PPAD

(Polynomial Parity Argument for Directed graphs)

Menu PPAD- Complete Existence Theorems: Brouwer, Sperner

[Brouwer 1910]: Let $f: D \rightarrow D$ be a continuous function from a convex and compact subset *D* of the Euclidean space to itself.

Then there exists an $x \in D$ s.t. x = f(x).

A few examples, when D is the 2-dimensional disk.

Menu PPAD- Complete Existence Theorems: Brouwer, Sperner

Sperner's Lemma (2-d)

Sperner's Lemma (2-d)

Sperner \Rightarrow Brouwer

Given f: [0,1]² → [0,1]²
1) For all ε > 0, existence of approximate fixed point |f(x)-x| < ε, can be shown via Sperner's lemma.
2) Then let ε → 0

For 1): Triangulate $[0,1]^2$;

Given $f: [0,1]^2 \rightarrow [0,1]^2$

For all ε > 0, existence of approximate fixed point |f(x)-x|
 < ε, can be shown via Sperner's lemma.
 Then let ε → 0

Given $f: [0,1]^2 \rightarrow [0,1]^2$

For all ε > 0, existence of approximate fixed point |f(x)-x|
 < ε, can be shown via Sperner's lemma.
 Then let ε → 0

For 1): Triangulate $[0,1]^2$; Color points according to the direction of (f(x)-x)

Given $f: [0,1]^2 \rightarrow [0,1]^2$

- For all ε > 0, existence of approximate fixed point |f(x)-x| <
 ε, can be shown via Sperner's lemma.
 Then let ε > 0
- **2)** Then let $\epsilon \rightarrow 0$

For 1): Triangulate [0,1]²;

Color points according to the direction of (f(x)-x)

Apply Sperner.

2D-Brouwer on the Square

Suppose $f: [0,1]^2 \rightarrow [0,1]^2$, continuous (by the <u>Heine-Cantor theorem</u>)

 $\forall \epsilon, \exists \delta(\epsilon) > 0, s.t. \\ d(x, y) < \delta(\epsilon) \Rightarrow d(f(x), f(y)) < \epsilon$

Claim: If z a corner of a trichromatic triangle, then choosing $\delta = \min\{\delta(\epsilon), \epsilon\}$

$$|f(z)-z|_{\infty} < c\delta, \qquad c > 0$$

Menu → Existence Theorems: Brouwer, Sperner → (Constructive) proof of Sperner → PPAD.

For convenience introduce an outer boundary, that does not create new trichromatic triangles.

Also introduce an artificial trichromatic triangle.

Next define a directed walk starting from the artificial trichromatic triangle.

Proof Structure: A directed parity argument

Proof: ∃ at least one trichromatic (artificial one) → ∃ another trichromatic

CLS (Continuous Local Search)

