PPAD
(Polynomial Parity Argument for Directed graphs)
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Brouwer’s Fixed Point Theorem

[Brouwer 1910]: Letf: D —» D be a continuous function

from a convex and compact subset D of the Euclidean space to
itself.

Then there exists an x € D s.t. x=f(x).

A few examples, when D is the 2-dimensional disk.
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Brouwer’s Fixed Point Theorem

fixed point



Brouwer’s Fixed Point Theorem
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Brouwer’s Fixed Point Theorem
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Sperner’s Lemma (2-d)
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Sperner’s Lemma (2-d)
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no red
[Sperner 1928]: Color the boundary using
three colors in a legal way.

legal
boundary
coloring




Sperner’s Lemma (2-d)

legal
boundary
coloring

no blue —

no red

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Sperner’s Lemma (2-d)

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Sperner = Brouwer



Sperner = Brouwer (High-Level)

Given f: [0,1]*> — [0,1]2
1) For all € > 0, existence of approximate fixed point
|f(x)-x| < €, can be shown via Sperner’s lemma.
2) Thenlete —» 0

For 1): Triangulate [0,1]%;
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Sperner = Brouwer (High-Level)

Given f: [0,1]*> — [0,1]?
1) For all € > 0, existence of approximate fixed point |f(x)-x|
< €, can be shown via Sperner’s lemma.
2) Thenlete —» 0

For 1): Triangulate [0,1]%;

Color points according
to the direction of (f (x)-x)




Sperner = Brouwer (High-Level)

Given f: [0,1]*> — [0,1]2
1) For all € > 0, existence of approximate fixed point |f(x)-x|
< €, can be shown via Sperner’s lemma.
2) Thenlete —» 0

For 1): Triangulate [0,1]%;

Color points according
to the direction of (f (x)-x)
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Sperner = Brouwer (High-Level)

Given f: [0,1]*> — [0,1]2
1) For all € > 0, existence of approximate fixed point |[f(x)-x| <

€, can be shown via Sperner’s lemma.
2) Thenlete —» 0

For 1): Triangulate [0,1]%;

Color points according
to the direction of (f (x)-x)

Apply Sperner.
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2D-Brouwer on the Square d be L, norm

Suppose f: [0,1]> —[0,1]%, continuous (by the Heine-Cantor theorem)

Ve, 36(e) > 0,s.t.
A d(x,y) <68(e) 2 d(f(),f(y) <e

e

Choose small enough grid size so
that..

Claim: If z a corner of a
trichromatic triangle, then

choosing 6 = min{6(¢), €}
1f(2) — 7| < €6, c>0



— Existence Theorems: Brouwer, Sperner
—(Constructive) proof of Sperner —» PPAD.




Proof of Sperner’s Lemma
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[Sperner 1928]: Color the boundary using three colors in a legal way. No matter
how the internal nodes are colored, there exists a tri-chromatic triangle. In fact
an odd number of those.
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Proof of Sperner’s Lemma
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[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of
those.

For convenience
introduce an outer
boundary, that does
not create new tri-
chromatic triangles.

/‘

Also introduce an
artificial tri-
chromatic triangle.

Next define a
directed walk
starting from the
artificial tri-
O—) chromatic triangle.




Proof of Sperner’s Lemma

nace of Triangles

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of
those.



Proof of Sperner’s Lemma

Claim: The walk
cannot exit the

square, nor can it \
loop into itself. O\ S

Hence, it must stop

somewhere inside. @
This can only “
happen at tri-
chromatic triangle... N
Starting from other
triangles we do the

same going forward or

backward.
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[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the

internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of
those.



Proof Structure: A directed parity argument

Proof: 3 at least one trichromatic (artificial one)=» 3 another trichromatic
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(Continuous Local Search)




CLS

(Continuous Local Search)
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1 Next Lecture

CLS - GD

(Gradient Descent)




