0 (m'>) MAX-FLOW ALGORITHM*

* Algorithm actually takes O (m*/3) time but the tighter analysis would take 2 lectures.




AGENDA

Max-flow

Physics (Electrical Flows, Ohm’s Law, Kirchhoff Law) Review (30 minutes)
Properties of Electrical Networks & Applications

Fast Laplacian Solvers using Johnson-Lindenstrauss Theorem

Multiplicative Weight Update MWU Review (30 mins)

0 (m*>) max-flow Algorithm. (10 mins)




MAX-FLOW

Given a directed graph G (V, E') with edge capacities c(e), and two distinguished vertices s, t,
find the maximum flow from s to t

A flow is an assignment f: E — R, that satisfies:

f(e) < c(e) for all e € E (Capacity constraint)

Yuvyee S W) =Xy wwer f(v,u) forallu,v €V —{s,t} (Conservation of flow)

Flow value is ).,y f(s,u) (Total flow going out of s), or into t



EXAMPLE

Graph and Capacities

Max-Flow
Flow




PHYSICS & LINEAR ALGEBRA REVIEW

1).

Consider an undirected graph G (V, E) such that each edge (i, j) has resistance (i, j) (or conductance c(i, j) = D

A current flow f (i, ) is one that obeys both:

Kirchhoff's current law:
Flow into node v = flow leaving node v

Ohm’s Law:
There exists a potential p(v) such that f(i,j) = % foralli,j € V.

Note p is translation invariant.

p(i) — p(j) acts like “Voltage”, f (i, j) as current,and r(i, j) as resistance. (I = %)



OHM LAW - CONTD

Ohm’s Law:

p(D)-p(Jj)

There exists a potential p(v) such that f(i,j) = p)

foralli,j € V.

p = 0, f = 0 satisfies Ohm’s law.
Define b(u) = Y., f(u, v) as the total flow (or current) into u.
To make things more interesting, we force b(s) = 1,b(t) = —1.Excludes p = 0, f = 0.

Any such flow is an electrical-flow



14

EXAMPLE

20
30

10 40

Ampere-Express

How do we find the potentials?

Ohm’s Law!
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TANGENT | - LAPLACIANS

Consider an undirected graph G (V, E) with adjacency matrix A (which can be weighted). Let D be the (diagonal) degree
matrix defined as d;; = degq (i) = X; a;; and 0 otherwise.

The Laplacian matrix is defined as L; = D — A.VERY useful in Spectral Graph Theory.

Breakthrough result of Teng et al. from 2004:

Given a system of equations L,,x, X = b where L is a diagonally dominant matrix, one can find an approximate solution & in O(m) time.
Specifically, one can approximately compute L*bh where L is the pseudoinverse of L for diagonally dominant matrices.

A diagonally dominant matrix A is a matrix satisfying |a;| > X;.; |a;;| for all i.

One can prove that the Laplacian matrix is diagonally dominant.

Needs a whole lecture for itself...



OHM & KIRCHOFF'S LAWS CONTD

Combining both laws and some linear algebra magic, we can find a necessary condition for potentials and current.

Suppose for a given b (recall b(u) = )., f(u, v)) that we want to find the corresponding potentials p(u) for the resulting
electrical flow.
1

Then L;p = b, where the weights in the adjacency matrix are ™y =c(i,)).

Intuitively, and with lots of handwaving, recall that “V = IR” and p = LEb. “b” acts as current I. LE acts like Lz, which we
want to be “resistance”.
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OHM & KIRCHOFF'S LAWS REVISITED

So to find the potentials that induce demands b, we only need to solve one system:

Lszb

Using Teng’s result, can solve it in O(m) time for one b!



EFFECTIVE RESISTANCE

Effective resistance is the potential drop between two adjacent vertices assuming we push one unit of current into one and
out of the other.

More formally, 7.7 (i, j) = p(i) — p(j) for ij € E when the demands are b; = 1,b; = —1.
We can compute it for each edge by solving L;p = bY where biij =1, b}j = —1 and 0 otherwise.

Here is something to blow your mind.
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TANGENT 2 — NUMBER OF TREES
CONTAINING AN EDGE
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P= u 025 The effective resistance between st is p(s) — p(t) = 0.5.
v 0.25

The edge st appears in 4/8 of the spanning trees of G!



™
-y

(on

TANGENT 2 — NUMBER OF TREES
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s 0.625
p =
u 0 The effective resistance between su is p(s) — p(u) = 0.625.
v 0.5 The edge su appears in 5/8 = 0.625 of the spanning trees of G!
t 0375



TANGENT 2 — NUMBER OF TREES
CONTAINING AN EDGE

The coolest Theorem you’ll see this week:

Let G(V, E) be an undirected graph. If we uniformly sample a random spanning tree from G, then the
probability that ij € T is 7.f¢(i, ) in the corresponding resistor network !

This is based in real physics! You can set up a resistance network to find the probabilities an edge is in
a random spanning tree with an amperometer!

Best known algorithm to compute it runs in 5(622) due to Chandra and Kent in SODA 21| based on
blocking flows.

Physics evidence suggests there might be linear time algorithms.



COMPUTING EFFECTIVE RESISTANCE

Effective resistance is the potential drop between two adjacent vertices. More formally, 7,7 (i,j) = p(i) — p(j) for ij € E
For each edge ij € E, define b/ € R™ such that biij =1, bjij = —1.
To compute the effective resistance for all edges, we can solve Lgp = b¥ Vij € E.Takes 0(m?) time.

However, we can approximate all effective resistances in O (m)!

Recall p = LEb,and so 75 (i, ) = (&; — ej)TLE (e; — ej). Notice that

+
|2 = ||Ui - vj"ZWhere v; = Lgei'

+
L% (e; — )

Note: If L is diagonally dominant, then L'/?x = b can still be solved using Teng’s Method, so we're still Kosher.

Terr(i,)) =

Since effective resistance are L, distances, we can use Johnson-Lindenstrauss lemma to approximate them using vectors v;. Details
omitted.



COMPUTING EFFECTIVE RESISTANCE

One last interesting property about electrical flows.

Nature is efficient, and so if we look at the energy dissipated in the network between s, t, it turns out electrical flows

minimizes that. In particular:
2
2 T.f (e)

eEeE

Is minimized by electrical flows. (Recall Power = I?R)

Proof uses Linear algebra, not very insightful. “Common” physics knowledge.



END OF PHYSICS REVIEW



MULTIPLICATIVE WEIGHT
UPDATES (MWU)




WHAT IS MWU!?

MWU is a “meta” algorithm, in the same sense of gradient descent. In fact, it generalizes gradient descent and many known
optimization algorithms.

Extremely useful in optimization.



WHAT IS MWU!?

Want to bet on AMC stock. Have 3 fine experts to lean on:

You have no idea who is legit and who isn’t. (Hint: hint)
You want to bet everyday on ODTE expiration options... Cause YOLO.
Each expert either says STONKS or NOT STONKS everyday. Based on recommendations, you need to make a decisior



WHAT IS MWU!?

Initialize trust weights as | for all:

Update rule is:

Wit+1 =(1- e)wit If "expert” answered incorrectly.

Wit+1 = wit If “expert” answered correctly.

Our bet is [/ if the total weight of all experts predicting up
at least '; wf/2 and |\ otherwise.

Fix € = 0.1 for example.




WHAT IS MWU!?

Day | Guess:
Day | Result:
Weight updates:




WHAT IS MWU!?

Day | Guess:
Day | Result:
Weight updates:




WHAT IS MWU!?

Day 2 Guess:
Day 2 Result:
Weight updates:




WHAT IS MWU!?

Day 2 Guess:
Day 2 Result:
Weight updates:




WHAT IS MWU!?

Theorem: Let m! be the number of mistakes that “expert” i, 1 < i < n, does after t days.Let M; be the number of mistakes
we make after t days.Then

2logn

M, < + (14 e)m] For ALL experts i!



WHAT IS MWU!?

2 log

M, < +2(1 + e)m! For ALL experts i!

€
Pf: Define the potential function ®¢ = }; w} with ®1 = n.

Every time we are wrong, at least half the weight decreases by (1 — €) factor. So

1 1 €
q)t+1<q)t - —(1 - :q)t 1 ——
< <2+2( e>) -

Solving the recurrence, we get

t EMt
ot<n(1-<
—n( 2)

But
ot >wf Vi

Rearranging, and approximating —log(1 — x) < x + x2 For x < %yields the results.



WHAT IS MWU!?

Generalized Algorithm for optimization.

We assume there is a matrix M such that M (i, j) is the penalty that expert i pays when the outcome is j € P where P
is set of outcomes.

Assume M (i,) € [0, p]. We call p the width of the oracle M

Every step t we have trust scores w! to expert i.

wi

t
We associate time t with distribution D = {p{, ..., pi} = (==, ..., ==}
xwi xwi

We pick an expert according to distribution D%, and use it to make our prediction. Based on the outcome j; in round t, the
weight is updated:



WHAT IS MWU!?

Theorem: After T rounds, for any expert i, we have

ZZ plog(n)+(1+€)2M(l Jt)

Almost identical potential proof to theorem from before.



WHAT IS MWU!?

Figuring out what the “experts” are, what the penalties/rewards M (i, j) are,and what ”"outcomes” is the hardest part of using
MWU.

Sometimes requires very “clever” outlooks.



WHAT IS MWU!?

Packing/Covering Linear Programs (Known as Plotkin, Shmoys, Tardos framework)
Problem: Is there x € P where Ax > b ? (Feasibility).
Think of P as the “easy” constraints, and A as the hard ones.

Implicitly assumes the constraint rows of A are the "experts”
Assume the following oracle is known: 37 x € P : clx > (1 —€)d where c = ZipitAi and d = Zipfbi?

Natural =» exists for many problems.

If so, we can solve the original feasibility problem with MWU!



WHAT IS MWU!?

Packing/Covering Linear Programs (Known as Plotkin, Shmoys, Tardos framework)

Problem:Is there x € P where Ax > b ? (Feasability).

The “experts” are the constraints. Events correspond to vectors x € P! The oracle penalty is A;x — b;, how badly the
inequality is not satisfied.

The width here is p = max(A4;x — b;) which can be unbounded (but there is a trick to get around this).
X€EP

Theorem: It takes 5(:42) oracle calls for MWU to converge to x such that Ax > (1 — €)b (or

conclude no such x exists).

Designing correct MWU algorithms is an art that is not easy to master. See Arora’s survey for a lot more examples.



0(m'®°) MAX-FLOW
ALGORITHM




0(m'>) MAX-FLOW ALGORITHM

Idea: Apply Plotkin, Shmoys, Tardos framework on the Max-Flow linear program:

max |f] = ) f(s,u)

u

f(e) <c(e) Ve € E
Zf(u,v)=2f(v,u) Yu eV —{s,t}
’ erOU Ve €EE

Assume c(e) = 1, makes presentation less messy and doesn’t loose generality in proof.

Binary search on F*, the maximum flow value.

“Easy” constraints are flow conservation, non negativity,and |f| = F. This is is the “P” from the Tardos framework.
Hard constraints are f(e) < c(e) = 1.Or I,,,f < c.This is the “Ax < b” from the Tardos framework.

What's the width here? It is is maxA;x — b; = meagif(e) -1
l e

Max flow with unit capacity equivalent to: 3? f € P such that If < 1.




0(m'>) MAX-FLOW ALGORITHM

Idea: Apply Plotkin, Shmoys, Tardos framework on the Max-Flow linear program:

max |f]
f(e) <c(e) Ve € E
Zf(u,v)sz(v,u) Yu eV —{s, t}
’ erOU Ve €EE

Max flow with unit capacity equivalent to: 37 f € P such that If < 1.

What oracle do we need? 3? f such that |f| = F (guessed max flow value) and f(e) = 0 and conserving flow such that

Y pifE@<+e) ) pt

eEeE eEeE

Intuitively, this is saying the “average” capacity constraint is (approximately) satisfied.

We will answer this oracle with electrical flows!



Zf(u,v) =2f(v,u) Vu eV — {s, t}

Max flow:
f(e) < c(e)
fe=0
Ifl =F

0(m'>) MAX-FLOW ALGORITHM

Ve € E

Ve € E

Electrical flows with resistance:

Zf(u,v) =Zf(v,u) Yu eV — {s, t}
’ fezov Ve €EE
Ifl=F

Only thing we can control is resistances on edges. Can we
play with the resistances on edges to force

Y pifE@<+e) ) pt

eEeE eEeE

Intuitively, even though flow doesn’t have to respect capacity,
can we force it to respect it “on average”?



0(m'>) MAX-FLOW

ALGORITHM

Idea: Apply Plotkin, Shmoys, Tardos framework on the Max-Flow linear program:
max |f|
f(e) <c(e) Ve € E

Zf(u,v) =Zf(v,u) Yu€ev
’ fe>0v Ve €E

*

t
. . . €
Construct an electrical network with resistances 7, = p{ + € Leek Pe

—{st}

. Put F units of flow into s and —F units from t.

Conservation and non-negativity of flow is free. Pushes F flow from s using demands. So “easy” constraints are all good.

Just need to prove the average capacity is respected and bound the width.Then apply Tardos framework.

(*)Yes Yeer P& = 1, but in the capacitated case, it should be Y5 pé c(e) # 1 so I'll leave it as it is.



0(m'>) MAX-FLOW ALGORITHM

t
Theorem: If we set 7, = pt + % ,The electrical flow oracle satisfies Y. ,cx pSf(e) < (1 4+ €) X.ecppE and in addition, the width is p =

o([2)

Proof: Let f be the optimal electrical flow. We have

> pife) < Jszﬂe)z ijz ()

eEeF eEeE eEeE

So it suffices to show

Y=+ sk ()

(A e€EE
Because then (|) becomes:
D optrEn <\1+e) vt
eeE eeE

Scaling € yields the result.



0(m'>) MAX-FLOW ALGORITHM

t
Theorem: If we set 1, = pt + % ,The electrical flow oracle satisfies Y ,cz éf(e) < (1 +€) Yocppé and in addition,

the width is p = 0(\/%)
D pifE? <+ vt

eceE eEeE

To prove (2), we note that f is an electrical flow, so it minimizes the energy. So we have:

Zpéf(e)2 < Zref(e)2 = Z (pé € Lect pe)f( )? < Z (pé € Lect pe)f (e)?

eeE e€EE e€EE e€eE

€ : € :
£2<p£+ Ze;Epe>=2pg+Ez Ze;lEpe _ (1+6)zp5

eEeE eEeE eek eeE




0(m'>) MAX-FLOW ALGORITHM

t
Theorem: If we set 1, = pt + % ,The electrical flow oracle satisfies Y ,cg éf(e) < (1 +€) Xocppé and in addition,

the width is p = 0(\/%)

To prove p = 0(\/% ), observe that
p = max(f(e) = 1)

Recall
1+¢€ t
E ref(e)? <(1+e) E pl = f(e)? S( )rZeEEpe
e€EE eEE e
t t ¢
But Te = pg + € LecE Pe > € Leek Pe = YecE Pe < m -

m m 7 €

f@? < B2 & sy = o( (B



0(m'>) MAX-FLOW ALGORITHM

Theorem: Max flow can be solved in 0(m!>) time.

The Tardos framework takes 0 (:%) =0 <@> iterations.

€25

Each iteration requires computing effective resistance on a graph. Can be done in O (m) as discussed
earlier.

Binary search on max flow value takes O(1) time.

Overall 5(m1'5) time for constant €.

Same algorithm can be improved to 0(m*/3) = 0(m!333-) by being smarter on using the
inequalities, but analysis is more tedious.



QUESTIONS?




