The Complexity of Gradient Descent: CLS = PPAD \cap PLS

John Fearnley ${ }^{1} \quad$ Paul Goldberg ${ }^{2} \quad$ Alexandros Hollender ${ }^{2}$ Rahul Savani ${ }^{1}$

${ }^{1}$ University of Liverpool
${ }^{2}$ University of Oxford

Gradient descent

$$
\text { minimise } f(x) \text { s.t. } \quad x \in[0,1]^{n}
$$

assume \boldsymbol{f} continuously differentiable, but not necessarily convex

Gradient descent

$$
\text { minimise } f(x) \text { s.t. } \quad x \in[0,1]^{n}
$$

NP-hard even for a quadratic polynomial given explicitly

Gradient descent

$$
\text { minimise } f(x) \text { s.t. } \quad x \in[0,1]^{n}
$$

NP-hard

Gradient Descent: $\quad x_{k+1} \leftarrow x_{k}-\eta \nabla\left(f\left(x_{k}\right)\right) \quad$ (η : step size)

Intuition: "move in the direction of steepest descent"

Gradient descent

(1): minimise $f(x)$ s.t. $\quad x \in[0,1]^{n}$

Gradient Descent: $\quad x_{k+1} \leftarrow x_{k}-\eta \nabla\left(f\left(x_{k}\right)\right)$
 (η : step size)

Gradient descent being applied to a function $f:[0,1]^{2} \mapsto[0,1]$

Gradient descent

(1): minimise $f(x)$ s.t. $\quad x \in[0,1]^{n}$

NP-hard

Gradient Descent: $\quad x_{k+1} \leftarrow x_{k}-\eta \nabla\left(f\left(x_{k}\right)\right)$ (η : step size)

Doesn't actually solve (1); can get stuck in any stationary point

Gradient descent

$$
\text { minimise } f(x) \quad \text { s.t. } \quad x \in[0,1]^{n}
$$

NP-hard

Gradient Descent: $\quad \boldsymbol{x}_{\mathrm{k}+1} \leftarrow \mathbf{x}_{\boldsymbol{k}}-\eta \nabla\left(\boldsymbol{f}\left(\mathrm{x}_{\mathrm{k}}\right)\right)$

Doesn't actually solve (1); can get stuck in any stationary point actually a Karush-Kuhn-Tucker point (due to boundaries)

Gradient descent

$$
\text { minimise } f(x) \quad \text { s.t. } \quad x \in[0,1]^{n} \quad \text { NP-hard }
$$

Gradient Descent: $\quad x_{k+1} \leftarrow x_{k}-\eta \nabla\left(f\left(x_{k}\right)\right) \quad$ (η : step size)

What is the complexity of finding a solution where gradient descent terminates?

Gradient descent

$$
\text { minimise } f(x) \quad \text { s.t. } x \in[0,1]^{n} \quad \text { NP-hard }
$$

Gradient Descent: $\quad x_{k+1} \leftarrow x_{k}-\eta \nabla\left(f\left(x_{k}\right)\right) \quad(\eta$: step size)

What is the complexity of finding a solution where gradient descent terminates?
Let's explore how to formalise this...

Gradient descent problem

Input: $C^{\mathbf{1}}$ function $\boldsymbol{f}:[\mathbf{0}, \mathbf{1}]^{n} \mapsto \mathbb{R}$, stepsize $\eta>\mathbf{0}$, precision $\epsilon>0$
(\boldsymbol{f} and $\nabla \boldsymbol{f}$ given as arithmetic circuits)

Goal: find a point where gradient descent terminates

Gradient descent problem

Input: $C^{\mathbf{1}}$ function $\boldsymbol{f}:[\mathbf{0 , 1}]^{\boldsymbol{n}} \mapsto \mathbb{R}$, stepsize $\eta>\mathbf{0}$, precision $\epsilon>\mathbf{0}$
(\boldsymbol{f} and $\nabla \boldsymbol{f}$ given as arithmetic circuits)

Goal: find a point where gradient descent terminates

$$
\left.\left[x^{\prime}:=x-\eta \nabla p(x)\right)\right]
$$

GD-Local-Search: find x s.t. $f\left(x^{\prime}\right) \geq f(x)-\epsilon$
limited improvement

Gradient descent problem

Input: $C^{\mathbf{1}}$ function $\boldsymbol{f}:[\mathbf{0}, \mathbf{1}]^{n} \mapsto \mathbb{R}$, stepsize $\eta>\mathbf{0}$, precision $\epsilon>\mathbf{0}$
(\boldsymbol{f} and $\nabla \boldsymbol{f}$ given as arithmetic circuits)

Goal: find a point where gradient descent terminates

GD-Local-Search: find x s.t. $f\left(x^{\prime}\right) \geq f(x)-\epsilon$
limited improvement
GD-Fixed-Point: find \boldsymbol{x} s.t. $\left\|\boldsymbol{x}^{\prime}-\boldsymbol{x}\right\| \leq \epsilon$
x not moved by much

Gradient descent problem

Input: $C^{\mathbf{1}}$ function $\boldsymbol{f}:[\mathbf{0}, \mathbf{1}]^{n} \mapsto \mathbb{R}$, stepsize $\eta>\mathbf{0}$, precision $\epsilon>0$
(\boldsymbol{f} and $\nabla \boldsymbol{f}$ given as arithmetic circuits)

Goal: find a point where gradient descent terminates

GD-Local-Search: find x s.t. $f\left(x^{\prime}\right) \geq f(x)-\epsilon$
limited improvement
GD-Fixed-Point: find \boldsymbol{x} s.t. $\left\|x^{\prime}-\boldsymbol{x}\right\| \leq \epsilon$
x not moved by much
These two problems are polynomial-time equivalent

Gradient descent problem

Input: $C^{\mathbf{1}}$ function $\boldsymbol{f}:[\mathbf{0}, \mathbf{1}]^{n} \mapsto \mathbb{R}$, stepsize $\eta>\mathbf{0}$, precision $\epsilon>\mathbf{0}$
(f and $\nabla \boldsymbol{f}$ given as arithmetic circuits)

Goal: find a point where gradient descent terminates

One way to solve this problem: run Gradient Descent!
Running time: polynomial in $1 / \epsilon$, not in input size

Gradient descent problem

Input: $C^{\mathbf{1}}$ function $\boldsymbol{f}:[0,1]^{n} \mapsto \mathbb{R}$, stepsize $\eta>\mathbf{0}$, precision $\epsilon>\mathbf{0}$
(f and $\nabla \boldsymbol{f}$ given as arithmetic circuits)

Goal: find a point where gradient descent terminates

Can it be solved in time polynomial in $\log (1 / \epsilon)$?
(\boldsymbol{f} convex: yes, e.g., via the Ellipsoid method)

Total search problems

A search problem is total if a solution is guaranteed to exist

Examples:

- NASH:

Find a mixed Nash equilibrium of a game

- PURE-CONGESTION:

Find a pure Nash equilibrium of a congestion game

Total search problems

A search problem is total if a solution is guaranteed to exist

Examples:

- NASH:

Find a mixed Nash equilibrium of a game

- PURE-CONGESTION:

Find a pure Nash equilibrium of a congestion game

- FACTORING:

Find a prime factor of a number ≥ 2

- BROUWER:

Find a fixed point of a continuous function $f:[0,1]^{3} \mapsto[0,1]^{3}$

Total search problems

A search problem is total if a solution is guaranteed to exist

Examples:

- NASH:

Find a mixed Nash equilibrium of a game

- PURE-CONGESTION:

Find a pure Nash equilibrium of a congestion game

- FACTORING:

Find a prime factor of a number ≥ 2

- BROUWER:

Find a fixed point of a continuous function $f:[0,1]^{3} \mapsto[0,1]^{3}$

- GRADIENT-DESCENT

NP Total Search Problems (TFNP)

NASH, PURE-CONGESTION, FACTORING, BROUWER, GRADIENT-DESCENT, ...

In addition to being total, these problems have more in common:
They are NP function problems with easy-to-verify solutions

NP Total Search Problems (TFNP)

NASH, PURE-CONGESTION, FACTORING, BROUWER, GRADIENT-DESCENT, ...

In addition to being total, these problems have more in common:
They are NP function problems with easy-to-verify solutions
Can a TFNP problem be NP-hard?

NP Total Search Problems (TFNP)

NASH, PURE-CONGESTION, FACTORING, BROUWER, GRADIENT-DESCENT, ...

In addition to being total, these problems have more in common:
They are NP function problems with easy-to-verify solutions
Can a TFNP problem be NP-hard? Not unless NP = co-NP ... [Megiddo-Papadimitriou, 1991]

NP Total Search Problems (TFNP)

NASH, PURE-CONGESTION, FACTORING, BROUWER, GRADIENT-DESCENT, ...

In addition to being total, these problems have more in common:
They are NP function problems with easy-to-verify solutions
Can a TFNP problem be NP-hard? Not unless NP = co-NP ... [Megiddo-Papadimitriou, 1991]

It is believed that TFNP does not have complete problems

TFNP Landscape

TFNP subclasses

Why believe that PPAD $\neq \mathbf{P}$, PLS $\neq \mathbf{P}$, etc. ?

- many seemingly hard problems lie in PPAD, PLS, ...
- oracle separations (in particular PPAD \neq PLS)
- hard under cryptographic assumptions

PPAD \cap PLS

PPAD \cap PLS

PPAD \cap PLS

PPAD \cap PLS

Unlikely containments

Consider a problem \boldsymbol{A} in PPAD \cap PLS
Since \boldsymbol{A} is in both classes:

- If \boldsymbol{A} is PPAD-hard then PPAD \subseteq PLS
- If \boldsymbol{A} is PLS-hard then PLS \subseteq PPAD

Unlikely containments

Consider a problem \boldsymbol{A} in PPAD \cap PLS
Since \boldsymbol{A} is in both classes:

- If \boldsymbol{A} is PPAD-hard then PPAD \subseteq PLS
- If \boldsymbol{A} is PLS-hard then PLS \subseteq PPAD

We do not believe that either containments holds, so we do not believe A is PPAD-hard or PLS-hard

PPAD \cap PLS seems unnatural...

Suppose problem \boldsymbol{A} is PPAD-complete
Suppose problem B is PLS-complete
The following problem is PPAD \cap PLS-complete:

$\operatorname{EITHER}(A, B)$

Input: an instance $\boldsymbol{I}_{\boldsymbol{A}}$ of \boldsymbol{A}, an instance $\boldsymbol{I}_{\boldsymbol{B}}$ of \boldsymbol{B}
Output: a solution of $\boldsymbol{I}_{\boldsymbol{A}}$, or a solution of $\boldsymbol{I}_{\boldsymbol{B}}$

PPAD \cap PLS seems unnatural...

BROUWER (PPAD-complete):
Input: continuous function $f:[0,1]^{3} \mapsto[0,1]^{3}$, precision $\epsilon>0$
Output: approximate fixpoint \boldsymbol{x} :

$$
\|f(x)-x\| \leq \epsilon
$$

PPAD \cap PLS seems unnatural...

BROUWER (PPAD-complete):
Input: continuous function $f:[0,1]^{3} \mapsto[0,1]^{3}$, precision $\epsilon>0$
Output: approximate fixpoint \boldsymbol{x} :

$$
\|f(x)-x\| \leq \epsilon
$$

LOCAL-OPT (PLS-complete):
Input: continuous function $p:[0,1]^{3} \mapsto[0,1]$, (non-continuous) function $g:[0,1]^{3} \mapsto[0,1]^{3}$, precision $\epsilon>0$
Output: local minimum \boldsymbol{x} of \boldsymbol{p} w.r.t. \boldsymbol{g} :

$$
p(g(x)) \geq p(x)-\epsilon
$$

PPAD \cap PLS seems unnatural...

BROUWER (PPAD-complete):
Input: continuous function $\boldsymbol{f}:[\mathbf{0}, \mathbf{1}]^{3} \mapsto[0,1]^{3}$, precision $\epsilon>0$
Output: approximate fixpoint \boldsymbol{x} :

$$
\|f(x)-x\| \leq \epsilon
$$

LOCAL-OPT (PLS-complete):
Input: continuous function $p:[0,1]^{3} \mapsto[0,1]$, (non-continuous) function $\boldsymbol{g}:[0,1]^{3} \mapsto[0,1]^{3}$, precision $\epsilon>0$
Output: local minimum \boldsymbol{x} of \boldsymbol{p} w.r.t. \boldsymbol{g} :

$$
p(g(x)) \geq p(x)-\epsilon
$$

EITHER(BROUWER,LOCAL-OPT) is PPAD \cap PLS-complete

Continuous Local Search (CLS)

Daskalakis \& Papadimitriou [SODA 2011] defined a new class via:

CONTINUOUS-LOCAL-OPT

Input:
continuous $p:[0,1]^{3} \mapsto[0,1]$ and
continuous $f:[0,1]^{3} \mapsto[0,1]^{3}$, precision $\epsilon>0$

Output: local minimum \boldsymbol{x} of \boldsymbol{p} w.r.t. \boldsymbol{f} :

$$
p(f(x)) \geq p(x)-\epsilon
$$

CLS is the class of all problems that are polynomial-time reducible to CONTINUOUS-LOCAL-OPT

PPAD \cap PLS and CLS

PPAD \cap PLS and CLS

Collapse

Collapse

Collapse

Main Result

GRADIENT-DESCENT is PPAD \cap PLS - hard

Main Result

Reduction from EITHER(A, B) to 2D-GRADIENT-DESCENT where
A is the PPAD-complete problem End-of-Line B is the PLS-complete problem ITER

Proof Sketch

Reduction from EITHER(A, B) to 2D-GRADIENT-DESCENT where
A is the PPAD-complete problem End-of-Line
B is the PLS-complete problem ITER

Constructing a 2D-GRADIENT-DESCENT instance f

- Domain is the square $[0,1]^{2}$
- Overlay grid and assign values for f and ∇f at grid points
- Use bicubic interpolation to produce smooth function
- All stationary points are either End-Of-Line or ITER solutions

Background "landscape"

Background "landscape"

PPAD-complete problem: End-Of-Line

Given a graph of
indegree/outdegree at mos
and a source
(indegree 0 , outdegree 1)
find another vertex of degree 1

PPAD-complete problem: End-Of-Line

Catch:

graph is exponentially large
defined by boolean circuits $\boldsymbol{S}, \boldsymbol{P}$ that map a vertex $\{0,1\}^{n}$ to its successor and predecessor

$$
\begin{aligned}
& S(0000)=0101 \\
& P(0101)=0000
\end{aligned}
$$

PPAD-complete problem: End-Of-Line

$0 \rightarrow$ (1) (2) (3) (4) \rightarrow (5) (6) (7)

Locally-computable green paths: Hubáček and Yogev SODA'17 (used to show conditional hardness of CLS)

PLS labyrinths hide stationary points at green/orange meetings

All stationary points are:
solutions of End-of-Line instance; or solutions of PLS-complete labyrinth

We have shown: 2D-GRADIENT-DESCENT is PPAD \cap PLS - hard

Take home message: PPAD \cap PLS

Before:

- PPAD and PLS both successful classes
- PPAD \cap PLS not believed to have interesting complete problems
- CLS introduced as "natural" (presumed distinct) counterpart

Now:

- PPAD \cap PLS is a natural class with complete problems
- Captures complexity of problems solved by gradient descent
- PPAD \cap PLS = CLS
- Many important problems are now candidates for hardness

Open Problems

The following are candidates for PPAD \cap PLS-completeness:

- POLYNOMIAL-KKT
- MIXED-CONGESTION
- CONTRACTION
- TARSKI
- COLORFUL-CARATHEODORY

Open Problems

The following are candidates for PPAD \cap PLS-completeness:

- POLYNOMIAL-KKT
- AMIXED-CONGESTION [Babichenko, Rubinstein STOC'21]
- POLYNOMIAL-KKT for degree < 5
- MIXED-NETWORK-CONGESTION
- CONTRACTION
- TARSKI
- COLORFUL-CARATHEODORY

Thank you!

