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Brouwer’s Fixed Point Theorem

f

[Brouwer 1910]:  Let f : D D be a continuous function 
from a convex and compact subset D of the Euclidean space to 

itself. 

Then there exists an  x s.t. x = f (x) .

D D

A few examples, when D is the 2-dimensional disk.
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Sperner’s Lemma (2-d)



Sperner’s Lemma (2-d)

no red

no blue

no yellow

[Sperner 1928]: Color the boundary using 
three colors in a legal way. 

legal 
boundary 
coloring



[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the 
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.
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Sperner’s Lemma (2-d)

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the 
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.



Sperner  Brouwer



Given f : [0,1]2  [0,1]2

1) For all , existence of approximate fixed point              
|f(x)-x| , can be shown via Sperner’s lemma. 

2) Then let 

For 1): Triangulate [0,1]2; 

Sperner  Brouwer (High-Level)



Sperner  Brouwer (High-Level)
Given f : [0,1]2  [0,1]2

1) For all , existence of approximate fixed point |f(x)-x| 
, can be shown via Sperner’s lemma. 

2) Then let 

For 1): Triangulate [0,1]2; 

Color points according 
to the direction of (f (x)-x)
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Given f : [0,1]2  [0,1]2

1) For all , existence of approximate fixed point |f(x)-x| 
, can be shown via Sperner’s lemma. 

2) Then let 

For 1): Triangulate [0,1]2; 

Color points according 
to the direction of (f (x)-x)

Apply Sperner.

Sperner  Brouwer (High-Level)



2D-Brouwer on the Square
Suppose : [0,1]2[0,1]2, continuous

Claim: If a corner of a 
trichromatic triangle, then

1

0 1
0

be norm

choosing 

ஶ

(by the Heine-Cantor theorem)

Choose small enough grid size so 
that..
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(Constructive) proof of Sperner PPAD.



Proof of Sperner’s Lemma

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter 
how the internal nodes are colored, there exists a tri-chromatic triangle. In fact 

an odd number of those.



Proof of Sperner’s Lemma

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the 
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of 

those.

For convenience 
introduce an outer 
boundary, that does 
not create new tri-

chromatic triangles.

Next define a 
directed walk 

starting from the 
artificial tri-

chromatic triangle.

Also introduce an 
artificial tri-

chromatic triangle.



Transition Rule: If   red - yellow door cross it 
with red on your left hand.

?

Space of Triangles

1

2

Proof of Sperner’s Lemma

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the 
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of 

those.



Proof of Sperner’s Lemma

!

[Sperner 1928]: Color the boundary using three colors in a legal way. No matter how the 
internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of 

those.

Starting from other 
triangles we do the 

same going forward or 
backward.

Claim: The walk 
cannot exit the 

square, nor can it 
loop into itself.

Hence, it must stop 
somewhere inside. 

This can only 
happen at tri-

chromatic triangle…



Proof Structure: A directed parity argument

Vertices of Graph  Triangles
all vertices have in-degree, out-degree ≤ 1

Proof:   at least one trichromatic (artificial one)

degree 1 vertices: trichromatic triangles
degree 2 vertices: no blue, not-trichromatic

degree 0 vertices: all other triangles

  another trichromatic

...
Artificial 

Trichromatic
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CLS
(Continuous Local Search)
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CLS GD
(Gradient Descent)

Next Lecture


