network that simply
rejects your comment or reply.

 Yet, when you try again, everything works
fine.

 Such failures

◦ sometimes indicate problems

◦ with merging your operation

◦ with others that have already been applied.

20

Lack of Consistency Can Lead to Bigger Problems

 Realistically, most people do not often work
interactively with others around the world.

 Inconsistency can lead to more  
serious problems, however.

21

What Can Go Wrong? Let’s See an Example

22

(you’ll see the  
content later)

server
1

server
2

Pat: Yes, you’d be lucky
to get X to work for you.

Pat: Yes, you’d be lucky
to get X to work for you.

• Jan makes a post.

• Unfortunately,  

server 2’s copy is lost.

• Pat looks at server 1  

and replies.

Alice Unknowingly Acts on Incomplete Information

23

server
1

server
2

Pat: Yes, you’d be lucky
to get X to work for you.

Pat: Yes, you’d be lucky
to get X to work for you.

Hey, X!
You’re hired!

• Along comes Alice, 
who sees server 2.

(you’ll see the  
content later)

(you’ll see the  
content later)

Pat’s Words Change the Meaning of Jan’s!

24

Jan: X hasn’t been doing
anything! I’m going to

have to fire them.

server
1

server
2

Pat: Yes, you’d be lucky
to get X to work for you.

Pat: Yes, you’d be lucky
to get X to work for you.

Hey, X!
You’re hired!

• What did Pat say?

Allowing Inconsistency Reduces User Response Times

 So why does anyone  
tolerate inconsistency?

 For speed!

25

No One Really Cares that much about Consistency

 In a social network,

◦ most followers don’t actually care

◦ about other followers’ comments,

◦ nor about the order of their comment

◦ relative to those of other followers.

26

Most Companies’ Systems Do Try to Avoid Inconsistency

 The systems do make some attempt to avoid inconsistency.

 For example,

◦ one can reply to comments, and

◦ replies are only visible if the original comment is visible.

27

Desired Properties of Cloud Service

 Here are some of the properties that we want with our cloud
storage and editing tools:

◦ available (accessible at all times),

◦ reliable (no errors in stored content), and

◦ consistent (everyone sees the same thing, all the time).

 Consistency is somewhat difficult, but service providers still try
to provide it.

28

Most Services Provide Eventual Consistency

• Operations are serialized at a server.

• Eventually every one perceives the same order of operations.  
But not necessarily immediately.

• Push model actively forwards updates to users (Distributed file
systems, such as Box, Dropbox, and Google Drive)

• Pull model waits for users to request updates

29

Social Network Updates Generally Pulled from Server

 Social networks use primarily a pull model.

 Since users typically view

◦ only the most recent activity in the social graph,

◦ pushing all updates is generally a waste of bandwidth.

 Only a handful of changes are pushed:

◦ those needed to support active notifications.

◦ (Notifications that show up when you open an app can also be pulled.)

30

Availability and Reliability are More Important

 These same companies place more emphasis on availability
and reliability.

 We talked about these ideas in social networks.

 File services are similar: your posts, photos, and videos are just
a bunch of files.

  
Collaborative editing tools do require good definitions of
operations and somewhat stronger (or at least faster) consistency
guarantees to avoid irritating human users.

31

Availability: Your Data Located Near You

 What about availability?

 Here, too, the techniques are fairly similar.

 Imagine working on a text document.

 The primary copy of that document is stored at a datacenter
close to you.

 Within the datacenter, the exact position of your file is selected
using an approach similar to TAO’s shard model.

 For the same reason: load balancing.

32

Additional Copies of Your Data Kept Elsewhere

 But that’s not the only copy of your file!

 If the disk with your file fails, or

◦ (less likely) the optical fibers to the datacenter are all cut, or

◦ (even less likely) a meteorite strikes the datacenter,

other datacenters have a copy, too!

 It just takes a little longer  
(more msec, not seconds)  

to get your data.

33

Reliability Supported Using Codes

 Reliability is also an issue.

 All digital storage systems  

break down over time.

 To protect your file data,

◦ companies use coding techniques

◦ (remember the Hamming code?).

 Codes are used

◦ to protect against changes on disk, and

◦ on-disk data are periodically “scrubbed”

◦ to correct any errors that have popped up.

34

1 1

0

first

1 10

0

second third

fourth

© 2022 Steven S. Lumetta and Romit Roy Choudhury. All rights reserved.

Reliability Supported Using Codes

 Similarly, codes are used

◦ to store data across multiple drives,

◦ increasing bandwidth and

◦ protecting against failure of any drive.

 In this case, the 5-out-of-7 variant

◦ of the Hamming code would work perfectly:*

◦ if you store across 7 disks,

◦ so long as no more than 2 fail,

◦ you can recover all of the data!

 *That particular code is not common in practice  
for disk systems, but the idea is the same.

35ECE 101: Computing Technologies and the Internet of Things

Sharing Supported Using Access Control Lists

 One more topic: sharing.

 Sharing of documents (posts, and so forth)

◦ typically managed with

◦ an Access Control List (ACL),

◦ a list of rules.

 The rules are checked one at a 
time until a match is found.

 With the ACL shown, my secret account as well as
all of my friends, except the one friend I’m trying to
surprise, can see the document.

36

ACL

1. ALLOW MySecretAccount

2. DENY unless <Friend>

3. DENY BirthdayFriend

4. ALLOW

Reminder: You are Guaranteed Nothing.

 Here’s the fine print from one popular set of services.
It is essentially identical to the wording introduced by
the Berkeley Software Distribution’s ***FREE***
version of Unix, TCP, and so forth.

 These days, however, most companies use the same
rules even if you are a paying customer. Even banks.
It’s scary.

 TO THE EXTENT ALLOWED BY APPLICABLE LAW, WE PROVIDE OUR
SERVICES “AS IS” WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
FOR EXAMPLE, WE DON’T MAKE ANY WARRANTIES ABOUT THE
CONTENT OR FEATURES OF THE SERVICES, INCLUDING THEIR
ACCURACY, RELIABILITY, AVAILABILITY, OR ABILITY TO MEET YOUR
NEEDS.

37

Law. The only
way you can ever

expect to have 
any guarantee
from modern

software.

Terminology You Should Know from These Slides

◦ cloud storage

◦ available

◦ reliable

◦ consistent

◦ operations (and examples)

◦ undo/invert, log, and versions

◦ context (for an operation)

◦ idempotent

◦ serialization (by a server)

◦ causality violation (the Jan and Pat example)

◦ eventual consistency

◦ push/pull for updates

◦ access control lists (ACLs, for sharing)

38

Concepts You Should Know from These Slides

◦ properties assumed by users of cloud storage

◦ not all operations can be inverted easily

◦ why merging versions can be hard

◦ why the exact form of an operation matters

◦ providing strong consistency by using a single location

◦ effect of delay on exposing inconsistency

◦ speed benefit of providing only weak consistency

◦ how availability and reliability are typically supported

◦ basic use of an access control list (ACL)

39

