Finding Faster Matrix Multiplication Algorithms with Reinforcement Learning

Fawzi et al.

Motivation

Matrix multiplication: multiplying two $n \times n$ matrices takes $O\left(n^{\omega}\right)$

- $\omega<\log _{2} 7 \approx 2.808$ [Strassen69]

Motivation

Latest asymptotic results: $\omega<2.37287$ [Le Gall14], $\omega<2.37286$ [AV20]

- Small improvements
- Highly technical
- Impractical

Machine learning

- New perspective
- Computer assistance
- Flexible objective

MM Algorithms as tensor decompositions

- MM can be represented by tensors $T_{n} \in\{0,1\}^{n^{2}} \otimes\{0,1\}^{n^{2}} \otimes\{0,1\}^{n^{2}}$
- A (Strassen-like) algorithm is a rank-one decomposition

$$
T_{n}=\sum_{t} u^{(t)} \otimes v^{(t)} \otimes w^{(t)}, \text { where } u, v, w \in \mathbb{R}^{n^{2}}
$$

Formulating MM Algorithm as Reinforcement Learning

- Similar to AlphaGo, etc.
- States: S_{t} with $S_{0}=T_{n}$
- Actions: $u^{(t)} \otimes v^{(t)} \otimes w^{(t)}$, where $u, v, w \in F^{n^{2}}, F$ is e.g. $\{0, \pm 1\}$
- Update: $S_{t} \leftarrow S_{t-1}-u^{(t)} \otimes v^{(t)} \otimes w^{(t)}$
- Termination: $t=R$ or $S_{t}=0$
- Evaluation: $-R-\operatorname{rank}\left(S_{R}\right)$ or $-t$ (multilayer perceptron)
- Update policy: samples from distribution learned with an autoregressive model
- Many heuristics

Architecture

Main Results

- Improves tensor rank of $4 \times 4 \mathrm{MM}$ over \mathbb{Z}_{\notin} from 49 to 47
- Rediscovers MM algorithms and DFT
- Improves constant factor for skew-symmetric matrix-vector product
- Finds hardware-specific algorithms

Discussion

- Need discrete F : search for F with ML?
- Border rank, etc.

