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These notes describe a few subcubic matrix multiplication algorithms that go beyond Strassen’s
original O(n2.81) algorithm, and are not too difficult to understand, and should hopefully be acces-
sible to students. There are already several extensive surveys on the topic (e.g., Pan’84, Pan’14,
and Bläser’13), but our intention is to be direct, concise, and concrete, forgoing abstract notation
and general frameworks (like trilinear forms, tensor products, rank and border rank, the τ theorem,
. . . ). We will not explain the notation in the headings (but the readers can guess. . . ).

Algorithm 0: R(〈2, 2, 2〉) ≤ 7 ⇒ ω < 2.808 (Strassen’69)

We begin with a quick review of Strassen’s original algorithm. Given 2×2 matrices A = (aij)i,j∈{1,2}
and B = (bij)i,j∈{1,2}, the product C = AB = (cij)i,j∈{1,2} can be computed by the following
formulas, which use 7 multiplications:

p1 = (a11 + a22)(b11 + b22)
p2 = (a21 − a11)(b11 + b12)
p3 = (a12 − a22)(b21 + b22)
p4 = a11(b12 − b22)
p5 = (a11 + a12)b22
p6 = (a21 + a22)b11
p7 = a22(b21 − b11)

c11 = p1 + p3 + p7 − p5
c22 = p1 + p2 + p4 − p6
c12 = p4 + p5
c21 = p6 + p7.

To multiply two n×n matrices, we divide each matrix into 4 (n/2)×(n/2) submatrices and apply
the above formulas, where the elements are now (n/2)× (n/2) submatrices. The 7 multiplications
of elements can be computed by 7 recursive calls. The running time satisfies the recurrence T (n) =
7T (n/2) +O(n2), which solves to O(nlog2 7) = O(n2.808).

Remark. Although verification of the formulas is a straightforward exercise, they appear to work
“by magic”, and aren’t exactly easy to remember. . .
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Algorithm 1: R(2� 〈13, 13, 13〉) ≤ 2704 ⇒ ω < 2.811 (Winograd/Pan)

Given two pairs of 13× 13 matrices A = (aij)i,j∈{1,...,13}, B = (bij)i,j∈{1,...,13}, A
′ = (a′ij)i,j∈{1,...,13},

and B′ = (b′ij)i,j∈{1,...,13}, here is one way to compute the two products C = AB = (cij)i,j∈{1,...,13}
and C ′ = A′B′ = (c′ij)i,j∈{1,...,13} simultaneously, using 133 +3 ·132 = 2704 multiplications: for each
i, j, k ∈ {1, . . . , 13},

pikj = (aik + a′kj)(bkj + b′ji)

qkj = a′kjbkj

rij =
(∑13

k=1(aik + a′kj)
)
b′ji

ski = aik
(∑13

j=1(bkj + b′ji)
)

cij =
∑13
k=1(pikj − qkj)− rij

c′ki =
∑13
j=1(pikj − qkj)− ski.

To multiply two pairs of n × n matrices, we divide each matrix into 132 (n/13) × (n/13)
submatrices and apply the above formulas where the elements are now submatrices. The number
of recursive calls is 2704/2, leading to the recurrence T (n) = (2704/2)T (n/13)+O(n2), which solves
to O(nlog13(2704/2)) = O(n2.811).

Remarks. This is slightly slower than Strassen’s, but the formulas are easier to verify and more
intuitive, with a clearer pattern that extends to larger numbers of parts (13 is best here). The above
is one variant among a series of algorithms by Pan and others (with the basic idea tracing back to
Winograd). Pan’78 (see also Laderman, Pan, and Sha’92) extended the idea to three products to
obtain the first improvement over Strassen, but the formulas are much messier to write down.
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Algorithm 2: R(〈3, 3, 3〉) ≤ 21 ⇒ ω < 2.772 (Schönhage’81)

Given 3 × 3 matrices A = (aij)i,j∈{1,2,3} and B = (bij)i,j∈{1,2,3}, here is one way to compute an
approximate product C = (cij)i,j∈{1,2,3} using 6 + 6 + 3 + 3 + 3 = 21 multiplications: for each
i, j, k ∈ {1, 2, 3},

pij = (ε2ai1 + aj3)(b1j + εb3i) if i 6= j
qij = (ε2ai2 + aj3)(b2j − εb3i) if i 6= j
rj = aj3(b1j + b2j)
pii = (ε2ai1 + ai3)b1i
qii = (ε2ai2 + ai3)(b2i + ε2b3i)

cij = 1
ε2

(pij + qij − rj) + 1
ε (pji − pii).

Here, we think of ε as a very small number (an “infinitesimal”). It can be checked that cij ≡∑3
k=1 aikbkj (mod ε), where “ (mod ε)” means that we ignore terms having at least one factor of ε.

(This is because for i 6= j, we have pij+qij−rj ≡ ε2(ai1b1j+ai2b2j) (mod ε3), and pji−pii ≡ εai3b3j
(mod ε2); on the other hand, for i = j, we have pii+qii−ri ≡ ε2(ai1b1j+ai2b2j+ai3b3j) (mod ε3).)

To compute an approximate product of two n×n matrices A and B, we divide each matrix into 9
(n/3)× (n/3) submatrices and apply the above formulas, where the elements are now submatrices.
Each of the 21 multiplications of elements is replaced by a recursively computed approximate
product of submatrices (using the same ε at all levels of recursion). The number of operations
satisfies the recurrence T (n) = 21T (n/3) +O(n2), which solves to O(nlog3 21) = O(n2.772).

To justify that the recursion yields good approximation at the end, let A ∗ B denote the ap-
proximate product computed by the above algorithm. First it can be checked (by induction)
that ∗ is a bilinear operator (i.e., it satisfies the properties (A + A′) ∗ B = A ∗ B + A′ ∗ B, and
A ∗ (B + B′) = A ∗ B + A ∗ B′, and (cA) ∗ B = A ∗ (cB) = c(A ∗ B), for all A,B,A′, B′ and all
constants c; equivalently, A ∗ B can be expressed as a sum where each term is a constant times
an element of A times an element of B). Because of the bilinearity of ∗, when we replace every
individual multiplication of elements with the ∗ operator, at the end we get cij ≡

∑3
k=1 aik ∗ bkj

(mod ε). We can now1 apply the induction hypothesis that aik ∗ bkj ≡ aikbkj (mod ε), to deduce
that C = A ∗B ≡ AB (mod ε).

Dealing with ε. Instead of setting ε to be a very small number (which would require high
precision arithmetic, with the number of bits increased by an O(log n) factor), one way to turn
the approximation algorithm into an exact algorithm is to treat ε as a symbolic variable. Then
each matrix element is a polynomial in ε, with degree bounded by O(log n) (the number of levels of
recursion), and can be represented by an array of O(log n) coefficients. At the end, since A∗B ≡ AB
(mod ε), we can remove all but the nonconstant terms in the final polynomials. Each addition
or multiplication of O(log n)-degree polynomials takes polylogarithmic time, so the running time
increases by a polylogarithmic factor.

1 The argument may appear simple, but note that had we apply the induction hypothesis too early, the formula
for cij would naively seem to yield an error term of 1

ε2
O(ε) = O( 1

ε
), which would be too large! The bilinearity of ∗

is crucial here.
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Remarks. Although the formulas above may still look magical at first, they are a bit easier
to verify than Strassen’s (and easier to recreate), since the use of the infinitesimal ε offers more
flexibility and allows us to discard higher-degree terms.

This idea of using ε (leading to so-called “any precision approximation (APA) algorithms”
and the “border rank”) was pioneered by Bini et al.’79, and was the starting point behind all
the theoretically faster algorithms. The extra polylogarithmic-factor overhead makes this type of
algorithms less practical, however.
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Algorithm 3: R(2� 〈8, 8, 8〉) ≤ 640 ⇒ ω < 2.774

Given two pairs of 8 × 8 matrices A = (aij)i,j∈{1,...,8}, B = (bij)i,j∈{1,...,8}, A
′ = (a′ij)i,j∈{1,...,8},

and B′ = (b′ij)i,j∈{1,...,8}, here is a way to compute an approximate product C = (cij)i,j∈{1,...,8}
of A and B and an approximate product C ′ = (c′ij)i,j∈{1,...,8} of A′ and B′ simultaneously, using
83 + 2 · 82 = 640 multiplications: for each i, j, k ∈ {1, . . . , 8},

pikj = (aik + a′kj)(bkj + εb′ji)

qkj = a′kjbkj
ski = aik

∑8
j=1(bkj + εb′ji)

cij =
∑8
k=1(pikj − qkj)

c′ki = 1
ε

(∑8
j=1(pikj − qkj)− ski

)
.

It is easy to check that C ≡ AB (mod ε) and C ′ ≡ A′B′ (mod ε).
Consequently, given two pairs of 82 × 82 matrices (A,B) and (A′, B′), we can compute approx-

imate products of these pairs by applying the above formulas, with elements replaced by an 8× 8
submatrices. Each such product of 8×8 submatrices is in turn computed by the above method, mod
ε2 (i.e., with ε replaced by ε2). This is sufficient to guarantee that at the end, C ≡ AB (mod ε)
and C ′ ≡ A′B′ (mod ε). The total number of multiplications of elements is (640/2) · 640.

Iterating ` times, we can thus multiply two pairs of 8` × 8` matrices, computed mod ε, using
O((640/2)`) multiplications of elements. (When iterating ` times, the degree in ε increases to 2`,
but theoretically this is acceptable as ` will be a constant.)2

To compute an approximate product of two n×n matrices A and B, we divide each matrix into
(n/8`)× (n/8`) submatrices and apply the above method (appended with a dummy matrix pair),
where each of the O((640/2)`) multiplication of elements is replaced by a recursively computed
approximate product of submatrices (here, we can use the same ε at all levels of recursion, as
justified by the same bilinearity argument as before). The number of operations satisfies the
recurrence T (n) = O((640/2)`)T (n/8`) +O(2O(`)n2), which solves to O(nlog8(640/2)+δ) = O(n2.774)
for an arbitrarily small constant δ > 0, by making ` an arbitrarily large constant. As before, we
can obtain an exact algorithm at the expense of an extra polylogarithmic factor.

Remarks. This is of course a variant of Algorithm 1 but using ε, which simplifies the formulas
by eliminating the rij products. Although the time bound is slightly worse than in Algorithm 2,
the formulas are intuitive.

2 There are ways to avoid the exponential blow-up in the degree in ε. One may be tempted to reuse the previous
bilinearity argument, but this has to be done carefully (for example, the recursively computed approximate product
for qkj will be a function of other variables besides a′kj and bkj , depending on which other product it is paired with. . . ).
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Algorithm 4: R(〈7, 1, 7〉 ⊕ 〈1, 7, 7〉) ≤ 63 ⇒ ω < 2.66 (Pan/Schönhage’81)

Part I. Given a 7 × 1 matrix A =

 a1
...
a7

, a 1 × 7 matrix B = (b1 · · · b7), a 1 × 7 matrix A′ =

(a′1 · · · a′7), and a 7×7 matrix B′ =

 b′11 b′17
. . .

b′71 b′77

, here is one way to compute an approximate

product C =

 c11 c17
. . .

c71 c77

 of A and B, and an approximate product C ′ = (c′1 · · · c′7) of A′ and

B′, using 72 + 2 · 7 = 63 multiplications: for each i, j ∈ {1, . . . , 7},

pij = (ai + a′j)(bj + εb′ji)

qj = a′jbj
si = ai

∑7
j=1(bj + εb′ji)

cij = pij − qj
c′i = 1

ε

(∑7
j=1(pij − qj)− si

)
.

It is easy to check that C ≡ AB (mod ε) and C ′ ≡ A′B′ (mod ε).
Consequently, given one pair (A(1), B(1)) of matrices of dimensions 72× 1 and 1× 72, two pairs

(A(2), B(2)) and (A(3), B(3)) of matrices of dimensions 7 × 7 and 7 × 72, and one pair (A(4), B(4))
of matrices of dimensions 1× 72 and 72 × 72, we can compute approximate products of these pairs
by applying the above formulas for the pairs (A(1), B(1)) and (A(2), B(2)), with elements of the A’s
replaced by 7× 1 submatrices and elements of the B’s replaced by 1× 7 submatrices; and applying
the above formulas for the pairs (A(3), B(3)) and (A(4), B(4)), with elements of the A’s replaced
by 1 × 7 submatrices and elements of the B’s replaced by 7 × 7 submatrices. Each product of
submatrices is in turn computed by the above method, mod ε2. This guarantees that the products
of the given matrix pairs are correct mod ε. The total number of multiplications of elements is 632.

Iterating ` times, we can thus do the following: given
(`
s

)
pairs of matrices of dimensions 7s×7`−s

and 7`−s × 7` for every s ∈ {0, . . . , `}, we can compute the products of all pairs, mod ε, using 63`

multiplications of elements. (The degree in ε increases to 2`, but ` will be a constant.)
In particular, setting s = `/2, we can compute

( `
`/2

)
= 2`−o(1) products for pairs of matrices of

dimension 7`/2 × 7`/2 and 7`/2 × 7`, mod ε, using 63` multiplications of elements.
Iterating this whole process ` times and letting L = `2, we can compute 2`−o(1) products for pairs

of matrices of dimension 7L/2× 7L/2 and 7L/2× 7L, mod ε, using (63`/2`−o(1))`2` = (63/2)(1+o(1))L

multiplications of elements.
To compute an approximate product of a

√
n×
√
n matrix and a

√
n×n matrix, we divide the

first matrix into
√
n/7L×

√
n/7L submatrices and the second into

√
n/7L×n/7L submatrices and

apply the above method, where each of the multiplication of elements is replaced by a recursively
computed approximate product of submatrices (here, we can use the same ε at all levels of recursion,
as justified by the same bilinearity argument as before). The number of operations satisfies the
recurrence T (n) = (63/2)(1+o(1))LT (n/7L) + O(2O(L)n2), which solves to O(nlog7(63/2)+δ) for an
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arbitrarily small constant δ > 0, by making L = `2 an arbitrarily large constant. As before, we can
obtain an exact algorithm at the expense of an extra polylogarithmic factor.

Part II. Given a 1 × 7 matrix A = (a1 · · · a7), a 7 × 7 matrix B =

 b11 b17
. . .

b71 b77

, a 7 × 7

matrix A′ =

 a′11 a′17
. . .

a′71 a′77

, and a 7× 1 matrix B′ =

 b′1
...
b′7

, here is one way to compute the

approximate product C = (c1 · · · c7) of A and B, and the approximate product C ′ =

 c′1
...
c′7

, using

72 + 2 · 7 = 63 multiplications: for each i, j ∈ {1, . . . , 7},

pkj = (ak + εa′kj)(εbkj + b′j)

qj =
(∑7

k=1(ak + εa′kj)
)
b′j

sk = ak
∑7
j=1(εbkj + b′j)

cj = 1
ε

(∑7
k=1 pkj − qi

)
c′k = 1

ε

(∑7
j=1 pkj − sk

)
.

It is easy to check that C ≡ AB (mod ε) and C ′ ≡ A′B′ (mod ε).
By a similar argument, this leads to an algorithm that computes the product of a

√
n×n matrix

and an n×
√
n matrix in O(nlog7(63/2)+δ) time.

Combine. An algorithm symmetric to Part I computes the product of an n×
√
n matrix and a√

n×
√
n matrix in O(nlog7(63/2)+δ) time.

Observe that if we can multiply any n1 × n2 and n2 × n3 matrix in T operations and we can
multiply any n′1×n′2 and n′2×n′3 matrix in T ′ operations, then we can multiply any n1n

′
1×n2n′2 and

n2n
′
2 × n3n′3 matrix in O(TT ′) operations (by viewing each n′1 × n′2 submatrix in the first matrix

as an element and each n′2 × n′3 submatrix in the second matrix as an element). Consequently, by
combining all three algorithms above, we can multiply two n2×n2 matrices in O(n3 log7(63/2)+O(δ))
time, i.e., two n× n matrices in O(n(3/2) log7(63/2)+O(δ)) time. The bound is O(n2.660).

Remarks. The formulas in Part I are of course from the same family used in Algorithm 3,
and are slightly simpler because one dimension is 1. The formulas in Part II are “equivalent” to
those in Part I when converted to trilinear form (which implies symmetry of rectangular matrix
multiplication exponents).

While the algebraic side gets simpler, the algorithmic side gets more complicated, as we deal with
multiple rectangular products of different dimensions (Schönhage’s τ theorem provides a general
analysis of the exponent in such recursion).
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Algorithm 5: R(〈4, 1, 4〉 ⊕ 〈1, 9, 1〉) ≤ 17 ⇒ ω < 2.548 (Schönhage’81)

Part I. Given a 4 × 1 matrix A =

 a0
...
a3

, a 1 × 4 matrix B = (b0 · · · b3), a 1 × 9 matrix

A′ = (a′11 · · · a′33), and a 9× 1 matrix B′ =

 b′11
...
b′33

, we want to compute an approximate product

C =

 c00 c03
. . .

c30 c33

 of A and B, and an approximate product C ′ = (c′) of A′ and B′. (Note

the unconventional indexing for the vectors A′ and B′.)
First set a′0i = b′j0 = 0 and a′j0 = −

∑3
i=1 a

′
ji and b′0i = −

∑3
j=1 b

′
ji for i, j ∈ {0, . . . , 3}. (This

ensures that
∑3
i=0 a

′
ji =

∑3
j=0 b

′
ji = 0.) We use the following formulas, which requires 42 + 1 = 17

products: for each i, j ∈ {0, . . . , 3},

pij = (ai + εa′ji)(bj + εb′ji)

q =
(∑3

i=0 ai
) (∑3

j=0 bj
)

cij = pij

c′ = 1
ε2

(∑3
i=0

∑3
j=0 pij − q

)
.

It can be checked that C ≡ AB (mod ε) and C ′ ≡ A′B′ (mod ε).
Like before, iterating ` times, we can thus do the following: given

(`
s

)
pairs of matrices of

dimensions 4s × 9`−s and 9`−s × 4s for every s ∈ {0, . . . , `}, we can compute the products of all
pairs, mod ε, using 17` multiplications of elements.

In particular, setting s = α` for some constant α to be chosen later, we can compute
( `
α`

)
=

1/(αα(1−α)1−α)(1−o(1))` products for pairs of matrices of dimension 4α`×9(1−α)` and 9(1−α)`×4α`,
mod ε, using 17` multiplications of elements.

Iterating this whole process ` times and letting L = `2, we can compute 1/(αα(1−α)1−α)(1−o(1))`

products for pairs of matrices of dimension 4αL × 9(1−α)L and 9(1−α)L × 4αL, mod ε, using (17` ·
(αα(1− α)1−α)(1−o(1))`)`+O(1) = (17αα(1− α)1−α)(1+o(1))L multiplications of elements.

To compute an approximate product of an nα × n(1−α) log4 9 matrix and an n(1−α) log4 9 × nα
matrix, we divide the first matrix into (n/4L)α× (n/4L)(1−α) log4 9 submatrices and the second into
(n/4L)(1−α) log4 9 × (n/4L)α submatrices and apply the above method, where each of the multi-
plication of elements is replaced by a recursively computed approximate product of submatrices.
The number of operations satisfies the recurrence T (n) = (17αα(1 − α)1−α)(1+o(1))LT (n/4L) +
O(2O(L)n2), which solves to O(nlog4(17α

α(1−α)1−α)+δ) for an arbitrarily small constant δ > 0 by
making L = `2 an arbitrarily large constant. As before, we can obtain an exact algorithm at the
expense of an extra polylogarithmic factor.
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Part II. Given a 1 × 4 matrix A = (a0 · · · a3), a 4 × 4 matrix B =

 b00 b03
. . .

b30 b33

, a 9 × 1

matrix A′ =

 a′11
...
a′33

, and a 1× 1 matrix B′ = (b′), we want to compute an approximate product

C = (c0 · · · c3) of A and B, and an approximate product C ′ =

 c′11
...
c′33

 of A′ and B′. (Again, note

the unconventional indexing for the vectors A′ and C ′.)
First set a′k0 = 0 and a′0j = −

∑3
k=1 a

′
kj . (This ensures that

∑3
k=0 a

′
ki = 0.) We use the following

formulas, which require 42 + 1 = 17 products: for each j, k ∈ {0, . . . , 3},

pkj = (ak + εa′kj)(ε
2bkj + b′)

q =
(∑3

k=0 ak
)
b′

cj = 1
ε2

(∑3
k=0 pkj − q

)
c′kj = 1

ε (pkj − pk0).

It can be checked that C ≡ AB (mod ε) and C ′ ≡ A′B′ (mod ε).
By a similar argument, this leads to an algorithm for computing the product of an nα × nα

matrix and an nα × n(1−α) log4 9 matrix in O(nlog4(17α
α(1−α)1−α)+δ) time.

Combine. An algorithm symmetric to Part II computes the product of an n(1−α) log4 9×nα matrix
and an nα × nα matrix in O(nlog4(17α

α(1−α)1−α)+δ) time.
Consequently, by combining all three algorithms, we can multiply two

n2α+(1−α) log4 9 × n2α+(1−α) log4 9 matrices in O(n3 log4(17α
α(1−α)1−α)+O(δ)) time, i.e., two n × n ma-

trices in O(n3 log4(17α
α(1−α)1−α)/(2α+(1−α) log4 9)+O(δ)) time. By choosing α = 0.62 to minimize the

expression, the bound is O(n2.548).

Remarks. Again, the formulas in Parts I and II are equivalent when converted to trilinear form.
Further small improvements can be obtained with more complicated refinements. But later

Strassen’86 and Coppersmith and Winograd’90 came up with still more powerful techniques that
led to more significant improvements, and eventually to the current record near O(n2.373) by
Stothers’10, Vassilevska Williams’12, and Le Gall’14. . .
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