NEAR-LINEAR ε-EMULATORS FOR PLANAR GRAPHS

Hsien-Chih Chang, Robert Krauthgamer, Zihan Tan

Presented by: Zhengcheng Huang

Institute: CS @ UIUC

Course: CS598 TH1

Instructor: Ruta Mehta

X3LATEXED ON 2023/04/07

Given a graph G, a sparsifier H is an object that preserves information in G

◎ e.g. cut, flow, **distance**, etc.

There are many types of distance sparsifiers:

H is a subgraph of *G* Spanner*H* is a minor of *G* Distance-preserving minor*H* is a data structure Distance oracle

Given a graph G and a terminal set T, an **emulator** is a graph H that contains T, such that for $u, v \in T$,

 $d_G(u, v) \le d_H(u, v) \le \alpha \cdot d_G(u, v).$

We want simultaneously $\alpha \rightsquigarrow 1$ and $|H| \rightsquigarrow k$

We will assume G is planar and require that H is planar

question Prove that there is always a distance-preserving minor with distortion 1 and size $O(k^4)$

Distortion	Size (lower/upper)		Minor?	
1	$\Omega(k^2)$		no	Chang-Ophelder '20
1		$O(k^4)$	yes	Krauthgamer-Nguyen-Zondiner '14
$1+\varepsilon$	$\Omega(k/arepsilon)$		yes	Krauthgamer-Nguyen-Zondiner '14
$1 + \varepsilon$		$\tilde{O}((k/\varepsilon)^2)$	yes	Cheung-Goranci-Henzinger '16
$1 + \varepsilon$		$ ilde{O}(k/\mathrm{poly}\varepsilon)$	no	Chang-Krauthgamer-Tan '22
$O(\log k)$		k	yes	Filster '18

separator Basic tool for any planar graph problem
 ε-cover Basic tool for approximate distance problems
 spread Classic idea in computational geometry; how does it arise in planar graphs?

Separator

definition Given a graph G, a separator is a vertex set X, such that G - X is disconnected

Separator Theorem [Lipton-Tarjan '79]

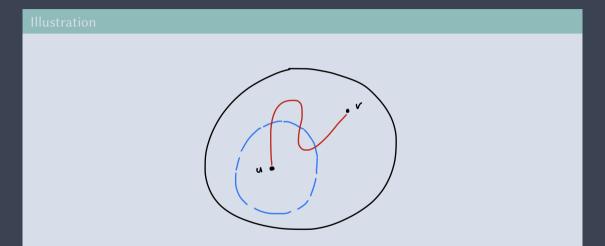
Every planar graph G with size n admits a separator X, such that

- \odot $|X| = O(\sqrt{n})$
- ◎ each component of G X has size at most 2n/3

Frederickson '86 (r-division) Divide G into O(n/r) regions with size r, each region has boundary size $O(\sqrt{r})$ Miller '86 X must be a cycle in G Thorup '01 X must consist of 3 shortest paths, but could be O(n) size

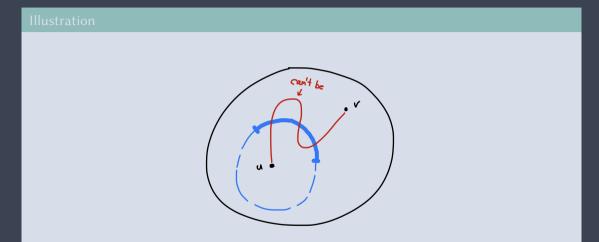
All computable in O(n) time

Using Separators in Distance Oracles

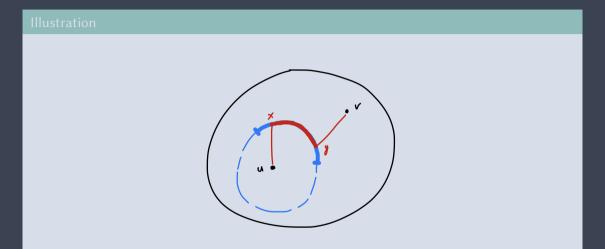


ε-Cover

Preserving Distances via Shortest Paths



Preserving Distances via Shortest Paths



Given a shortest path *P* and a vertex $u \notin P$, a vertex set $C(u, P) \in P$ is an ε -cover of *u* on *P* if

 $\min_{x \in C(u,P)} d(u,x) \le (1+\varepsilon) \min_{w \in P} d(u,w)$

Lemma [Thorup '01]

For every shortest path *P* and vertex $u \notin P$, there is an ε -cover of *u* on *P* with size $O(1/\varepsilon)$, and it can be found in linear time

question Prove that there is always a $(1 + \varepsilon)$ -emulator with size $\tilde{O}((k/\varepsilon)^2)$ [Cheung-Goranci-Henzinger '16]

Near-Linear ε-Emulator

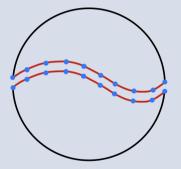
Some simplifying assumptions:

- All terminals lie on the outer face
- No terminal is a cut vertex

This is where the main technical contribution happens

Exponential Portals

Illustration



How to choose the portals?

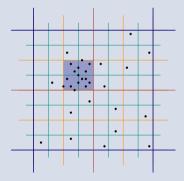
b Exponential portals: e^{ε} , $e^{2\varepsilon}$, $e^{3\varepsilon}$, ...

Number of portals:
$$\log \Phi = \log \left(\frac{\max_{u,v \in T} d(u,v)}{\min_{u,v \in T} d(u,v)} \right)$$

Spread Reduction

Analogy with Point Sets

Illustration



Set a distance parameter μ

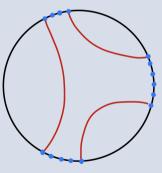
If two terminals u, v has $d(u, v) \le \mu^i$, they belong to the same level-*i* cluster

covering At level *i*, each *u* belongs to a cluster with diameter $\leq k \cdot \mu^i$ packing If *u*, *v* belong to different level-*i* clusters, then $d(u, v) > \mu^i$

What does a cluster look like?

Beautiful Shape of a Cluster

Illustration



For a cluster *S*, hat can we say about its parent's siblings?

- ◎ They are $\ge \mu^{i+1}$ away from *S*
- ◎ But S has diameter ≤ $k \mu^i$
- \bigcirc Their distances to ∂S are easy to approximate

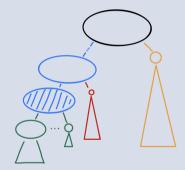
We want to find a "centroid" cluster S with very small siblings

- Parent's siblings don't create portals
- Mandle siblings using Thorup's ε-covers

There are many clusters with very small siblings (because large spread) But what if none of them is a centroid?

The New Plan

Illustration

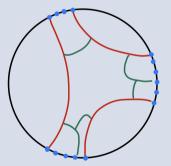


1. Find lowest heavy set with very small siblings

- 2. The blue cluster can be decomposed into
 - small clusters with very small siblings
 - singletons
- all close to blue in the tree

The Final Picture

Illustration



Partitioning of blue looks like this

Now remains to handle the center region

- All terminals are portals we created
- Can artificially increase distances

Summary

separator Basic tool for any planar graph problem ε-cover Basic tool for approximate distance problems spread Novel use of hierarchical partitioning for planar emulator

Final Result

Distortion	Size (lower/upper)		Minor?	
1	$\Omega(k^2)$		no	Chang-Ophelder '20
1		$O(k^4)$	yes	Krauthgamer-Nguyen-Zondiner '14
$1+\varepsilon$	$\Omega(k/arepsilon)$		yes	Krauthgamer-Nguyen-Zondiner '14
$1 + \varepsilon$		$\tilde{O}((k/\varepsilon)^2)$	yes	Cheung-Goranci-Henzinger '16
$1 + \varepsilon$		$ ilde{O}(k/\mathrm{poly}\varepsilon)$	no	Chang-Krauthgamer-Tan '22
$O(\log k)$		k	yes	Filster '18