*Algorithm actually takes $\tilde{O}(m^{4/3})$ time but the tighter analysis would take 2 lectures.

AGENDA

- Max-flow
- Physics (Electrical Flows, Ohm's Law, Kirchhoff Law) Review (30 minutes)
- Properties of Electrical Networks & Applications
- Fast Laplacian Solvers using Johnson-Lindenstrauss Theorem
- Multiplicative Weight Update MWU Review (30 mins)
- $\tilde{O}(m^{1.5})$ max-flow Algorithm. (10 mins)

MAX-FLOW

- Given a directed graph G(V, E) with edge capacities c(e), and two distinguished vertices s, t, find the **maximum flow** from s to t
- A flow is an assignment $f: E \to \Re_+$ that satisfies:
 - $f(e) \le c(e)$ for all $e \in E$ (Capacity constraint)
 - $\sum_{u:(u,v)\in E} f(u,v) = \sum_{u:(v,u)\in E} f(v,u)$ for all $u, v \in V \{s,t\}$ (Conservation of flow)
- Flow value is $\sum_{u \in V} f(s, u)$ (Total flow going out of s), or into t

EXAMPLE

Graph and Capacities

Max-Flow

PHYSICS & LINEAR ALGEBRA REVIEW

- Consider an undirected graph G(V, E) such that each edge (i, j) has resistance r(i, j) (or conductance $c(i, j) = \frac{1}{r(i, j)}$).
- A current flow f(i, j) is one that obeys both:
 - Kirchhoff's current law:

Flow into node v = flow leaving node v

• Ohm's Law:

There exists a potential p(v) such that $f(i,j) = \frac{p(i)-p(j)}{r(i,j)}$ for all $i, j \in V$.

Note p is translation invariant.

p(i) - p(j) acts like "Voltage", f(i, j) as current, and r(i, j) as resistance. $(I = \frac{V}{R})$

OHM LAW - CONTD

Ohm's Law:

There exists a potential p(v) such that $f(i,j) = \frac{p(i)-p(j)}{r(i,j)}$ for all $i, j \in V$.

p=0, f=0 satisfies Ohm's law.

Define $b(u) = \sum_{v} f(u, v)$ as the total flow (or current) into u.

To make things more interesting, we force b(s) = 1, b(t) = -1. Excludes p = 0, f = 0.

Any such flow is an **electrical-flow**

EXAMPLE

How do we find the potentials?

Ohm's Law!

TANGENT I - LAPLACIANS

- Consider an undirected graph G(V, E) with adjacency matrix A (which can be weighted). Let D be the (diagonal) degree matrix defined as $d_{ii} = \deg_G(i) = \sum_j a_{ij}$ and 0 otherwise.
- The Laplacian matrix is defined as $L_G = D A$. VERY useful in Spectral Graph Theory.
- Breakthrough result of Teng et al. from 2004:
 - Given a system of equations $L_{m \times n} x = b$ where L is a diagonally dominant matrix, one can find an approximate solution \hat{x} in $\tilde{O}(m)$ time.
 - Specifically, one can approximately compute L^+b where L^+ is the pseudoinverse of L for diagonally dominant matrices.
 - A diagonally dominant matrix A is a matrix satisfying $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$ for all i.
 - One can prove that the Laplacian matrix is diagonally dominant.
 - Needs a whole lecture for itself...

OHM & KIRCHOFF'S LAWS CONTD

- Combining both laws and some linear algebra magic, we can find a necessary condition for potentials and current.
- Suppose for a given b (recall $b(u) = \sum_{v} f(u, v)$) that we want to find the corresponding potentials p(u) for the resulting electrical flow.
- Then $L_G p = b$, where the weights in the adjacency matrix are $\frac{1}{r(i,j)} = c(i,j)$.
- Intuitively, and with lots of handwaving, recall that "V = IR" and $p = L_G^+ b$. "b" acts as current $I. L_G^+$ acts like L_G^{-1} , which we want to be "resistance".

	S	1
<i>b</i> =	и	0
	v	0
	t	-1

$L_G = D - A$	A and L_{GI}	p = b
	S	0.62
$b = L_G^+ b =$	и	0
	v	0.31
	t	-0.92

		S	и	v	t			S	и	v	t	p ls	Translati	on Invariant
	S	0	$\frac{1}{2}$	$\frac{1}{1}$	$\frac{1}{4}$	D =	S	$\frac{7}{4}$	0	0	0		S	1.538
A =	и	$\frac{1}{2}$	0	0	$\frac{1}{3}$	D	и	0	$\frac{5}{6}$	0	0	p =	и	0.923
	v	1	0	0	$\frac{1}{4}$		v	0	0	$\frac{5}{4}$	0		v	1.231
	t	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	0		t	0	0	0	$\frac{5}{c}$		t	0

OHM & KIRCHOFF'S LAWS REVISITED

• So to find the potentials that induce demands *b*, we only need to solve one system:

 $L_G p = b$

• Using Teng's result, can solve it in $\tilde{O}(m)$ time for one b!

EFFECTIVE RESISTANCE

- Effective resistance is the potential drop between two adjacent vertices assuming we push one unit of current into one and out of the other.
- More formally, $r_{eff}(i, j) = p(i) p(j)$ for $ij \in E$ when the demands are $b_i = 1, b_j = -1$.
- We can compute it for each edge by solving $L_G p = b^{ij}$ where $b_i^{ij} = 1$, $b_j^{ij} = -1$ and 0 otherwise.
- Here is something to blow your mind.

TANGENT 2 – NUMBER OF TREES CONTAINING AN EDGE

The coolest Theorem you'll see this week:

Let G(V, E) be an undirected graph. If we uniformly sample a random spanning tree from G, then the probability that $ij \in T$ is $r_{eff}(i, j)$ in the corresponding resistor network !

This is based in real physics! You can set up a resistance network to find the probabilities an edge is in a random spanning tree with an amperometer!

Best known algorithm to compute it runs in $\tilde{O}(\frac{m}{\epsilon^2})$ due to Chandra and Kent in SODA 21 based on blocking flows.

Physics evidence suggests there might be linear time algorithms.

COMPUTING EFFECTIVE RESISTANCE

- Effective resistance is the potential drop between two adjacent vertices. More formally, $r_{eff}(i, j) = p(i) p(j)$ for $ij \in E$
- For each edge $ij \in E$, define $b^{ij} \in \Re^n$ such that $b_i^{ij} = 1$, $b_j^{ij} = -1$.
- To compute the effective resistance for all edges, we can solve $L_G p = b^{ij} \quad \forall ij \in E$. Takes $\tilde{O}(m^2)$ time.
- However, we can approximate all effective resistances in $\tilde{O}(m)$!
- Recall $p = L_G^+ b$, and so $r_{eff}(i, j) = (e_i e_j)^T L_G^+ (e_i e_j)$. Notice that

•
$$r_{eff}(i,j) = \left\| L_G^{\frac{1}{2}}(e_i - e_j) \right\|_2 = \left\| v_i - v_j \right\|_2$$
 Where $v_i = L_G^{\frac{1}{2}}e_i$.

- Note: If L is diagonally dominant, then $L^{1/2}x = b$ can still be solved using Teng's Method, so we're still Kosher.
- Since effective resistance are L_2 distances, we can use Johnson-Lindenstrauss lemma to approximate them using vectors v_i . Details omitted.

COMPUTING EFFECTIVE RESISTANCE

- One last interesting property about electrical flows.
- Nature is efficient, and so if we look at the energy dissipated in the network between *s*, *t*, it turns out electrical flows minimizes that. In particular:

$$\sum_{e \in E} r_e f(e)^2$$

Is minimized by electrical flows. (Recall *Power* = I^2R)

Proof uses Linear algebra, not very insightful. "Common" physics knowledge.

END OF PHYSICS REVIEW

MULTIPLICATIVE WEIGHT UPDATES (MWU)

- MWU is a "meta" algorithm, in the same sense of gradient descent. In fact, it generalizes gradient descent and many known optimization algorithms.
- Extremely useful in optimization.

• Want to bet on AMC stock. Have 3 fine experts to lean on:

- You have no idea who is legit and who isn't. (Hint: hint)
- You want to bet everyday on 0DTE expiration options... Cause YOLO.
- Each expert either says STONKS 📈 or NOT STONKS 📉 everyday. Based on recommendations, you need to make a decisior

- Initialize trust weights as I for all:
- Update rule is:

 $w_i^{t+1} = (1 - \epsilon)w_i^t$ If "expert" answered incorrectly. $w_i^{t+1} = w_i^t$ If "expert" answered correctly.

Our bet is \square if the total weight of all experts predicting up \square at least $\sum_i w_i^t/2$ and \square otherwise.

Fix $\epsilon = 0.1$ for example.

- Day I Guess: 📈
- Day I Result: 📉
- Weight updates:

- Day I Guess: 📈
- Day I Result: 📉
- Weight updates:

- Day 2 Guess: 📉
- Day 2 Result: 📈
- Weight updates:

- Day 2 Guess: 📉
- Day 2 Result: 📈
- Weight updates:

• Theorem: Let m_i^t be the number of mistakes that "expert" $i, 1 \le i \le n$, does after t days. Let M_t be the number of mistakes we make after t days. Then

$$M_t \leq \frac{2\log n}{\epsilon} + (1+\epsilon)m_i^t$$
 For ALL experts *i*!

$$M_t \leq \frac{2\log}{\epsilon} + 2(1+\epsilon)m_i^t$$
 For ALL experts *i*!

Pf: Define the potential function $\Phi^t = \sum_i w_i^t$ with $\Phi^1 = n$.

Every time we are wrong, at least half the weight decreases by $(1 - \epsilon)$ factor. So

$$\Phi^{t+1} \le \Phi^t \left(\frac{1}{2} + \frac{1}{2} (1 - \epsilon) \right) = \Phi^t (1 - \frac{\epsilon}{2})$$

Solving the recurrence, we get

$$\Phi^t \le n \, \left(1 - \frac{\epsilon}{2}\right)^M$$

But

$$\Phi^t \ge w_i^t \qquad \forall i$$

Rearranging, and approximating $-\log(1-x) \le x + x^2$ For $x \le \frac{1}{2}$ yields the results.

Generalized Algorithm for optimization.

We assume there is a matrix M such that M(i, j) is the penalty that expert i pays when the outcome is $j \in P$ where P is set of outcomes.

Assume $M(i, j) \in [0, \rho]$. We call ρ the <u>width</u> of the oracle M

Every step t we have trust scores w_i^t to expert i.

We associate time *t* with distribution $D^t = \{p_1^t, \dots, p_n^t\} = \{\frac{w_1^t}{\sum w_i^t}, \dots, \frac{w_n^t}{\sum w_i^t}\}$

We pick an expert according to distribution D^t , and use it to make our prediction. Based on the outcome j_t in round t, the weight is updated:

$$w_i^{t+1} = w_i^t (1 - \frac{\epsilon M(i, j_t)}{\rho})$$

Theorem: After T rounds, for any expert i, we have

$$\sum_{t} \sum_{i} p_{i}^{t} w_{i}^{t} \leq \frac{\rho \log(n)}{\epsilon} + (1 + \epsilon) \sum_{t} M(i, j_{t})$$

Almost identical potential proof to theorem from before.

Figuring out what the "experts" are, what the penalties/rewards M(i, j) are, and what "outcomes" is the hardest part of using MWU.

Sometimes requires very "clever" outlooks.

Packing/Covering Linear Programs (Known as Plotkin, Shmoys, Tardos framework)

Problem: Is there $x \in P$ where $Ax \ge b$? (Feasibility).

Think of P as the "easy" constraints, and A as the hard ones.

Implicitly assumes the constraint rows of A are the "experts"

Assume the following oracle is known: $\exists ? x \in P : c^T x \ge (1 - \epsilon)d$ where $c = \sum_i p_i^t A_i$ and $d = \sum_i p_i^t b_i$?

Natural \rightarrow exists for many problems.

If so, we can solve the original feasibility problem with MWU!

Packing/Covering Linear Programs (Known as Plotkin, Shmoys, Tardos framework)

Problem: Is there $x \in P$ where $Ax \ge b$? (Feasability).

The "experts" are the **constraints**. Events correspond to **vectors** $x \in P$! The oracle penalty is $A_i x - b_i$, how badly the inequality is not satisfied.

The width here is $\rho = \max_{x \in P} (A_i x - b_i)$ which can be unbounded (but there is a trick to get around this).

Theorem: It takes $\tilde{O}(\frac{\rho}{\epsilon^2})$ oracle calls for MWU to converge to x such that $Ax \ge (1 - \epsilon)b$ (or conclude no such x exists).

Designing correct MWU algorithms is an art that is not easy to master. See Arora's survey for a lot more examples.

Idea: Apply Plotkin, Shmoys, Tardos framework on the Max-Flow linear program:

$$\max |f| = \sum_{u} f(s, u)$$

$$f(e) \le c(e) \quad \forall e \in E$$

$$\sum_{v} f(u, v) = \sum_{v} f(v, u) \quad \forall u \in V - \{s, t\}$$

$$f_{e} \ge 0 \quad \forall e \in E$$

Assume c(e) = 1, makes presentation less messy and doesn't loose generality in proof.

Binary search on F^* , the maximum flow value.

"Easy" constraints are flow conservation, non negativity, and $|f| \ge F$. This is the "*P*" from the Tardos framework. Hard constraints are $f(e) \le c(e) = 1$. Or $I_m f \le c$. This is the " $Ax \le b$ " from the Tardos framework. What's the width here? It is is $\max_i A_i x - b_i = \max_{e \in E} f(e) - 1$

Max flow with unit capacity equivalent to: $\exists ? f \in P$ such that $If \leq 1$.

Idea: Apply Plotkin, Shmoys, Tardos framework on the Max-Flow linear program:

$$\max |f|$$

$$f(e) \le c(e) \quad \forall e \in E$$

$$\sum_{v} f(u, v) = \sum_{v} f(v, u) \quad \forall u \in V - \{s, t\}$$

$$f_{e} \ge 0 \quad \forall e \in E$$

Max flow with unit capacity equivalent to: $\exists ? f \in P$ such that $If \leq 1$.

What oracle do we need? $\exists ? f$ such that $|f| \ge F$ (guessed max flow value) and $f(e) \ge 0$ and conserving flow such that

$$\sum_{e \in E} p_e^t f(e) \le (1 + \epsilon) \sum_{e \in E} p_e^t$$

Intuitively, this is saying the "average" capacity constraint is (approximately) satisfied.

We will answer this oracle with electrical flows!

Max flow:

$$f(e) \le c(e) \qquad \forall e \in E$$

$$\sum_{v} f(u,v) = \sum_{v} f(v,u) \qquad \forall u \in V - \{s,t\}$$

$$f_e \ge 0 \qquad \forall e \in E$$

$$|f| = F$$

Electrical flows with resistance:

$$\sum_{v} f(u,v) = \sum_{v} f(v,u) \quad \forall u \in V - \{s,t\}$$
$$f_{e} \ge 0 \qquad \forall e \in E$$
$$|f| = F$$

Only thing we can control is resistances on edges. Can we play with the resistances on edges to force

$$\sum_{e \in E} p_e^t f(e) \le (1+\epsilon) \sum_{e \in E} p_e^t$$

Intuitively, even though flow doesn't have to respect capacity, can we force it to respect it "on average"?

Idea: Apply Plotkin, Shmoys, Tardos framework on the Max-Flow linear program:

$$\max_{v} |f|$$

$$f(e) \le c(e) \quad \forall e \in E$$

$$\sum_{v} f(u, v) = \sum_{v} f(v, u) \quad \forall u \in V - \{s, t\}$$

$$f_{e} \ge 0 \quad \forall e \in E$$

Construct an electrical network with resistances $r_e = p_e^t + \frac{\epsilon \sum_{e \in E} p_e^t}{m}^{(*)}$. Put F units of flow into s and -F units from t.

Conservation and non-negativity of flow is free. Pushes F flow from s using demands. So "easy" constraints are all good.

Just need to prove the **average capacity is respected** and **bound the width**. Then apply Tardos framework.

(*) Yes $\sum_{e \in E} p_e^t = 1$, but in the capacitated case, it should be $\sum_{e \in E} p_e^t c(e) \neq 1$ so I'll leave it as it is.

Theorem: If we set $r_e = p_e^t + \frac{\epsilon \sum_{e \in E} p_e^t}{m}$, The electrical flow oracle satisfies $\sum_{e \in E} p_e^t f(e) \le (1 + \epsilon) \sum_{e \in E} p_e^t$ and in addition, the width is $\rho = O(\sqrt{\frac{m}{\epsilon}})$

Proof: Let f be the optimal electrical flow. We have

$$\sum_{e \in E} p_e^t f(e) \le \sqrt{\sum_{e \in E} p_e^t f(e)^2} \sqrt{\sum_{e \in E} p_e^t} \qquad (1)$$

So it suffices to show

$$\sum_{e \in E} p_e^t f(e)^2 \le (1+\epsilon) \sum_{e \in E} p_e^t \qquad (2)$$

Because then (1) becomes:

$$\sum_{e \in E} p_e^t f(e)) \le \sqrt{1 + \epsilon} \sum_{e \in E} p_e^t$$

Scaling ϵ yields the result.

Theorem: If we set $r_e = p_e^t + \frac{\epsilon \sum_{e \in E} p_e^t}{m}$, The electrical flow oracle satisfies $\sum_{e \in E} p_e^t f(e) \le (1 + \epsilon) \sum_{e \in E} p_e^t$ and in addition, the width is $\rho = O(\sqrt{\frac{m}{\epsilon}})$ $\sum_{e \in E} p_e^t f(e)^2 \le (1 + \epsilon) \sum_{e \in E} p_e^t$ (2)

To prove (2), we note that f is an electrical flow, so it minimizes the energy. So we have:

$$\sum_{e \in E} p_e^t f(e)^2 \le \sum_{e \in E} r_e f(e)^2 = \sum_{e \in E} \left(p_e^t + \frac{\epsilon \sum_{e \in E} p_e^t}{m} \right) f(e)^2 \le \sum_{e \in E} \left(p_e^t + \frac{\epsilon \sum_{e \in E} p_e^t}{m} \right) f^*(e)^2$$

$$\leq \sum_{e \in E} \left(p_e^t + \frac{\epsilon \sum_{e \in E} p_e^t}{m} \right) = \sum_{e \in E} p_e^t + \epsilon \sum_{e \in E} \frac{\epsilon \sum_{e \in E} p_e^t}{m} = (1 + \epsilon) \sum_{e \in E} p_e^t$$

Theorem: If we set $r_e = p_e^t + \frac{\epsilon \sum_{e \in E} p_e^t}{m}$, The electrical flow oracle satisfies $\sum_{e \in E} p_e^t f(e) \le (1 + \epsilon) \sum_{e \in E} p_e^t$ and in addition, the width is $\rho = O(\sqrt{\frac{m}{\epsilon}})$ To prove $\rho = O(\sqrt{\frac{m}{\epsilon}})$, observe that

$$\rho = \max(f(e) - 1)$$

Recall

$$\sum_{e \in E} r_e f(e)^2 \leq (1+\epsilon) \sum_{e \in E} p_e^t \quad \Rightarrow \quad f(e)^2 \leq \frac{(1+\epsilon) \sum_{e \in E} p_e^t}{r_e}$$

But $r_e = p_e^t + \frac{\epsilon \sum_{e \in E} p_e^t}{m} \geq \frac{\epsilon \sum_{e \in E} p_e^t}{m} \Rightarrow \frac{\sum_{e \in E} p_e^t}{r_e} \leq \frac{m}{\epsilon} \text{ and so}$
 $f(e)^2 \leq \frac{(1+\epsilon)m}{\epsilon} \Rightarrow \quad f(e) = O(\sqrt{\frac{m}{\epsilon}})$

Theorem: Max flow can be solved in $\tilde{O}(m^{1.5})$ time.

The Tardos framework takes
$$O\left(\frac{\rho}{\epsilon^2}\right) = O\left(\frac{\sqrt{m}}{\epsilon^{2.5}}\right)$$
 iterations.

Each iteration requires computing effective resistance on a graph. Can be done in $\tilde{O}(m)$ as discussed earlier.

Binary search on max flow value takes $\tilde{O}(1)$ time.

Overall $\tilde{O}(m^{1.5})$ time for constant ϵ .

Same algorithm can be improved to $\tilde{O}(m^{4/3}) = \tilde{O}(m^{1.333..})$ by being smarter on using the inequalities, but analysis is more tedious.

QUESTIONS?