Homework 4 (due Dec 1 Thursday 5pm)

Instructions: see previous homework. Only 2 problems this time.

1. [65 pts]
(a) [35 pts] Recall the set intersection query problem: build a data structure for a collection of sets $S_{1}, \ldots, S_{\ell} \subseteq[N]$ with total size $M=\sum_{i}\left|S_{i}\right|$, so that given any i and j, we can quickly enumerate all elements in $S_{i} \cap S_{j}$. In class (on Patrascu's result), we have shown that if there is a data structure that could answer $\widetilde{O}\left(n^{3 / 2}\right)$ set intersection queries with total output size $\widetilde{O}\left(n^{3 / 2}\right)$ for an input with $M=\widetilde{O}\left(n^{3 / 2}\right)$ and $N=\widetilde{O}(n)$ in $\widetilde{O}\left(n^{2-\delta}\right)$ time for some constant $\delta>0$, then integer 3 SUM could be solved in $\widetilde{O}\left(n^{2-\delta^{\prime}}\right)$ time.
Now consider the set disjointness query problem: build a data structure for sets $S_{1}, \ldots, S_{\ell} \subseteq$ [N] with total size $M=\sum_{i}\left|S_{i}\right|$, so that given any i and j, we can quickly decide whether $S_{i} \cap S_{j}=\emptyset$. Show that if there is a data structure that could answer $\widetilde{O}\left(n^{3 / 2}\right)$ set disjointness queries for an input with $M=\widetilde{O}\left(n^{3 / 2}\right)$ and $N=\widetilde{O}(n)$ in $\widetilde{O}\left(n^{2-\delta}\right)$ time for some constant $\delta>0$, then integer 3 SUM could be solved in $\widetilde{O}\left(n^{2-\delta^{\prime}}\right)$ time for some constant $\delta^{\prime}>0$.
Hint: create new sets $S_{i} \cap[0, N / 2), S_{i} \cap[N / 2, N), S_{i} \cap[0, N / 4)$, etc. Queries may be given online.
(b) $[15 \mathrm{pts}]$ Consider a data structure version of the point-rectangle-counting problem from Homework 3: We are given a set P of m points in 2D, where each p has a weight $w(p)$. We want to build a data structure to answer rectangle-counting queries, namely, given query axis-aligned rectangle R, count the number of distinct weights among the points of P that are inside R.
Assuming the 3SUM conjecture, prove that there is no data structure that has $O\left(m^{1 / 3-\delta}\right)$ query time and $O\left(m^{4 / 3-\delta}\right)$ preprocessing time for any constant $\delta>0$. (In some sense, this is better than the conditional lower bound from Homework 3, which is trivial if $\omega=2$.)
(c) [15 pts] Consider the following problem called dynamic strong connectedness: decide whether a directed graph with m edges is strongly connected (i.e., for every two vertices u and v, there exists a path from u to v and a path from v to u), under insertions and deletions of edges.
Assuming the 3SUM conjecture, prove that there is no data structure for dynamic strong connectedness that has $O\left(m^{1 / 3-\delta}\right)$ time per edge insertion and edge deletion for any constant $\delta>0$.
2. [35 pts] Consider the following variant of the 3-point collinearity problem: given a sequence of n points p_{1}, \ldots, p_{n} in two dimensions, decide whether there exist i and j such that p_{i}, p_{j}, p_{i+j} lie on a common line.

Assuming that the points have integer coordinates, describe a (randomized) algorithm that solves the problem in slightly subquadratic time. Aim for near $O\left(n^{2} / \log ^{2} n\right)$ time, ignoring $\log \log n$ factors.
Hint: modify the algorithm from class for integer convolution-3SUM. Note that three points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ are collinear iff $\left(x_{2}-x_{1}\right)\left(y_{3}-y_{1}\right)=\left(x_{3}-x_{1}\right)\left(y_{2}-y_{1}\right)$.

