# The Complexity of Gradient Descent: CLS = PPAD ∩ PLS

John Fearnley<sup>1</sup> Paul Goldberg<sup>2</sup> Alexandros Hollender<sup>2</sup> Rahul Savani<sup>1</sup>

<sup>1</sup>University of Liverpool

<sup>2</sup>University of Oxford

#### minimise f(x) s.t. $x \in [0, 1]^n$

assume *f* continuously differentiable, but not necessarily convex

#### minimise f(x) s.t. $x \in [0, 1]^n$

NP-hard even for a quadratic polynomial given explicitly

minimise f(x) s.t.  $x \in [0, 1]^n$  NP-hard

Gradient Descent: 
$$x_{k+1} \leftarrow x_k - \eta \nabla(f(x_k))$$
 ( $\eta$  : step size)

Intuition: "move in the direction of steepest descent"

(1): minimise f(x) s.t.  $x \in [0, 1]^n$  NP-hard

Gradient Descent:  $x_{k+1} \leftarrow x_k - \eta \nabla(f(x_k))$  ( $\eta$ : step size)



Gradient descent being applied to a function  $f : [0, 1]^2 \mapsto [0, 1]$ 

(1): minimise f(x) s.t.  $x \in [0, 1]^n$  NP-hard

Gradient Descent: 
$$x_{k+1} \leftarrow x_k - \eta \nabla(f(x_k))$$
 ( $\eta$ : step size)

Doesn't actually solve (1); can get stuck in any stationary point

minimise f(x) s.t.  $x \in [0, 1]^n$  NP-hard

Gradient Descent:  $x_{k+1} \leftarrow x_k - \eta \nabla(f(x_k))$  ( $\eta$  : step size)

Doesn't actually solve (1); can get stuck in any stationary point

actually a Karush-Kuhn-Tucker point (due to boundaries)

minimise f(x) s.t.  $x \in [0, 1]^n$  NP-hard

Gradient Descent:  $x_{k+1} \leftarrow x_k - \eta \nabla(f(x_k))$  ( $\eta$  : step size)

What is the complexity of finding a solution where gradient descent terminates?

minimise f(x) s.t.  $x \in [0, 1]^n$  NP-hard

Gradient Descent:  $x_{k+1} \leftarrow x_k - \eta \nabla(f(x_k))$  ( $\eta$ : step size)

What is the complexity of finding a solution where gradient descent terminates?

Let's explore how to formalise this...

**Input**:  $C^1$  function  $f : [0, 1]^n \mapsto \mathbb{R}$ , stepsize  $\eta > 0$ , precision  $\epsilon > 0$ (*f* and  $\nabla f$  given as arithmetic circuits)

Goal: find a point where gradient descent terminates

**Input**:  $C^1$  function  $f : [0, 1]^n \mapsto \mathbb{R}$ , stepsize  $\eta > 0$ , precision  $\epsilon > 0$ (*f* and  $\nabla f$  given as arithmetic circuits)

Goal: find a point where gradient descent terminates

$$[\mathbf{x}' := \mathbf{x} - \eta \nabla \mathbf{p}(\mathbf{x}))]$$

**GD-Local-Search**: find **x** s.t.  $f(x') \ge f(x) - \epsilon$ 

limited improvement

**Input**:  $C^1$  function  $f : [0, 1]^n \mapsto \mathbb{R}$ , stepsize  $\eta > 0$ , precision  $\epsilon > 0$ (*f* and  $\nabla f$  given as arithmetic circuits)

Goal: find a point where gradient descent terminates

**GD-Local-Search**: find **x** s.t.  $f(x') \ge f(x) - \epsilon$ 

limited improvement

**GD-Fixed-Point**: find **x** s.t.  $||x' - x|| \le \epsilon$ 

x not moved by much

**Input**:  $C^1$  function  $f : [0, 1]^n \mapsto \mathbb{R}$ , stepsize  $\eta > 0$ , precision  $\epsilon > 0$ (*f* and  $\nabla f$  given as arithmetic circuits)

Goal: find a point where gradient descent terminates

**GD-Local-Search**: find **x** s.t.  $f(x') \ge f(x) - \epsilon$ 

limited improvement

**GD-Fixed-Point**: find **x** s.t.  $||x' - x|| \le \epsilon$ 

x not moved by much

These two problems are polynomial-time equivalent

**Input**:  $C^1$  function  $f : [0, 1]^n \mapsto \mathbb{R}$ , stepsize  $\eta > 0$ , precision  $\epsilon > 0$ (*f* and  $\nabla f$  given as arithmetic circuits)

Goal: find a point where gradient descent terminates

One way to solve this problem: run Gradient Descent!

Running time: polynomial in  $1/\epsilon$ , not in input size

**Input**:  $C^1$  function  $f : [0, 1]^n \mapsto \mathbb{R}$ , stepsize  $\eta > 0$ , precision  $\epsilon > 0$ (*f* and  $\nabla f$  given as arithmetic circuits)

Goal: find a point where gradient descent terminates

Can it be solved in time polynomial in  $log(1/\epsilon)$ ?

(f convex: yes, e.g., via the Ellipsoid method)

### **Total search problems**

A search problem is total if a solution is guaranteed to exist

Examples:

#### NASH: Find a mixed Nash equilibrium of a game

#### PURE-CONGESTION:

Find a pure Nash equilibrium of a congestion game

### **Total search problems**

A search problem is total if a solution is guaranteed to exist

Examples:

NASH: Find a mixed Nash equilibrium of a game

#### PURE-CONGESTION:

Find a pure Nash equilibrium of a congestion game

#### FACTORING:

Find a prime factor of a number  $\geq 2$ 

#### BROUWER:

Find a fixed point of a continuous function  $f : [0, 1]^3 \mapsto [0, 1]^3$ 

### **Total search problems**

A search problem is total if a solution is guaranteed to exist

Examples:

NASH: Find a mixed Nash equilibrium of a game

#### PURE-CONGESTION:

Find a pure Nash equilibrium of a congestion game

#### FACTORING:

Find a prime factor of a number  $\geq 2$ 

#### BROUWER:

Find a fixed point of a continuous function  $f : [0, 1]^3 \mapsto [0, 1]^3$ 

#### GRADIENT-DESCENT

# NASH, PURE-CONGESTION, FACTORING, BROUWER, GRADIENT-DESCENT, ...

In addition to being total, these problems have more in common:

They are NP function problems with easy-to-verify solutions

# NASH, PURE-CONGESTION, FACTORING, BROUWER, GRADIENT-DESCENT, ...

In addition to being total, these problems have more in common:

They are NP function problems with easy-to-verify solutions

Can a TFNP problem be NP-hard?

# NASH, PURE-CONGESTION, FACTORING, BROUWER, GRADIENT-DESCENT, ...

In addition to being total, these problems have more in common:

They are NP function problems with easy-to-verify solutions

Can a **TFNP** problem be **NP**-hard? Not unless **NP** = **co-NP** ... [Megiddo-Papadimitriou, 1991]

# NASH, PURE-CONGESTION, FACTORING, BROUWER, GRADIENT-DESCENT, ...

In addition to being total, these problems have more in common:

They are NP function problems with easy-to-verify solutions

Can a **TFNP** problem be **NP**-hard? Not unless **NP = co-NP** ... [Megiddo-Papadimitriou, 1991]

It is believed that TFNP does not have complete problems

## **TFNP Landscape**



#### **TFNP subclasses**



- many seemingly hard problems lie in PPAD, PLS, ...
- oracle separations (in particular PPAD ≠ PLS)
- hard under cryptographic assumptions

### $\textbf{PPAD} \cap \textbf{PLS}$



### $\textbf{PPAD} \cap \textbf{PLS}$



#### $\textbf{PPAD} \cap \textbf{PLS}$



#### **PPAD** ∩ **PLS**



# **Unlikely containments**

Consider a problem **A** in PPAD  $\cap$  PLS

Since **A** is in both classes:

- ▶ If **A** is PPAD-hard then PPAD  $\subseteq$  PLS
- ▶ If **A** is PLS-hard then PLS  $\subseteq$  PPAD

## **Unlikely containments**

Consider a problem **A** in PPAD  $\cap$  PLS

Since **A** is in both classes:

- ▶ If **A** is PPAD-hard then PPAD  $\subseteq$  PLS
- ▶ If **A** is PLS-hard then PLS  $\subseteq$  PPAD

We do not believe that either containments holds, so we do not believe *A* is PPAD-hard or PLS-hard

#### **PPAD** $\cap$ **PLS** seems unnatural...

Suppose problem **A** is **PPAD**-complete

Suppose problem *B* is **PLS**-complete

The following problem is **PPAD**  $\cap$  **PLS**-complete:

EITHER(A,B)

Input: an instance  $I_A$  of A, an instance  $I_B$  of B

Output: a solution of *I<sub>A</sub>*, or a solution of *I<sub>B</sub>* 

#### **PPAD** ∩ **PLS** seems unnatural...

**BROUWER** (PPAD-complete): Input: continuous function  $f : [0, 1]^3 \mapsto [0, 1]^3$ , precision  $\epsilon > 0$ Output: approximate fixpoint **x**:

 $\|f(x)-x\|\leq\epsilon$ 

#### **PPAD** ∩ **PLS** seems unnatural...

**BROUWER** (PPAD-complete): Input: continuous function  $f : [0, 1]^3 \mapsto [0, 1]^3$ , precision  $\epsilon > 0$ Output: approximate fixpoint **x**:

$$\|f(\mathbf{x}) - \mathbf{x}\| \le \epsilon$$

**LOCAL-OPT** (PLS-complete): Input: continuous function  $p : [0, 1]^3 \mapsto [0, 1]$ , (non-continuous) function  $g : [0, 1]^3 \mapsto [0, 1]^3$ , precision  $\epsilon > 0$ Output: local minimum x of p w.r.t. g:

 $p(g(x)) \ge p(x) - \epsilon$ 

#### **PPAD** ∩ **PLS** seems unnatural...

**BROUWER** (PPAD-complete): Input: continuous function  $f : [0, 1]^3 \mapsto [0, 1]^3$ , precision  $\epsilon > 0$ Output: approximate fixpoint **x**:

$$\|f(\mathbf{x}) - \mathbf{x}\| \le \epsilon$$

**LOCAL-OPT** (PLS-complete): Input: continuous function  $p : [0,1]^3 \mapsto [0,1]$ , (non-continuous) function  $g : [0,1]^3 \mapsto [0,1]^3$ , precision  $\epsilon > 0$ Output: local minimum x of p w.r.t. g:

 $p(g(x)) \ge p(x) - \epsilon$ 

EITHER(BROUWER,LOCAL-OPT) is PPAD 

PLS-complete

## **Continuous Local Search (CLS)**

Daskalakis & Papadimitriou [SODA 2011] defined a new class via:

```
CONTINUOUS-LOCAL-OPT
Input:
continuous p : [0, 1]^3 \mapsto [0, 1] and
continuous f : [0, 1]^3 \mapsto [0, 1]^3, precision \epsilon > 0
```

Output: local minimum x of p w.r.t. f:

 $p(f(x)) \geq p(x) - \epsilon$ 

**CLS** is the class of all problems that are polynomial-time reducible to **CONTINUOUS-LOCAL-OPT** 

#### **PPAD** $\cap$ **PLS** and **CLS**



#### **PPAD** ∩ **PLS** and **CLS**



## Collapse



## Collapse



### Collapse



#### **Main Result**

#### GRADIENT-DESCENT is PPAD ∩ PLS – hard

#### **Main Result**

#### Reduction from EITHER(A, B) to 2D-GRADIENT-DESCENT

where

A is the PPAD-complete problem End-of-Line B is the PLS-complete problem ITER

### **Proof Sketch**

Reduction from **EITHER(A, B)** to **2D-GRADIENT-DESCENT** where

A is the PPAD-complete problem End-of-Line B is the PLS-complete problem ITER

#### Constructing a 2D-GRADIENT-DESCENT instance f

- Domain is the square [0, 1]<sup>2</sup>
- Overlay grid and assign values for f and ∇f at grid points
- Use bicubic interpolation to produce smooth function
- All stationary points are either End-Of-Line or ITER solutions

## Background "landscape"



#### Background "landscape"



#### **PPAD-complete problem: End-Of-Line**



Given a graph of indegree/outdegree at most 1

and a **source** (indegree 0, outdegree 1)

find another vertex of degree 1

### **PPAD-complete problem: End-Of-Line**



#### Catch:

graph is exponentially large

defined by boolean circuits S, P that map a vertex {0, 1}<sup>n</sup> to its successor and predecessor

S(0000) = 0101P(0101) = 0000

#### **PPAD-complete problem: End-Of-Line**























PLS labyrinths hide stationary points at green/orange meetings



All stationary points are: solutions of End-of-Line instance; or solutions of PLS-complete labyrinth



We have shown: 2D-GRADIENT-DESCENT is PPAD 

PLS – hard

### Take home message: PPAD ∩ PLS

#### **Before:**

- PPAD and PLS both successful classes
- ▶ PPAD ∩ PLS not believed to have interesting complete problems
- **CLS** introduced as "natural" (presumed distinct) counterpart

#### Now:

- ▶ PPAD ∩ PLS is a natural class with complete problems
- Captures complexity of problems solved by gradient descent
- ▶ PPAD ∩ PLS = CLS
- Many important problems are now candidates for hardness

## **Open Problems**

The following are candidates for **PPAD**  $\cap$  **PLS**-completeness:

- POLYNOMIAL-KKT
- MIXED-CONGESTION
- CONTRACTION
- TARSKI
- COLORFUL-CARATHEODORY

## **Open Problems**

The following are candidates for **PPAD** ∩ **PLS**-completeness:

- POLYNOMIAL-KKT
- ► MIXED-CONGESTION [Babichenko, Rubinstein STOC'21]
- POLYNOMIAL-KKT for degree < 5</p>
- MIXED-NETWORK-CONGESTION
- CONTRACTION
- TARSKI
- COLORFUL-CARATHEODORY

# Thank you!