
The Complexity of Gradient Descent:
CLS = PPAD ∩ PLS

John Fearnley1 Paul Goldberg2 Alexandros Hollender2

Rahul Savani1

1University of Liverpool

2University of Oxford

Gradient descent

minimise f(x) s.t. x ∈ [0, 1]n

assume f continuously differentiable, but not necessarily convex

Gradient descent

minimise f(x) s.t. x ∈ [0, 1]n

NP-hard even for a quadratic polynomial given explicitly

Gradient descent

minimise f(x) s.t. x ∈ [0, 1]n NP−hard

Gradient Descent: xk+1 ← xk − η∇(f(xk)) (η : step size)

Intuition: “move in the direction of steepest descent”

Gradient descent

(1) : minimise f(x) s.t. x ∈ [0, 1]n NP−hard

Gradient Descent: xk+1 ← xk − η∇(f(xk)) (η : step size)

0 0.2 0.4 0.6 0.8 1 0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
y

f(x,y)

Gradient descent being applied to a function f : [0, 1]2 7→ [0, 1]

Gradient descent

(1) : minimise f(x) s.t. x ∈ [0, 1]n NP−hard

Gradient Descent: xk+1 ← xk − η∇(f(xk)) (η : step size)

Doesn’t actually solve (1); can get stuck in any stationary point

Gradient descent

minimise f(x) s.t. x ∈ [0, 1]n NP−hard

Gradient Descent: xk+1 ← xk − η∇(f(xk)) (η : step size)

Doesn’t actually solve (1); can get stuck in any stationary point

actually a Karush-Kuhn-Tucker point (due to boundaries)

Gradient descent

minimise f(x) s.t. x ∈ [0, 1]n NP−hard

Gradient Descent: xk+1 ← xk − η∇(f(xk)) (η : step size)

What is the complexity of finding a solution where gradient
descent terminates?

Gradient descent

minimise f(x) s.t. x ∈ [0, 1]n NP−hard

Gradient Descent: xk+1 ← xk − η∇(f(xk)) (η : step size)

What is the complexity of finding a solution where gradient
descent terminates?
Let’s explore how to formalise this...

Gradient descent problem

Input: C1 function f : [0, 1]n 7→ R, stepsize η > 0, precision ε > 0
(f and ∇f given as arithmetic circuits)

Goal: find a point where gradient descent terminates

Gradient descent problem

Input: C1 function f : [0, 1]n 7→ R, stepsize η > 0, precision ε > 0
(f and ∇f given as arithmetic circuits)

Goal: find a point where gradient descent terminates

[x′ := x − η∇p(x))]

GD-Local-Search: find x s.t. f(x′) ≥ f(x) − ε
limited improvement

Gradient descent problem

Input: C1 function f : [0, 1]n 7→ R, stepsize η > 0, precision ε > 0
(f and ∇f given as arithmetic circuits)

Goal: find a point where gradient descent terminates

GD-Local-Search: find x s.t. f(x′) ≥ f(x) − ε
limited improvement

GD-Fixed-Point: find x s.t. ||x′ − x|| ≤ ε
x not moved by much

Gradient descent problem

Input: C1 function f : [0, 1]n 7→ R, stepsize η > 0, precision ε > 0
(f and ∇f given as arithmetic circuits)

Goal: find a point where gradient descent terminates

GD-Local-Search: find x s.t. f(x′) ≥ f(x) − ε
limited improvement

GD-Fixed-Point: find x s.t. ||x′ − x|| ≤ ε
x not moved by much

These two problems are polynomial-time equivalent

Gradient descent problem

Input: C1 function f : [0, 1]n 7→ R, stepsize η > 0, precision ε > 0
(f and ∇f given as arithmetic circuits)

Goal: find a point where gradient descent terminates

One way to solve this problem: run Gradient Descent!

Running time: polynomial in 1/ε, not in input size

Gradient descent problem

Input: C1 function f : [0, 1]n 7→ R, stepsize η > 0, precision ε > 0
(f and ∇f given as arithmetic circuits)

Goal: find a point where gradient descent terminates

Can it be solved in time polynomial in log(1/ε)?

(f convex: yes, e.g., via the Ellipsoid method)

Total search problems

A search problem is total if a solution is guaranteed to exist

Examples:

I NASH:
Find a mixed Nash equilibrium of a game

I PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game

I FACTORING:
Find a prime factor of a number ≥ 2

I BROUWER:
Find a fixed point of a continuous function f : [0, 1]3 7→ [0, 1]3

I GRADIENT-DESCENT

Total search problems

A search problem is total if a solution is guaranteed to exist

Examples:

I NASH:
Find a mixed Nash equilibrium of a game

I PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game

I FACTORING:
Find a prime factor of a number ≥ 2

I BROUWER:
Find a fixed point of a continuous function f : [0, 1]3 7→ [0, 1]3

I GRADIENT-DESCENT

Total search problems

A search problem is total if a solution is guaranteed to exist

Examples:

I NASH:
Find a mixed Nash equilibrium of a game

I PURE-CONGESTION:
Find a pure Nash equilibrium of a congestion game

I FACTORING:
Find a prime factor of a number ≥ 2

I BROUWER:
Find a fixed point of a continuous function f : [0, 1]3 7→ [0, 1]3

I GRADIENT-DESCENT

NP Total Search Problems (TFNP)

NASH, PURE-CONGESTION, FACTORING, BROUWER,
GRADIENT-DESCENT, . . .

In addition to being total, these problems have more in common:

They are NP function problems with easy-to-verify solutions

Can a TFNP problem be NP-hard? Not unless NP = co-NP ...
[Megiddo-Papadimitriou, 1991]

It is believed that TFNP does not have complete problems

NP Total Search Problems (TFNP)

NASH, PURE-CONGESTION, FACTORING, BROUWER,
GRADIENT-DESCENT, . . .

In addition to being total, these problems have more in common:

They are NP function problems with easy-to-verify solutions

Can a TFNP problem be NP-hard?

Not unless NP = co-NP ...
[Megiddo-Papadimitriou, 1991]

It is believed that TFNP does not have complete problems

NP Total Search Problems (TFNP)

NASH, PURE-CONGESTION, FACTORING, BROUWER,
GRADIENT-DESCENT, . . .

In addition to being total, these problems have more in common:

They are NP function problems with easy-to-verify solutions

Can a TFNP problem be NP-hard? Not unless NP = co-NP ...
[Megiddo-Papadimitriou, 1991]

It is believed that TFNP does not have complete problems

NP Total Search Problems (TFNP)

NASH, PURE-CONGESTION, FACTORING, BROUWER,
GRADIENT-DESCENT, . . .

In addition to being total, these problems have more in common:

They are NP function problems with easy-to-verify solutions

Can a TFNP problem be NP-hard? Not unless NP = co-NP ...
[Megiddo-Papadimitriou, 1991]

It is believed that TFNP does not have complete problems

TFNP Landscape

TFNP

PPP

PPA

PLSPPAD

P

Pigeonhole Principle

Directed Graph Argument
NASH
BROUWER

Local Search Argument
PURE-CONGESTION
LOCAL-MAX-CUT

Parity Argument
Borsuk-Ulam

FACTORING

TFNP subclasses

Why believe that PPAD , P, PLS , P, etc. ?

I many seemingly hard problems lie in PPAD, PLS, . . .

I oracle separations (in particular PPAD , PLS)

I hard under cryptographic assumptions

PPAD ∩ PLS

TFNP

P

PPAD PLS

NASH LOCAL-MAX-CUT
PURE-CONGESTIONBROUWER

PPAD ∩ PLS

TFNP

P

PPAD PLS

NASH LOCAL-MAX-CUT
PURE-CONGESTIONBROUWER

GD-Fixed-Point
GD-Local-Search

PPAD ∩ PLS

TFNP

P

PPAD PLS

NASH LOCAL-MAX-CUT
PURE-CONGESTIONBROUWER

PPAD ∩ PLS

GRADIENT-DESCENT

PPAD ∩ PLS

TFNP

P

PPAD PLS

NASH LOCAL-MAX-CUT
PURE-CONGESTION

MIXED-CONGESTION
CONTRACTION

BROUWER

PPAD ∩ PLS

P-LCP

[Daskalakis-Papadimitriou, 2011]

Unlikely containments

Consider a problem A in PPAD ∩ PLS

Since A is in both classes:

I If A is PPAD-hard then PPAD ⊆ PLS

I If A is PLS-hard then PLS ⊆ PPAD

We do not believe that either containments holds, so
we do not believe A is PPAD-hard or PLS-hard

Unlikely containments

Consider a problem A in PPAD ∩ PLS

Since A is in both classes:

I If A is PPAD-hard then PPAD ⊆ PLS

I If A is PLS-hard then PLS ⊆ PPAD

We do not believe that either containments holds, so
we do not believe A is PPAD-hard or PLS-hard

PPAD ∩ PLS seems unnatural...

Suppose problem A is PPAD-complete
Suppose problem B is PLS-complete

The following problem is PPAD ∩ PLS-complete:

EITHER(A ,B)

Input: an instance IA of A , an instance IB of B

Output: a solution of IA , or a solution of IB

PPAD ∩ PLS seems unnatural...

BROUWER (PPAD-complete):
Input: continuous function f : [0, 1]3 7→ [0, 1]3, precision ε > 0
Output: approximate fixpoint x:

||f(x) − x|| ≤ ε

LOCAL-OPT (PLS-complete):
Input: continuous function p : [0, 1]3 7→ [0, 1], (non-continuous)
function g : [0, 1]3 7→ [0, 1]3, precision ε > 0
Output: local minimum x of p w.r.t. g:

p(g(x)) ≥ p(x) − ε

EITHER(BROUWER,LOCAL-OPT) is PPAD ∩ PLS-complete

PPAD ∩ PLS seems unnatural...

BROUWER (PPAD-complete):
Input: continuous function f : [0, 1]3 7→ [0, 1]3, precision ε > 0
Output: approximate fixpoint x:

||f(x) − x|| ≤ ε

LOCAL-OPT (PLS-complete):
Input: continuous function p : [0, 1]3 7→ [0, 1], (non-continuous)
function g : [0, 1]3 7→ [0, 1]3, precision ε > 0
Output: local minimum x of p w.r.t. g:

p(g(x)) ≥ p(x) − ε

EITHER(BROUWER,LOCAL-OPT) is PPAD ∩ PLS-complete

PPAD ∩ PLS seems unnatural...

BROUWER (PPAD-complete):
Input: continuous function f : [0, 1]3 7→ [0, 1]3, precision ε > 0
Output: approximate fixpoint x:

||f(x) − x|| ≤ ε

LOCAL-OPT (PLS-complete):
Input: continuous function p : [0, 1]3 7→ [0, 1], (non-continuous)
function g : [0, 1]3 7→ [0, 1]3, precision ε > 0
Output: local minimum x of p w.r.t. g:

p(g(x)) ≥ p(x) − ε

EITHER(BROUWER,LOCAL-OPT) is PPAD ∩ PLS-complete

Continuous Local Search (CLS)
Daskalakis & Papadimitriou [SODA 2011] defined a new class via:

CONTINUOUS-LOCAL-OPT

Input:
continuous p : [0, 1]3 7→ [0, 1] and
continuous f : [0, 1]3 7→ [0, 1]3 , precision ε > 0

Output: local minimum x of p w.r.t. f :

p(f(x)) ≥ p(x) − ε

CLS is the class of all problems that are polynomial-time re-
ducible to CONTINUOUS-LOCAL-OPT

PPAD ∩ PLS and CLS

PPAD ∩ PLS
EITHER-SOLUTION(𝐴, 𝐵)

CLS

BANACH
CONTINUOUS-LOCAL-OPT

P

SSGs MIXED-CONGESTION

CONTRACTION

P-LCP

PPAD ∩ PLS and CLS

PPAD ∩ PLS
EITHER-SOLUTION(𝐴, 𝐵)

CLS

BANACH
CONTINUOUS-LOCAL-OPT

P

SSGs MIXED-CONGESTION

CONTRACTION

P-LCPGRADIENT-DESCENT

Collapse

PPAD ∩ PLS
EITHER-SOLUTION(𝐴, 𝐵)

CLS

BANACH
CONTINUOUS-LOCAL-OPT

P

SSGs MIXED-CONGESTION

CONTRACTION

P-LCPGRADIENT-DESCENT

Collapse

PPAD ∩ PLS
EITHER-SOLUTION(𝐴, 𝐵)

CLS

BANACH
CONTINUOUS-LOCAL-OPT

P

SSGs MIXED-CONGESTION

CONTRACTION

P-LCPGRADIENT-DESCENT

Collapse

PPAD ∩ PLS = CLS
EITHER-SOLUTION(𝐴, 𝐵)

BANACH
CONTINUOUS-LOCAL-OPT

P

SSGs MIXED-CONGESTION

CONTRACTION

P-LCP

GRADIENT-DESCENT

TARSKI

Main Result

GRADIENT-DESCENT is PPAD ∩ PLS – hard

Main Result

Reduction from EITHER(A, B) to 2D-GRADIENT-DESCENT
where
A is the PPAD-complete problem End-of-Line
B is the PLS-complete problem ITER

Proof Sketch

Reduction from EITHER(A, B) to 2D-GRADIENT-DESCENT
where
A is the PPAD-complete problem End-of-Line
B is the PLS-complete problem ITER

Constructing a 2D-GRADIENT-DESCENT instance f

I Domain is the square [0, 1]2

I Overlay grid and assign values for f and ∇f at grid points

I Use bicubic interpolation to produce smooth function

I All stationary points are either End-Of-Line or ITER solutions

Background “landscape”

[0, 1]2

(0, 0)
x

y

Background “landscape”

(0, 0)(0, 0)
x

y

x

y

(0, 0)
x

f(x, y)

PPAD-complete problem: End-Of-Line

source

Given a graph of
indegree/outdegree at most 1

and a source
(indegree 0, outdegree 1)

find another vertex of degree 1

PPAD-complete problem: End-Of-Line

source
0000

0101

Catch:

graph is exponentially large

defined by boolean circuits S , P
that map a vertex {0, 1}n to its
successor and predecessor

S(0000) = 0101

P(0101) = 0000

PPAD-complete problem: End-Of-Line

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Locally-computable green paths: Hubáček and Yogev SODA’17
(used to show conditional hardness of CLS)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

3

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

3
PLS labyrinth

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

PLS

PLS

PLS

PLS labyrinths hide stationary points at green/orange meetings

All stationary points are:
solutions of End-of-Line instance; or
solutions of PLS-complete labyrinth

0

1

2

3

4

5

6

7

PLS

PLS

PLS

PLS

PLS

PLS

We have shown: 2D-GRADIENT-DESCENT is PPAD ∩ PLS – hard

Take home message: PPAD ∩ PLS

Before:
I PPAD and PLS both successful classes

I PPAD ∩ PLS not believed to have interesting complete problems

I CLS introduced as “natural” (presumed distinct) counterpart

Now:
I PPAD ∩ PLS is a natural class with complete problems
I Captures complexity of problems solved by gradient descent
I PPAD ∩ PLS = CLS
I Many important problems are now candidates for hardness

Open Problems

The following are candidates for PPAD ∩ PLS-completeness:

I POLYNOMIAL-KKT
I MIXED-CONGESTION
I CONTRACTION
I TARSKI
I COLORFUL-CARATHEODORY

Thank you!

Open Problems

The following are candidates for PPAD ∩ PLS-completeness:

I POLYNOMIAL-KKT
I MIXED-CONGESTION [Babichenko, Rubinstein STOC’21]
I POLYNOMIAL-KKT for degree < 5
I MIXED-NETWORK-CONGESTION
I CONTRACTION
I TARSKI
I COLORFUL-CARATHEODORY

Thank you!

