Homework 2 (due Oct 13 Thursday 5pm)

Instructions: see previous homework.

- 1. $[34 \ pts]$ We are given two $n \times n$ Boolean matrices $A = (a_{ij})_{i,j \in [n]}$ and $B = (b_{ij})_{i,j \in [n]}$, and a number $\ell \leq n$. We will consider variants of the Boolean matrix multiplication problem:
 - (a) $[10 \ pts]$ For every $i, j \in [n]$, we want to decide whether there is a unique index $k \in [n]$ such that $a_{ik} \wedge b_{kj}$ is true, and if true, report this unique index k. (The output thus consists of $O(n^2)$ indices.) Describe an $O(n^{\omega})$ -time algorithm to solve this problem. [Hint: consider $\sum_{k=1}^{n} k a_{ik} b_{kj}$.]
 - (b) $[24 \ pts]$ For every $i, j \in [n]$, we want to decide whether $|\{k \in [n] : a_{ik} \land b_{kj} \text{ is true}\}| \leq \ell$, and if true, report all indices k with $a_{ik} \land b_{kj}$ true. (This problem generalizes part (a), which corresponds to the $\ell = 1$ case.) Describe an $\widetilde{O}(\ell^c n^{\omega})$ -time algorithm to solve this problem for some constant c. You may use randomization.

[Up to 3 bonus points if you can get c < 1.]

[Hint: one approach (which does not yield the best c) is to use a lemma from class: if we put k balls in k^2 bins, then with probability at least 1/2, every bin contains at most one ball.]

- 2. [36 pts] Consider the following variant of APSP, called $(\leq k)$ -red APSP: We are given an unweighted directed graph G = (V, E) with n vertices, where some of the edges are labelled red. We are also given a number k (where $1 \leq k < n$). For every pair of vertices $s, t \in V$, we want to compute the minimum length $L_k[s, t]$ over all paths from s to t that use at most k red edges.
 - (a) [12 pts] First describe an $O(kn^2)$ -time dynamic programming algorithm that solves the single-source version of the problem (i.e., for a fixed s, compute $L_k[s,t]$ for all $t \in V$).
 - (b) [24 pts] Next describe an O(k²n^{2.529})-time algorithm for (≤ k)-red APSP.
 [Up to 3 bonus points for an O(kn^{2.529})-time solution.]
 [Hint: modify Zwick's APSP algorithm. It may be helpful to compute not just L_k[s,t] but L_{k'}[s,t] for all k' ≤ k.]
- 3. $[30 \ pts]$ Let H(a, b) denote the Hamming distance between two strings a and b. Consider the following two problems:
 - **Problem I:** Given a set A of n strings of length ℓ and another set B of n strings of length ℓ and a number Δ , decide whether there exist two strings $a \in A$ and $b \in B$ with $H(a, b) \leq \Delta$, and if yes, return one such pair (a, b).

Problem II: Given a set A of n strings of length ℓ and another set B of n strings of length ℓ and a number Δ , report all strings $a \in A$ such that there exists a string $b \in B$ with $H(a,b) \leq \Delta$.

Prove that there is an algorithm for Problem I with running time $O(\ell^c n^{2-\delta})$ for some constants $c, \delta > 0$ iff there is an algorithm for Problem II with running time $O(\ell^c n^{2-\delta'})$ for some constant $c', \delta' > 0$.

(It is conjectured that such an algorithm does not exist.)

[Hint: one direction is trivial. For the other direction, imitate the reduction from All-Edges Negative-Weight Triangle to Negative-Weight Triangle described in class.]