CS 598 TMC
Algorithms from the Fire Grained Perspective
Courses graiger. illinois. edu/cs598tmc
Course work: 4 HWs 45%
presentation 15% (nay work in
project 40% groups of 53)
Preject 40%
Preveq: undergrad algins (CS374)
Theme - understand complexity of
basic algorithmic Problems
beyond polynowial vs. NP-hard
e.g. n3 vs. n² etc.
EN All-Pairs Shortest Paths (APSP) for dense weighted
Flayd-Worshall (by DP)
$$O(n^3)$$
 time
Dijkstra in trives $O(n^3)$
better? Fredman '75 ~ $O(\frac{n^3}{\log^3 n})$
:
C '07 ~ $O(\frac{n^3}{\log^2 n})$
Williams '14 $O(\frac{n^3}{\sqrt{100}})$

 $\sim O\left(\frac{n^3}{\log^2 n}\right) \\ O\left(\frac{n^3}{C^{V\log n}}\right)$

Conjecture no truly subscubic algent
$$e.g. n^{2}.9999$$

EX2 Congest Common Subsequence (LCS)
of 2 strings $a_1...a_n$
 $DP => O(n^2)$ trine
 $(L(i,j)) = max \left(\frac{L(i,j)}{L(i,j)} \right)$
 $(L(i,j)) = m$

Proving lower bds is very difficult in general comp. model

via fine-grained reductions Similar to NP-hardness (conj P + NP)

Exs of Cond. Lower Bd Results:

which contradicts Strong Exponential Time Hyrothesis (SETH)

Strong Cryonic (SETH)

Course Outline

I.	Basic Algmic Tools (Upper Bds)	
	Convolution / FFT,	matrix mult.
IL	Conditional Lower Bds	using conjs on APSP/3SUM/ SETH/
	lots of reductions	
Ш.	Adu. Algimic Techniques	(Back to UBS)