I. Basic Algorithmic Tools Convolution Problem Given 2 sequences $\langle a_0, ..., a_{N-1} \rangle$ $\langle b_0, ..., b_{N-1} \rangle$. compute $\langle c_0, ..., c_{2N-2} \rangle$ where $c_i = a_0 b_i + a_1 b_{i-1} + ... + a_i b_0$ $= \sum_{k=0}^{i} a_k b_{i-k}$. $(e.g. < 1, 2, 3) \rightarrow < 1.4, 1.5 + 2.4,$ $\langle 4, 5, 6 \rangle \rightarrow 1.6 + 2.5 + 3.4,$ z.6 + 3.5, $3.6 \rangle$ $= \langle 4, 13, ... \rangle$

Equiv.: given 2 polynomials

$$A(x) = a_{n+} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_{0}$$

 $B(x) = b_{n+} x^{n-1} + b_{n-2} x^{n-2} + \dots + b_{0}$
Compute $A(x) B(x) = c_{n+2} x^{2n-2} + \dots + c_{0}$

Trivial Algin: each ci in
$$O(n)$$
 time
 $=$ total $O(n^2)$

better ?

Karatsuba's Algim ('60):

Warm-up:
$$n=2$$

Given a_0, a_1, b_0, b_1 , to compute $c_0 = a_0 b_0$
 $c_1 = a_1 b_0 t a_0 b_1$
trivial: 4 mults.
But can do with 3!
Solla: just rewrite $c_1 = (a_1 t a_0) (b_1 t b_0)$
 $- a_0 b_0 - a_1 b_1$
power of subtraction!

General A:
idea - binary divided conquor
write
$$A(x) = A_1(x) x^{N2} + A_0(x)$$

 $B(x) = B_1(x) x^{N2} + B_0(x)$
 $=) A(x)B(x) = A_1(x)B_1(x) x^n + (A_1(x))B_0(x) + A_0(x)B_1(x)) x^{n/2} + A_0(x)B_0(x) + A_0(x)B_1(x)) x^{n/2} + A_0(x)B_0(x)$
 $=) T(n) = 4 T(\frac{n}{2}) + O(n)$
 $=) O(n^2)$
 $I(a) = aT(\frac{n}{2}) + O(n)$
 $=) O(n^2)$
 $I(a) = aT(\frac{n}{2}) + O(n)$
 $=) O(n^{2})$
 $I(a) = aT(\frac{n}{2}) + O(n)$
 $=) O(n^{2})$
 $I(a) = aT(\frac{n}{2}) + O(n)$
 $=) O(n^{109z^3})$
 $= O(n^{109z^3})$

Warmup:
$$n=3$$
.
given $a_0, a_1, a_2, b_0, b_1, b_2, to compute
 $c_0 = a_0 b_0$
 $c_1 = a_0 b_1 + a_1 b_0$
 $c_2 = a_0 b_2 + a_1 b_1 + a_2 b_0$
mial: 9 mults
better solva: compute
 $d_0 = a_0 b_0$
 $d_1 = (a_2 + a_1 + a_0) (b_2 + b_1 + b_0)$
 $d_2 = (4a_2 + 2a_1 + a_0) (4b_2 + 2b_1 + b_0)$
 $d_3 = (9a_2 + 3a_1 + a_0) (4b_2 + 3b_1 + b_0)$
 $d_4 = (16a_2 + 4a_1 + a_0) (16b_2 + 4b_1 + b_0)$
can then vecover c_0, \dots, c_4 from k_0, \dots, d_4
R(L)$

can then vecouer
$$c_0, ..., c_4$$
 from $k_0, ..., d_4$
(why? $d_k = (\alpha_2 k^2 \pm \tilde{\alpha}_1 k + \alpha_0) (b_2 k^2 \pm \tilde{b}_1 k + b_0)$
=) $d_k = c_4 k^4 + c_3 k^2 + c_2 k^2 + c_1 k + c_0, k=0, ..., 4$
 $5, eq'ns, 5 vars$
lineor

General n: 3-way
$$D \notin C$$

 $T(n) = 5 T(\frac{n}{3}) + O(n)$
 $= O(n^{\log_3 S}) = O(n^{1.41})$

= 5 mults.

 $r \cdot way D&C$ $T(n) = (2r-1) T(\frac{n}{r}) + O(n)$ $\Rightarrow O(n^{\log_{r}(2r-1)})$ $\le O(n^{\log_{r}(2r-1)})$ $\le O(n^{\log_{r}})$ $\le O(n^{1+\frac{1}{\log_{r}}})$ $\le O(n^{1+\frac{1}{\log_{r}}})$ $\le O(n^{1+\varepsilon}) \text{ for any } Const \varepsilon 70$

Cooley & Tukey's Alg'm ('65)
$$N = 2n-1$$

prenious idea - compute $d_{k} = A(k) \cdot B(k)$ $k=0,..,N-1$
 $= C(k)$ b_{k}
new idea - compute $d_{k} = A(e^{-2\pi i \cdot k}) \cdot B(e^{-N})$
 $here, e^{-2\pi i \cdot k}$ $A(e^{-N}) \cdot B(e^{-N})$
 $here, e^{-2\pi i \cdot k}$ are called roots of unity
 $i.e.$ roots of $z^{N} = 1$.

$$\int_{1}^{\infty} \left(\left(e^{-2\pi i k} \right)^{N} = e^{-2\pi i k} = \left(e^{\pi i} \right)^{-2k} = 1 \right)$$
Solh: compute $a_{k} = \sum_{j=0}^{n-1} a_{j} e^{-2\pi i k j}$ $k=0,..., N-1$

$$b_{h} = \sum_{j=0}^{n-1} b_{j} e^{-2\pi i k j}$$
 $Discrete Fourier transform$

$$d_{k} = a_{k} \cdot b_{k} \qquad k=0,..., N-1$$

$$c_{j} = \pi \sum_{k=0}^{N-1} d_{k} e^{2\pi i k} = called$$
(similar to continuous Fourier transform:

$$f(t) = \int_{0}^{\infty} f(t) e^{-2\pi i k k} dx$$
(noun: $f_{0,9} = f \cdot 9$
(nouerso transform $f(x) = \int_{0}^{\infty} f(t) e^{2\pi i x t} dt$)
New Problem (DFT) Given $\langle a_{0}, ..., a_{N-1} \rangle$,
 $Q_{k} = \sum_{j=0}^{N-1} a_{j} e^{-2\pi i k j}$