
MAX-FLOW ALGORITHM*

* Algorithm actually takes 𝑂෨(𝑚ସ/ଷ) time but the tighter analysis would take 2 lectures. 



AGENDA

• Max-flow

• Physics (Electrical Flows, Ohm’s Law, Kirchhoff Law) Review (30 minutes)

• Properties of Electrical Networks & Applications 

• Fast Laplacian Solvers using Johnson-LindenstraussTheorem 

• Multiplicative Weight Update MWU Review  (30 mins)

• 𝑂෨(𝑚ଵ.ହ) max-flow Algorithm. (10 mins)



MAX-FLOW

• Given a directed graph 𝐺(𝑉, 𝐸) with edge capacities 𝑐(𝑒), and two distinguished vertices 𝑠, 𝑡, 
find the maximum flow from 𝑠 to 𝑡

• A flow is an assignment 𝑓: 𝐸 → ℜା that satisfies:

• 𝑓 𝑒 ≤ 𝑐(𝑒) for all 𝑒 ∈ 𝐸 (Capacity constraint)

• ∑ 𝑓(𝑢, 𝑣)௨: ௨,௩ ∈ா = ∑ 𝑓 𝑣, 𝑢   ௨: ௩,௨ ∈ா for all 𝑢, 𝑣 ∈ 𝑉 − {𝑠, 𝑡} (Conservation of flow)

• Flow value is ∑ 𝑓(𝑠, 𝑢)௨∈௏ (Total flow going out of 𝑠), or into 𝑡
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PHYSICS & LINEAR ALGEBRA REVIEW

• Consider an undirected graph 𝐺 𝑉, 𝐸  such that each edge (𝑖, 𝑗) has resistance 𝑟 𝑖, 𝑗 (or conductance 𝑐 𝑖, 𝑗 =
ଵ

௥(௜,௝)
). 

• A current flow 𝑓(𝑖, 𝑗) is one that obeys both:

• Kirchhoff's current law: 

Flow into node 𝑣 = flow leaving node 𝑣

• Ohm’s Law:

There exists a potential 𝑝(𝑣) such that 𝑓 𝑖, 𝑗 =
௣ ௜ ି௣(௝)

௥(௜,௝)
for all 𝑖, 𝑗 ∈ 𝑉. 

Note 𝑝 is translation invariant. 

𝑝 𝑖 − 𝑝(𝑗) acts like “Voltage”, 𝑓(𝑖, 𝑗) as current, and 𝑟 𝑖, 𝑗 as resistance. (𝑰 =
𝑽

𝑹
 )



OHM LAW - CONTD

Ohm’s Law:

There exists a potential 𝑝(𝑣) such that 𝑓 𝑖, 𝑗 =
௣ ௜ ି௣(௝)

௥(௜,௝)
for all 𝑖, 𝑗 ∈ 𝑉.

𝑝 = 0, 𝑓 = 0 satisfies Ohm’s law.  

Define 𝑏 𝑢 =  ∑ 𝑓(𝑢, 𝑣)௩ as the total flow (or current) into 𝑢. 

To make things more interesting, we force 𝑏 𝑠 = 1, 𝑏 𝑡 = −1. Excludes 𝑝 = 0, 𝑓 = 0.

Any such flow is an electrical-flow
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TANGENT 1 - LAPLACIANS  

• Consider an undirected graph 𝐺 𝑉, 𝐸 with adjacency matrix 𝐴 (which can be weighted).  Let 𝐷 be the (diagonal) degree 
matrix defined as 𝑑௜௜ = degீ(𝑖) = ∑ 𝑎௜௝௝ and 0 otherwise. 

• The Laplacian matrix is defined as  𝐿ீ = 𝐷 − 𝐴. VERY useful in Spectral Graph Theory.

• Breakthrough result of Teng et al. from 2004:

• Given a system of equations 𝐿௠×௡ 𝑥 = 𝑏 where 𝐿 is a diagonally dominant matrix, one can find an approximate solution xො in 𝑂෨(𝑚) time.

• Specifically, one can approximately compute 𝐿ା𝑏 where 𝐿ା is the pseudoinverse of 𝐿 for diagonally dominant matrices.

• A diagonally dominant matrix 𝐴 is a matrix satisfying 𝑎௜௜ >  ∑ |𝑎௜௝|௝ஷ௜ for all 𝑖.

• One can prove that the Laplacian matrix is diagonally dominant. 

• Needs a whole lecture for itself…



OHM & KIRCHOFF’S LAWS CONTD

• Combining both laws and some linear algebra magic, we can find a necessary condition for potentials and current. 

• Suppose for a given 𝑏 (recall 𝑏 𝑢 = ∑ 𝑓(𝑢, 𝑣)௩ ) that we want to find the corresponding potentials 𝑝(𝑢) for the resulting 
electrical flow.

• Then 𝐿ீ𝑝 = 𝑏, where the weights in the adjacency matrix are 
ଵ

௥(௜,௝)
= 𝑐(𝑖, 𝑗). 

• Intuitively, and with lots of handwaving, recall that  “𝑉 = 𝐼𝑅” and 𝑝 = 𝐿ீ
ା𝑏. “b” acts as current 𝐼. 𝐿ீ

ା acts like 𝐿ீ
ିଵ, which we 

want to be “resistance”.
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OHM & KIRCHOFF’S LAWS REVISITED 

• So to find the potentials that induce demands 𝑏, we only need to solve one system:

𝐿ீ𝑝 = 𝑏

• Using Teng’s result, can solve it in 𝑂෨(𝑚) time for one b!



EFFECTIVE RESISTANCE

• Effective resistance is the potential drop between two adjacent vertices assuming we push one unit of current into one and 
out of the other. 

• More formally, 𝑟௘௙௙ 𝑖, 𝑗 = 𝑝 𝑖 − 𝑝(𝑗) for 𝑖𝑗 ∈ 𝐸 when the demands are 𝑏௜ = 1, 𝑏௝ = −1. 

• We can compute it for each edge by solving 𝐿ீ𝑝 = 𝑏௜௝ where 𝑏௜
௜௝

= 1, 𝑏௝
௜௝

= −1 and 0 otherwise. 

• Here is something to blow your mind. 



TANGENT 2 – NUMBER OF TREES 
CONTAINING AN EDGE 
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TANGENT 2 – NUMBER OF TREES 
CONTAINING AN EDGE 
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TANGENT 2 – NUMBER OF TREES 
CONTAINING AN EDGE 

The coolest Theorem you’ll see this week:

Let 𝐺(𝑉, 𝐸) be an undirected graph. If we uniformly sample a random spanning tree from 𝐺, then the 
probability that 𝑖𝑗 ∈ 𝑇 is 𝑟௘௙௙(𝑖, 𝑗) in the corresponding resistor network !

This is based in real physics! You can set up a resistance network to find the probabilities an edge is in 
a random spanning tree with an amperometer!

Best known algorithm to compute it runs in 𝑂෨(
௠

ఢమ) due to Chandra and Kent in SODA 21 based on 

blocking flows. 

Physics evidence suggests there might be linear time algorithms. 



COMPUTING EFFECTIVE RESISTANCE

• Effective resistance is the potential drop between two adjacent vertices. More formally, 𝑟௘௙௙ 𝑖, 𝑗 = 𝑝 𝑖 − 𝑝(𝑗) for 𝑖𝑗 ∈ 𝐸

• For each edge 𝑖𝑗 ∈ 𝐸, define b௜௝ ∈ ℜ௡ such that 𝑏௜
௜௝

= 1, 𝑏௝
௜௝

= −1. 

• To compute the effective resistance for all edges, we can solve 𝐿ீ𝑝 = 𝑏௜௝  ∀𝑖𝑗 ∈ 𝐸. Takes 𝑂෨(𝑚ଶ) time. 

• However, we can approximate all effective resistances in 𝑂෨(𝑚)!

• Recall 𝑝 = 𝐿ீ
ା𝑏, and so 𝑟௘௙௙ 𝑖, 𝑗 = 𝑒௜ − 𝑒௝

்
𝐿ீ

ା(𝑒௜ − 𝑒௝). Notice that 

• 𝑟௘௙௙ 𝑖, 𝑗 = 𝐿ீ

శ

మ 𝑒௜ − 𝑒௝ ଶ
= 𝑣௜ − 𝑣௝ ଶ

Where 𝑣௜ = 𝐿ீ

శ

మ 𝑒௜. 

• Note: If 𝐿 is diagonally dominant, then 𝐿ଵ/ଶ𝑥 = 𝑏 can still be solved using Teng’s Method, so we’re still Kosher. 

• Since effective resistance are 𝐿ଶ distances, we can use Johnson-Lindenstrauss lemma to approximate them using vectors 𝑣௜ . Details 
omitted.  



COMPUTING EFFECTIVE RESISTANCE

• One last interesting property about electrical flows. 

• Nature is efficient, and so if we look at the energy dissipated in the network between 𝑠, 𝑡, it turns out electrical flows 
minimizes that. In particular:

෍ 𝑟௘𝑓 𝑒 ଶ

௘∈ா

Is minimized by electrical flows. (Recall 𝑃𝑜𝑤𝑒𝑟 = 𝐼ଶ𝑅) 

Proof uses Linear algebra, not very insightful.  “Common” physics knowledge.  



END OF PHYSICS REVIEW 



MULTIPLICATIVE WEIGHT 
UPDATES (MWU)



WHAT IS MWU?

• MWU is a “meta” algorithm, in the same sense of gradient descent. In fact, it generalizes gradient descent and many known 
optimization algorithms. 

• Extremely useful in optimization. 



WHAT IS MWU?

• Want to bet on AMC stock. Have 3 fine experts to lean on:

• You have no idea who is legit and who isn’t. (Hint: hint) 

• You want to bet everyday on 0DTE expiration options... Cause YOLO. 

• Each expert either says STONKS 📈 or NOT STONKS 📉 everyday. Based on recommendations, you need to make a decision. 



WHAT IS MWU?

• Initialize trust weights as 1 for all:

• Update rule is:

𝑤௜
௧ାଵ = 1 − 𝜖 𝑤௜

௧ If ”expert” answered incorrectly. 

𝑤௜
௧ାଵ = w୧

௧ If “expert” answered correctly.

Our bet is 📈 if the total weight of all experts predicting up 📈
at least ∑ 𝑤௜

௧
௜ /2 and 📉 otherwise. 

Fix 𝜖 = 0.1 for example.



WHAT IS MWU?

• Day 1 Guess: 📈

• Day 1 Result: 📉

• Weight updates:

📈

📈

📉



WHAT IS MWU?

• Day 1 Guess: 📈

• Day 1 Result: 📉

• Weight updates:

📉



WHAT IS MWU?

• Day 2 Guess: 📉

• Day 2 Result: 📈

• Weight updates:

📉

📈

📉



WHAT IS MWU?

• Day 2 Guess: 📉

• Day 2 Result: 📈

• Weight updates:



WHAT IS MWU?

• Theorem: Let 𝑚௜
௧ be the number of mistakes that ”expert” 𝑖, 1 ≤ 𝑖 ≤ 𝑛, does after 𝑡 days. Let 𝑀௧ be the number of mistakes 

we make after 𝑡 days. Then 

௧
ଶ ୪୭୥ ௡

ఢ ௜
௧ For ALL experts !



WHAT IS MWU?

௧
ଶ ୪୭୥

ఢ ௜
௧ For ALL experts !

Pf: Define the potential function Φ௧ = ∑ 𝑤௜
௧

௜ with Φଵ = 𝑛. 

Every time we are wrong, at least half the weight decreases by (1 − 𝜖) factor. So 

Φ௧ାଵ ≤ Φ௧
1

2
+

1

2
1 − 𝜖 = Φ௧(1 −

𝜖

2
)

Solving the recurrence, we get

Φ௧ ≤ 𝑛 1 −
𝜖

2

ெ೟

But 

Φ௧ ≥ 𝑤௜
௧        ∀𝑖

Rearranging, and approximating −log 1 − 𝑥 ≤ 𝑥 + 𝑥ଶ For 𝑥 ≤
ଵ

ଶ
yields the results. 



WHAT IS MWU?

Generalized Algorithm for optimization. 

We assume there is a matrix 𝑀 such that 𝑀(𝑖, 𝑗) is the penalty that expert 𝑖 pays when the outcome is 𝑗 ∈ 𝑷 where 𝑷
is set of outcomes. 

Assume 𝑀 𝑖, 𝑗 ∈ [0, 𝜌].  We call 𝜌 the width of the oracle 𝑀

Every step 𝑡 we have trust scores 𝑤௜
௧ to expert 𝑖. 

We associate time 𝑡 with distribution 𝐷௧ = 𝑝ଵ
௧, … , 𝑝௡

௧ = {
௪భ

೟

∑௪೔
೟ , … ,

௪೙
೟

∑௪೔
೟}

We pick an expert according to distribution 𝐷௧, and use it to make our prediction. Based on the outcome 𝑗௧ in round 𝑡, the 
weight is updated:

𝑤௜
௧ାଵ = 𝑤௜

௧(1 −
𝜖𝑀 𝑖, 𝑗௧

𝜌
)



WHAT IS MWU?

Theorem: After 𝑇 rounds, for any expert 𝑖, we have

෍ ෍ 𝑝௜
௧𝑤௜

௧

௜

≤
𝜌 log 𝑛

𝜖
+ 1 + 𝜖 ෍ 𝑀 𝑖, 𝑗௧

௧௧

Almost identical potential proof to theorem from before. 



WHAT IS MWU?

Figuring out what the “experts” are, what the penalties/rewards 𝑀(𝑖, 𝑗) are, and what ”outcomes” is the hardest part of using 
MWU. 

Sometimes requires very “clever” outlooks. 



WHAT IS MWU?

Packing/Covering Linear Programs (Known as Plotkin, Shmoys, Tardos framework)

Problem:  Is there 𝒙 ∈ 𝑷 where 𝑨𝒙 ≥ 𝒃 ? (Feasibility). 

Think of 𝑃 as the “easy” constraints, and 𝐴 as the hard ones. 

Implicitly assumes the constraint rows of 𝐴 are the ”experts”

Assume the following oracle is known: ் where ௜
௧

௜௜ and ௜
௧

௜௜ ? 

Natural  exists for many problems. 

If so, we can solve the original feasibility problem with MWU!



WHAT IS MWU?

Packing/Covering Linear Programs (Known as Plotkin, Shmoys, Tardos framework)

Problem: Is there 𝒙 ∈ 𝑷 where 𝑨𝒙 ≥ 𝒃 ? (Feasability). 

The “experts” are the constraints. Events correspond to vectors 𝑥 ∈ 𝑃! The oracle penalty is 𝐴௜𝑥 − 𝑏௜, how badly the 
inequality is not satisfied. 

The width here is 𝜌 = max
௫∈௉

(𝐴௜𝑥 − 𝑏௜) which can be unbounded (but there is a trick to get around this). 

Theorem: It takes 
𝝆

𝝐𝟐 oracle calls for MWU to converge to such that (or 

conclude no such x exists). 

Designing correct MWU algorithms is an art that is not easy to master. See Arora’s survey for a lot more examples.  



MAX-FLOW 
ALGORITHM



ଵ.ହ MAX-FLOW ALGORITHM

Idea:  Apply Plotkin, Shmoys, Tardos framework on the Max-Flow linear program:

max  𝑓 = ෍ 𝑓(𝑠, 𝑢)

௨

𝑓 𝑒 ≤ 𝑐 𝑒              ∀𝑒 ∈ 𝐸

෍ 𝑓 𝑢, 𝑣 =

௩

෍ 𝑓 𝑣, 𝑢

௩

    ∀𝑢 ∈ 𝑉 − {𝑠, 𝑡}

𝑓௘ ≥ 0                         ∀𝑒 ∈ 𝐸 

Assume 𝑐 𝑒 = 1, makes presentation less messy and doesn’t loose generality in proof.  

Binary search on 𝐹∗, the maximum flow value. 

“Easy” constraints are flow conservation, non negativity, and 𝑓 ≥ 𝐹.  This is is the “𝑃” from the Tardos framework.

Hard constraints are 𝑓 𝑒 ≤ 𝑐 𝑒 = 1. Or 𝐼௠𝑓 ≤ 𝑐. This is the “𝐴𝑥 ≤ 𝑏” from the Tardos framework. 

What’s the width here? It is is max
௜

𝐴௜𝑥 − 𝑏௜ = max
௘∈ா

𝑓 𝑒 − 1

Max flow with unit capacity equivalent to: ∃? 𝒇 ∈ 𝑷 such that 𝑰𝒇 ≤ 𝟏. 



ଵ.ହ MAX-FLOW ALGORITHM

Idea:  Apply Plotkin, Shmoys, Tardos framework on the Max-Flow linear program:
max |𝑓|

𝑓 𝑒 ≤ 𝑐 𝑒              ∀𝑒 ∈ 𝐸

෍ 𝑓 𝑢, 𝑣 =

௩

෍ 𝑓 𝑣, 𝑢

௩

    ∀𝑢 ∈ 𝑉 − {𝑠, 𝑡}

𝑓௘ ≥ 0                         ∀𝑒 ∈ 𝐸 

Max flow with unit capacity equivalent to: ∃? 𝑓 ∈ 𝑃 such that 𝐼𝑓 ≤ 1. 

What oracle do we need? ∃? 𝑓 such that 𝑓 ≥ 𝐹 (guessed max flow value) and 𝑓 𝑒 ≥ 0 and conserving flow such that

෍ 𝑝௘
௧𝑓 𝑒

௘∈ா

≤ (1 + 𝜖) ෍ 𝑝௘
௧

௘∈ா

Intuitively, this is saying the “average” capacity constraint is (approximately) satisfied. 

We will answer this oracle with electrical flows! 



ଵ.ହ MAX-FLOW ALGORITHM

Max flow:

𝑓 𝑒 ≤ 𝑐 𝑒              ∀𝑒 ∈ 𝐸

෍ 𝑓 𝑢, 𝑣 =

௩

෍ 𝑓 𝑣, 𝑢

௩

    ∀𝑢 ∈ 𝑉 − {𝑠, 𝑡}

𝑓௘ ≥ 0                         ∀𝑒 ∈ 𝐸 
𝑓 = 𝐹                                                             

Electrical flows with resistance:

෍ 𝑓 𝑢, 𝑣 =

௩

෍ 𝑓 𝑣, 𝑢

௩

    ∀𝑢 ∈ 𝑉 − {𝑠, 𝑡}

𝑓௘ ≥ 0                         ∀𝑒 ∈ 𝐸 

𝑓 = 𝐹

Only thing we can control is resistances on edges. Can we 
play with the resistances on edges to force

෍ 𝑝௘
௧𝑓 𝑒

௘∈ா

≤ (1 + 𝜖) ෍ 𝑝௘
௧

௘∈ா

Intuitively, even though flow doesn’t have to respect capacity, 
can we force it to respect it “on average”? 



ଵ.ହ MAX-FLOW ALGORITHM

Idea:  Apply Plotkin, Shmoys, Tardos framework on the Max-Flow linear program:
max |𝑓|

𝑓 𝑒 ≤ 𝑐 𝑒              ∀𝑒 ∈ 𝐸

෍ 𝑓 𝑢, 𝑣 =

௩

෍ 𝑓 𝑣, 𝑢

௩

    ∀𝑢 ∈ 𝑉 − {𝑠, 𝑡}

𝑓௘ ≥ 0                         ∀𝑒 ∈ 𝐸 

Construct an electrical network with resistances 𝑟௘ = 𝑝௘
௧ +

ఢ ∑ ௣೐
೟

೐∈ಶ 

௠

 (∗)

.  Put 𝐹 units of flow into 𝑠 and −𝐹 units from 𝑡. 

Conservation and non-negativity of flow is free. Pushes 𝐹 flow from 𝑠 using demands. So “easy” constraints are all good. 

Just need to prove the average capacity is respected and bound the width. Then apply Tardos framework. 

(*) Yes ∑ 𝑝௘
௧

௘∈ா = 1, but in the capacitated case, it should be ∑ 𝑝௘
௧

௘∈ா 𝑐 𝑒 ≠ 1 so I’ll leave it as it is.



ଵ.ହ MAX-FLOW ALGORITHM

Theorem:  If we set 𝑟௘ = 𝑝௘
௧ +

ఢ ∑ ௣೐
೟

೐∈ಶ 

௠
 , The electrical flow oracle satisfies ∑ 𝑝௘

௧𝑓 𝑒௘∈ா ≤ (1 + 𝜖) ∑ 𝑝௘
௧

௘∈ா and in addition, the width is  𝜌 =

𝑂(
௠

ఢ
)

Proof: Let 𝑓 be the optimal electrical flow.  We have

෍ 𝑝௘
௧𝑓 𝑒

௘∈ா

≤ ෍ 𝑝௘
௧𝑓 𝑒 ଶ

௘∈ா

෍ 𝑝௘
௧ 

௘∈ா

       (1) 

So it suffices to show

෍ 𝑝௘
௧𝑓 𝑒 ଶ ≤ 1 + 𝜖 ෍ 𝑝௘

௧

௘∈ா

       (2)

௘∈ா

Because then (1) becomes:

෍ 𝑝௘
௧𝑓 𝑒 )

௘∈ா

≤ 1 + 𝜖 ෍ 𝑝௘
௧

௘∈ா

Scaling 𝜖 yields the result.



ଵ.ହ MAX-FLOW ALGORITHM

Theorem:  If we set 𝑟௘ = 𝑝௘
௧ +

ఢ ∑ ௣೐
೟

೐∈ಶ 

௠
 , The electrical flow oracle satisfies ∑ 𝑝௘

௧𝑓 𝑒௘∈ா ≤ (1 + 𝜖) ∑ 𝑝௘
௧

௘∈ா and in addition, 

the width is  𝜌 = 𝑂(
௠

ఢ
)

෍ 𝑝௘
௧𝑓 𝑒 ଶ ≤ 1 + 𝜖 ෍ 𝑝௘

௧

௘∈ா

       (2)

௘∈ா

To prove (2), we note that 𝑓 is an electrical flow, so it minimizes the energy. So we have:

௘
௧ ଶ

௘∈ா

௘
ଶ

௘∈ா

௘
௧ ௘

௧
௘∈ா ଶ

௘∈ா

௘
௧ ௘

௧
௘∈ா ∗ ଶ

௘∈ா

௘
௧ ௘

௧
௘∈ா 

௘∈ா

௘
௧

௘∈ா

௘
௧

௘∈ா 

௘∈ா

௘
௧

௘∈ா



ଵ.ହ MAX-FLOW ALGORITHM

Theorem:  If we set 𝑟௘ = 𝑝௘
௧ +

ఢ ∑ ௣೐
೟

೐∈ಶ 

௠
 , The electrical flow oracle satisfies ∑ 𝑝௘

௧𝑓 𝑒௘∈ா ≤ (1 + 𝜖) ∑ 𝑝௘
௧

௘∈ா and in addition, 

the width is  𝜌 = 𝑂(
௠

ఢ
)

To prove 𝜌 = 𝑂(
௠

ఢ
 ), observe that 

Recall

௘
ଶ

௘∈ா

௘
௧

௘∈ா

ଶ ௘
௧

௘∈ா

௘

But ௘ ௘
௧ ఢ ∑ ௣೐

೟
೐∈ಶ 

௠

ఢ ∑ ௣೐
೟

೐∈ಶ 

௠

∑ ௣೐
೟

೐∈ಶ 

௥೐

௠

ఢ
and so 

ଶ ଵାఢ ௠

ఢ

௠

ఢ



ଵ.ହ MAX-FLOW ALGORITHM

Theorem:  Max flow can be solved in 𝑶෩(𝒎𝟏.𝟓) time. 

The Tardos framework takes 𝑂 ఘ

ఢమ =
௠

ఢమ.ఱ iterations. 

Each iteration requires computing effective resistance on a graph. Can be done in (𝑚) as discussed 
earlier. 

Binary search on max flow value takes (1) time. 

Overall ଵ.ହ time for constant . 

Same algorithm can be improved to ସ/ଷ ଵ.ଷଷଷ.. by being smarter on using the 
inequalities, but analysis is more tedious. 



QUESTIONS?


