## PPAD

(Polynomial Parity Argument for Directed graphs)

## Menu



## PPAD- Complete Existence Theorems: Brouwer, Spermer

## Brouwer's Fixed Point Theorem

[Brouwer 1910]: Let $f: D \rightarrow D$ be a continuous function from a convex and compact subset $\boldsymbol{D}$ of the Euclidean space to itself.
Then there exists an $x \in D$ s.t. $x=f(x)$.

A few examples, when $D$ is the 2-dimensional disk.


## Brouwer's Fixed Point Theorem



## Brouwer's Fixed Point Theorem



## Brouwer's Fixed Point Theorem



# PPAD- Complete Existence Theorems: Brouwer, Sperner 

Sperner's Lemma (2-d)


Sperner's Lemma (2-d)


## Sperner's Lemma (2-d)


[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

## Sperner's Lemma (2-d)


[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

## Sperner $\Rightarrow$ Brouwer

## Sperner $\Rightarrow$ Brouwer (High-Level)

Given $f:[0,1]^{2} \rightarrow[0,1]^{2}$

1) For all $\epsilon>0$, existence of approximate fixed point $|f(x)-x|<\epsilon$, can be shown via Sperner's lemma.
2) Then let $\epsilon \rightarrow 0$

For 1): Triangulate $[0,1]^{2}$;


## Sperner $\Rightarrow$ Brouwer (High-Level)

Given $f:[0,1]^{2} \rightarrow[0,1]^{2}$

1) For all $\epsilon>0$, existence of approximate fixed point $|f(x)-x|$
$<\epsilon$, can be shown via Sperner's lemma.
2) Then let $\epsilon \rightarrow 0$

For 1): Triangulate $[0,1]^{2}$;

Color points according to the direction of $(f(x)-x)$


## Sperner $\Rightarrow$ Brouwer (High-Level)

Given $f:[0,1]^{2} \rightarrow[0,1]^{2}$

1) For all $\epsilon>0$, existence of approximate fixed point $|f(x)-x|$
$<\epsilon$, can be shown via Sperner's lemma.
2) Then let $\epsilon \rightarrow 0$

For 1): Triangulate $[\mathbf{0 , 1}]^{2}$;

Color points according to the direction of $(f(x)-x)$


## Sperner $\Rightarrow$ Brouwer (High-Level)

## Given $f:[0,1]^{2} \rightarrow[0,1]^{2}$

1) For all $\epsilon>0$, existence of approximate fixed point $|f(x)-x|<$ $\epsilon$, can be shown via Sperner's lemma.
2) Then let $\epsilon \rightarrow 0$

For 1): Triangulate $[\mathbf{0 , 1}]^{2}$;
Color points according to the direction of $(f(x)-x)$

Apply Sperner.


## 2D-Brouwer on the Square

Suppose $f:[\mathbf{0 , 1}]^{2} \rightarrow[0,1]^{2}$, continuous (by the Heine-Cantor theorem)

$$
\begin{gathered}
\forall \epsilon, \exists \delta(\epsilon)>0, \text { s.t. } \\
d(x, y)<\delta(\epsilon) \Rightarrow d(f(x), f(y))<\epsilon
\end{gathered}
$$



Choose small enough grid size so that..


Claim: If $z$ a corner of a trichromatic triangle, then choosing $\delta=\min \{\delta(\epsilon), \epsilon\}$

$$
|f(z)-z|_{\infty}<c \delta, \quad c>0
$$

## Menu

 $\longrightarrow$ Existence Theorems: Brouwer, Sperner$\rightarrow$ (Constructive) proof of Sperner $\rightarrow$ PPAD.

## Proof of Sperner's Lemma


[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

## Proof of Sperner's Lemma



For convenience introduce an outer boundary, that does not create new trichromatic triangles.

Also introduce an artificial trichromatic triangle.

Next define a directed walk starting from the artificial trichromatic triangle.
[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

## Proof of Sperner's Lemma


[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

## Proof of Sperner's Lemma


[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

## Proof Structure: A directed parity argument



Proof: $\exists$ at least one trichromatic (artificial one) $\rightarrow \exists$ another trichromatic





