Homework 2 (due Oct 13 Thursday 5pm)

Instructions: see previous homework.

1. [34 pts] We are given two $n \times n$ Boolean matrices $A=\left(a_{i j}\right)_{i, j \in[n]}$ and $B=\left(b_{i j}\right)_{i, j \in[n]}$, and a number $\ell \leq n$. We will consider variants of the Boolean matrix multiplication problem:
(a) $[10 \mathrm{pts}]$ For every $i, j \in[n]$, we want to decide whether there is a unique index $k \in[n]$ such that $a_{i k} \wedge b_{k j}$ is true, and if true, report this unique index k. (The output thus consists of $O\left(n^{2}\right)$ indices.) Describe an $O\left(n^{\omega}\right)$-time algorithm to solve this problem.
[Hint: consider $\sum_{k=1}^{n} k a_{i k} b_{k j}$.]
(b) [24 pts] For every $i, j \in[n]$, we want to decide whether $\mid\left\{k \in[n]: a_{i k} \wedge b_{k j}\right.$ is true $\} \mid \leq \ell$, and if true, report all indices k with $a_{i k} \wedge b_{k j}$ true. (This problem generalizes part (a), which corresponds to the $\ell=1$ case.) Describe an $\widetilde{O}\left(\ell^{c} n^{\omega}\right)$-time algorithm to solve this problem for some constant c. You may use randomization.
[Up to 3 bonus points if you can get $c<1$.]
[Hint: one approach (which does not yield the best c) is to use a lemma from class: if we put k balls in k^{2} bins, then with probability at least $1 / 2$, every bin contains at most one ball.]
2. [36 pts] Consider the following variant of APSP, called ($\leq k$)-red APSP: We are given an unweighted directed graph $G=(V, E)$ with n vertices, where some of the edges are labelled red. We are also given a number k (where $1 \leq k<n$). For every pair of vertices $s, t \in V$, we want to compute the minimum length $L_{k}[s, t]$ over all paths from s to t that use at most k red edges.
(a) [12 pts] First describe an $O\left(k n^{2}\right)$-time dynamic programming algorithm that solves the single-source version of the problem (i.e., for a fixed s, compute $L_{k}[s, t]$ for all $t \in V$).
(b) [24 pts] Next describe an $\widetilde{O}\left(k^{2} n^{2.529}\right)$-time algorithm for $(\leq k)$-red APSP. [Up to 3 bonus points for an $\widetilde{O}\left(k n^{2.529}\right)$-time solution.]
[Hint: modify Zwick's APSP algorithm. It may be helpful to compute not just $L_{k}[s, t]$ but $L_{k^{\prime}}[s, t]$ for all $k^{\prime} \leq k$.]
3. [30 pts] Let $H(a, b)$ denote the Hamming distance between two strings a and b. Consider the following two problems:

Problem I: Given a set A of n strings of length ℓ and another set B of n strings of length ℓ and a number Δ, decide whether there exist two strings $a \in A$ and $b \in B$ with $H(a, b) \leq$ Δ, and if yes, return one such pair (a, b).

Problem II: Given a set A of n strings of length ℓ and another set B of n strings of length ℓ and a number Δ, report all strings $a \in A$ such that there exists a string $b \in B$ with $H(a, b) \leq \Delta$.

Prove that there is an algorithm for Problem I with running time $O\left(\ell^{c} n^{2-\delta}\right)$ for some constants $c, \delta>0$ iff there is an algorithm for Problem II with running time $O\left(\ell^{c^{\prime}} n^{2-\delta^{\prime}}\right)$ for some constant $c^{\prime}, \delta^{\prime}>0$.
(It is conjectured that such an algorithm does not exist.)
[Hint: one direction is trivial. For the other direction, imitate the reduction from All-Edges Negative-Weight Triangle to Negative-Weight Triangle described in class.]

