Gond. LBS from (min,t)-Convolution
Problem Given $a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1}$,
compute $c_{k}=\min _{i}\left(a_{i}+b_{k-i}\right)$
Conjecture No $O\left(n^{2-\delta}\right)$ alg'm for (min,t)-Convol.
Q stronger than APSP Conj.
The If APSP has $O\left(n^{3-\delta}\right)$ alg'm for some $\delta>0$, then (min,t)-convol has $O\left(n^{2-\delta^{\prime}}\right)$ alg'm for some $\delta^{\prime}>0$.
(BCDEHILPTAA)
Pf: Redua (min,t)-convol $\rightarrow($ min,$t)-M M$
Suppose (m in,$t)$-MM could be solved
in $M^{*}(n)=O\left(n^{3-\delta}\right)$ time
To solve $(\mu(n, t)$-Convol: given a_{i} 's, $b_{i}^{\prime \prime} s$,

each c_{k} can be recovered from $\frac{n}{d}$ output entries
Total time $O\left(M^{*}\left(\frac{n}{d}, d, n\right)+n \cdot \frac{n}{d}\right)$
a a for rect $(m, i n, t)$ MM

$$
\text { Choose } d=\sqrt{n}: \quad O\left(M^{*}(\sqrt{n}, \sqrt{n}, n)\right)
$$

Choose $d=V n$: $U(M \backslash \cdots, \cdots$,

Problem: O/I Knapsack
Given n teems $\left(w_{i}, p_{i}\right), i=1, \ldots, n$, and T, weight profit capacity ${ }^{p}$ (all integers).
find subset $I \subseteq\{1, \ldots, n\}$,
$\operatorname{maximpzing} \sum_{i \in I} p_{i}$ s.t. $\sum_{i \in I} w_{i} \leqslant T$.
(subset sum is special case $\omega_{i}=p_{i}$)
Unbounded Knapsack:
Similar but I is a multiset
Standard DP: $O(n T)$ time Is there an $\widetilde{O}(T)$ alg'm for knapsack, like Bringmann?

Thu (Cygan et a!.'17/Künnemann et al. '17) (min,t)-Convol has $O\left(n^{2-\delta}\right)$ algm for ins.
$\Leftrightarrow \quad 0 / 1$ Knapsack has $O\left(T^{2-\delta^{\prime}}\right)$ alga
\Leftrightarrow Uabdd Knapsack "O(T $\left.{ }^{2-\delta^{\prime \prime}}\right)$ "
Pf: (\Rightarrow) Uabdd Knapsack reduces to (min,t)-Conod by repeated squaring:
Kf^{\prime} : (\Rightarrow) Unbdd Knapsack reanues '. by repeated squaring:
let $f^{(l)}(j)=\max$ profit with capacity j using $\leqslant \ell$ items

$$
f^{(l)}(j)=\max _{j^{\prime}} \underbrace{\left.f^{\left(\lambda^{\prime} 2\right)}\left(j^{\prime}\right)+f^{(\sqrt{2})}\left(j-j^{\prime}\right)\right)}_{\text {(max }, \text {, }) \text {-convol }}
$$

O/l knapsack reduas to (min,t)-convd by modifying Bringmann's alg...,

Step 1. Reduce (max,t)-Conud to $($ max, $t)$-Convol-Decis
given 3 seas $a_{0}, \ldots, a_{n-1}, b_{0,-,}, b_{n-1}, c_{0}, \ldots c_{n-1}$ for each k, decide $\exists i, \quad a_{i}+b_{k-i}>c_{k}$.
by binary search
Step 2. Reduce (max, t)-Convol-Decis \rightarrow
Report-One (max,t)-Convil-Deois
decide $\exists k, \exists i, \frac{1}{a i+b_{k-i}>c_{k}} \leftrightarrow \nVdash \begin{aligned} & \forall k_{i} i \\ & a_{i}+b_{k i} \leqslant c_{k}\end{aligned}$
by same idea as ${ }_{\lambda}^{\text {All-EAg }}$ NWT \rightarrow Report -One NWT $\forall i, j$, $a_{i}+b_{j} \leq c_{i+j}$.

$$
+M_{i}+M_{j}+M(i+j)
$$

Problem: Superadditivity
given one sequence $f_{0}, \ldots, f_{n-1} \geqslant 0$, decide $\forall i, j, \quad f_{i}+f_{j} \leqslant f_{i t j}$

Ster 2 Reduce Report-One (max,t)-Convol-Decis

Step 3. Reduce Report-One (max,t)-Convol-Decis
\rightarrow Superadditivity
Given $a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1}, c_{0}, \ldots, c_{n-1}$ w..0.9, assume a_{i}^{\prime}, are increas

$$
\begin{aligned}
& a_{i}^{\prime \prime} \text { 's are increas } \\
& b_{i}^{\prime \prime} \\
& c_{i}^{\prime \prime} \text { \& are in }
\end{aligned}
$$

(if not, add linear fr Mi for large M)
Combine into one sequence?

$$
\begin{array}{ll}
\forall i \in[n], & f_{i}=0 \\
& f_{n+i}=U+a_{i} \\
& f_{2 n+i}=4 U+b_{i} \\
& f_{3 n+i}=5 U+c_{i}
\end{array}
$$

Step 4. Superadditivity \rightarrow Unbid Knapsack
To solve Superadditivity, given f_{0}, \ldots, f_{n-1};
for each $i \in[n]$,
create Hems.
tyre 1: $\left(i, f_{i}\right)$
weight ${ }^{\rho} Q_{\text {profit }}$
type 2: $\left(T-i, U-f_{i}\right)$
with $T=2 n$.

