Homework 3 (due Nov 3 Thursday 5pm)

Instructions: see previous homework.

1. [30 pts] In class, we have given a reduction from max-plus convolution to the "report-one decision" version of the problem: given sequences $a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1}, c_{0}, \ldots, c_{n-1}$ (all integers in $[U])$, decide whether there exist k and i with $a_{i}+b_{k-i}>c_{k}$.
Give a further reduction from the report-one decision problem to the following equality variant of the problem: given sequences $a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1}, c_{0}, \ldots, c_{n-1}$ (all integers in [U]), decide whether there exist k and i with $a_{i}+b_{k-i}=c_{k}$. Thus, this variant does not have an $O\left(n^{2-\delta}\right)$-time algorithm, assuming the (integer) max/min-plus convolution conjecture.
[Hint: this should be an easy modification of a reduction we have seen from class, about APSP/min-plus matrix multiplication.]
2. [34 pts] Consider the following point-rectangle-counting problem: We are given a set P of N points in 2D, where each p has a weight $w(p)$. We are also given N axis-aligned rectangles R_{1}, \ldots, R_{N}. For each rectangle R_{k}, we want to count the number of distinct weights among the points of P that are inside R_{k}. (The output thus consists of N numbers.)

(Note: if the problem is changed to counting the number of points of P inside $R_{k}, O(N \log N)$ time algorithms were known; but counting the number of distinct weights seems more difficult...)
Give a reduction of matrix multiplication with matrix entries in $\{0,1\}$ to the point-rectanglecounting problem, to prove an $\Omega\left(N^{\omega^{*} / 2}\right)$ lower bound for the latter problem, where ω^{*} is the exponent for $0 / 1$-matrix multiplication. Thus, if $\omega^{*}>2$, this would rule out near linear time algorithms for the point-rectangle-counting problem.
[Hint: to multiply two $n \times n$ matrices, create a set of $N=O\left(n^{2}\right)$ points, all lying on two diagonal lines, with $O(n)$ groups of $O(n)$ points...]
3. [36 pts] Although it is open whether the conjectures about SETH/OV and APSP/min-plus matrix multiplication are related, in this question you will relate OV to a weird variant of matrix multiplication.

Given two $n \times n$ matrices $A=\left(a_{i j}\right)_{i, j \in[n]}$ and $B=\left(b_{i j}\right)_{i, j \in[n]}$, in the weird matrix multiplication problem (which could be called "distinct-equality" matrix multiplication), we want to compute the matrix $C=\left(c_{i j}\right)_{i, j \in[n]}$, denoted by $C=A \odot B$, where

$$
c_{i j}=\left|\left\{a_{i k}: a_{i k}=b_{k j}\right\}\right| .
$$

In other words, $c_{i j}$ is the number of distinct elements x such that $x=a_{i k}=b_{k j}$ for some $k \in[n]$.

To understand this problem better, we make another definition: given two n-dimensional vectors $\mathbf{u}=\left(u_{0}, \ldots, u_{n-1}\right)$ and $\mathbf{v}=\left(v_{0}, \ldots, v_{n-1}\right)$, define the weird dot product to be

$$
\mathbf{u} \odot \mathbf{v}=\left|\left\{u_{k}: u_{k}=v_{k}\right\}\right| .
$$

(For example, $(5,7,4,3,7) \odot(0,7,6,3,7)$ is 2 , since $|\{7,3,7\}|=2$.) Thus, the weird matrix product of two matrices A and B consists of the weird dot products between all row vectors of A and all column vectors of B.
(a) [12 pts] Let d and g be parameters. Given a $d g$-dimensional Boolean vector $\mathbf{u}=$ $\left(u_{0}, \ldots, u_{d g-1}\right)$, define a new $d g$-dimensional vector $\varphi(\mathbf{u})=\left(u_{0}^{\prime}, \ldots, u_{d g-1}^{\prime}\right)$, where for each $\ell \in[g]$ and $k \in[d]$,

$$
u_{\ell d+k}^{\prime}= \begin{cases}\ell & \text { if } u_{\ell d+k}=1 \\ g+1 & \text { if } u_{\ell d+k}=0\end{cases}
$$

Given a d-dimensional Boolean vector $\mathbf{v}=\left(v_{0}, \ldots, v_{d-1}\right)$, define a new $d g$-dimensional vector $\psi(\mathbf{v})=\left(v_{0}^{\prime}, \ldots, v_{d g-1}^{\prime}\right)$, where for each $\ell \in[g]$ and $k \in[d]$,

$$
v_{\ell d+k}^{\prime}= \begin{cases}\ell & \text { if } v_{k}=1 \\ g+2 & \text { if } v_{k}=0\end{cases}
$$

Prove that the weird dot product between $\varphi(\mathbf{u})$ and $\psi(\mathbf{v})$ is strictly less than g if and only if at least one of the g vectors $\left(u_{0}, \ldots, u_{d-1}\right),\left(u_{d}, \ldots, u_{2 d-1}\right), \ldots,\left(u_{d(g-1)}, \ldots, u_{d g-1}\right)$ is orthogonal to \mathbf{v} (i.e., has zero standard dot product with \mathbf{v}).
(b) $[24$ pts $]$ Give a reduction from OV to weird matrix multiplication, proving that there is no $O\left(n^{3-\delta}\right)$-time algorithm for weird matrix multiplication, assuming the OV conjecture.
[Hint: given two sets of N vectors in d dimensions, divide the first set into N / g groups of g vectors each, and apply the $\varphi(\cdot)$ mapping from (a) to each group...]

