$\widetilde{O}\left(m^{1.5}\right)$ MAX-FLOW ALGORITHM*

* Algorithm actually takes $\widetilde{O}\left(m^{4 / 3}\right)$ time but the tighter analysis would take 2 lectures.

AGENDA

- Max-flow
- Physics (Electrical Flows, Ohm's Law, Kirchhoff Law) Review (30 minutes)
- Properties of Electrical Networks \& Applications
- Fast Laplacian Solvers using Johnson-Lindenstrauss Theorem
- Multiplicative Weight Update MWU Review (30 mins)
- $\tilde{O}\left(m^{1.5}\right)$ max-flow Algorithm. (IO mins)

MAX-FLOW

- Given a directed graph $G(V, E)$ with edge capacities $c(e)$, and two distinguished vertices s, t, find the maximum flow from s to t
- A flow is an assignment $f: E \rightarrow \mathfrak{R}_{+}$that satisfies:
- $f(e) \leq c(e)$ for all $e \in E$ (Capacity constraint)
- $\sum_{u:(u, v) \in E} f(u, v)=\sum_{u:(v, u) \in E} f(v, u)$ for all $u, v \in V-\{s, t\}$ (Conservation of flow)
- Flow value is $\sum_{u \in V} f(s, u)$ (Total flow going out of s), or into t

EXAMPLE

Graph and Capacities

Max-Flow

PHYSICS \& LINEAR ALGEBRA REVIEW

- Consider an undirected graph $G(V, E)$ such that each edge (i, j) has resistance $r(i, j)$ (or conductance $c(i, j)=\frac{1}{r(i, j)}$).
- A current flow $f(i, j)$ is one that obeys both:
- Kirchhoff's current law:

Flow into node $v=$ flow leaving node v

- Ohm's Law:

There exists a potential $p(v)$ such that $f(i, j)=\frac{p(i)-p(j)}{r(i, j)}$ for all $i, j \in V$.
Note p is translation invariant.
$p(i)-p(j)$ acts like "Voltage", $f(i, j)$ as current, and $r(i, j)$ as resistance. $\left(I=\frac{V}{R}\right)$

OHM LAW - CONTD

Ohm's Law:
There exists a potential $p(v)$ such that $f(i, j)=\frac{p(i)-p(j)}{r(i, j)}$ for all $i, j \in V$.
$p=0, f=0$ satisfies Ohm's law.
Define $b(u)=\sum_{v} f(u, v)$ as the total flow (or current) into u.
To make things more interesting, we force $b(s)=1, b(t)=-1$. Excludes $p=0, f=0$.
Any such flow is an electrical-flow

EXAMPLE

How do we find the potentials?
Ohm's Law!

EXAMPLE

TANGENT I - LAPLACIANS

- Consider an undirected graph $G(V, E)$ with adjacency matrix A (which can be weighted). Let D be the (diagonal) degree matrix defined as $d_{i i}=\operatorname{deg}_{G}(i)=\sum_{j} a_{i j}$ and 0 otherwise.
- The Laplacian matrix is defined as $L_{G}=D-A$.VERY useful in Spectral Graph Theory.
- Breakthrough result of Teng et al. from 2004:
- Given a system of equations $L_{m \times n} x=b$ where L is a diagonally dominant matrix, one can find an approximate solution $\hat{\mathrm{x}}$ in $\tilde{O}(m)$ time.
- Specifically, one can approximately compute $L^{+} b$ where L^{+}is the pseudoinverse of L for diagonally dominant matrices.
- A diagonally dominant matrix A is a matrix satisfying $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$ for all i.
- One can prove that the Laplacian matrix is diagonally dominant.
- Needs a whole lecture for itself...

OHM \& KIRCHOFF'S LAWS CONTD

- Combining both laws and some linear algebra magic, we can find a necessary condition for potentials and current.
- Suppose for a given b (recall $b(u)=\sum_{v} f(u, v)$) that we want to find the corresponding potentials $p(u)$ for the resulting electrical flow.
- Then $L_{G} p=b$, where the weights in the adjacency matrix are $\frac{1}{r(i, j)}=c(i, j)$.
- Intuitively, and with lots of handwaving, recall that " $V=I R$ " and $p=L_{G}^{+} b$. "b" acts as current $I . L_{G}^{+}$acts like L_{G}^{-1}, which we want to be "resistance".

$$
L_{G}=D-A \text { and } L_{G} p=b
$$

$p=L_{G}^{+} b=$| s | 0.62 |
| :---: | :---: |
| u | 0 |
| v | 0.31 |
| t | -0.92 |

p Is Translation Invariant:

s	1.538
$p=$	u
	0.923
v	1.231
t	0

OHM \& KIRCHOFF'S LAWS REVISITED

- So to find the potentials that induce demands b, we only need to solve one system:

$$
L_{G} p=b
$$

- Using Teng's result, can solve it in $\tilde{O}(m)$ time for one b !

EFFECTIVE RESISTANCE

- Effective resistance is the potential drop between two adjacent vertices assuming we push one unit of current into one and out of the other.
- More formally, $r_{e f f}(i, j)=p(i)-p(j)$ for $i j \in E$ when the demands are $b_{i}=1, b_{j}=-1$.
- We can compute it for each edge by solving $L_{G} p=b^{i j}$ where $b_{i}^{i j}=1, b_{j}^{i j}=-1$ and 0 otherwise.
- Here is something to blow your mind.

TANGENT 2 - NUMBER OF TREES CONTAINING AN EDGE

The coolest Theorem you'll see this week:
Let $G(V, E)$ be an undirected graph. If we uniformly sample a random spanning tree from G, then the probability that $i j \in T$ is $r_{e f f}(i, j)$ in the corresponding resistor network !

This is based in real physics! You can set up a resistance network to find the probabilities an edge is in a random spanning tree with an amperometer!

Best known algorithm to compute it runs in $\tilde{O}\left(\frac{m}{\epsilon^{2}}\right)$ due to Chandra and Kent in SODA 21 based on blocking flows.

Physics evidence suggests there might be linear time algorithms.

COMPUTING EFFECTIVE RESISTANCE

- Effective resistance is the potential drop between two adjacent vertices. More formally, $r_{e f f}(i, j)=p(i)-p(j)$ for $i j \in E$
- For each edge $i j \in E$, define $\mathrm{b}^{i j} \in \mathfrak{R}^{n}$ such that $b_{i}^{i j}=1, b_{j}^{i j}=-1$.
- To compute the effective resistance for all edges, we can solve $L_{G} p=b^{i j} \forall i j \in E$. Takes $\tilde{O}\left(m^{2}\right)$ time.
- However, we can approximate all effective resistances in $\tilde{O}(m)$!
- Recall $p=L_{G}^{+} b$, and so $r_{e f f}(i, j)=\left(e_{i}-e_{j}\right)^{T} L_{G}^{+}\left(e_{i}-e_{j}\right)$. Notice that
- $r_{e f f}(i, j)=\left\|L_{G}^{\frac{+}{2}}\left(e_{i}-e_{j}\right)\right\|_{2}=\left\|v_{i}-v_{j}\right\|_{2}$ Where $v_{i}=L_{G}^{\frac{}{2}} e_{i}$.
- Note: If L is diagonally dominant, then $L^{1 / 2} x=b$ can still be solved using Teng's Method, so we're still Kosher.
- Since effective resistance are L_{2} distances, we can use Johnson-Lindenstrauss lemma to approximate them using vectors v_{i}. Details omitted.

COMPUTING EFFECTIVE RESISTANCE

- One last interesting property about electrical flows.
- Nature is efficient, and so if we look at the energy dissipated in the network between s, t, it turns out electrical flows minimizes that. In particular:

$$
\sum_{e \in E} r_{e} f(e)^{2}
$$

Is minimized by electrical flows. (Recall Power $=I^{2} R$)

Proof uses Linear algebra, not very insightful. "Common" physics knowledge.

END OF PHYSICS REVIEW

MULTIPLICATIVE WEIGHT UPDATES (MWU)

WHAT IS MWU?

- MWU is a "meta" algorithm, in the same sense of gradient descent. In fact, it generalizes gradient descent and many known optimization algorithms.
- Extremely useful in optimization.

WHAT IS MWU?

- Want to bet on AMC stock. Have 3 fine experts to lean on:

- You have no idea who is legit and who isn't. (Hint: hint)
- You want to bet everyday on ODTE expiration options... Cause YOLO.
- Each expert either says STONKS \square or NOT STONKS \square everyday. Based on recommendations, you need to make a decisior

WHAT IS MWU?

- Initialize trust weights as I for all:
- Update rule is:
$w_{i}^{t+1}=(1-\epsilon) w_{i}^{t}$ If "expert" answered incorrectly.
$w_{i}^{t+1}=w_{\mathrm{i}}^{t}$ If "expert" answered correctly.

Our bet is \square if the total weight of all experts predicting up \square at least $\sum_{i} w_{i}^{t} / 2$ and \triangle otherwise.

Fix $\epsilon=0.1$ for example.

WHAT IS MWU?

- Day I Guess: \square
- Day I Result: \triangle
- Weight updates:

WHAT IS MWU?

- Day I Guess: \square
- Day I Result: \mathbb{Z}
- Weight updates:

WHAT IS MWU?

- Day 2 Guess: \triangle
- Day 2 Result: \square
- Weight updates:

WHAT IS MWU?

- Day 2 Guess: \triangle
- Day 2 Result: \square
- Weight updates:

WHAT IS MWU?

- Theorem: Let m_{i}^{t} be the number of mistakes that "expert" $i, 1 \leq i \leq n$, does after t days. Let M_{t} be the number of mistakes we make after t days. Then

$$
M_{t} \leq \frac{2 \log n}{\epsilon}+(1+\epsilon) m_{i}^{t} \quad \text { For ALL experts } i!
$$

WHAT IS MWU?

$$
M_{t} \leq \frac{2 \log }{\epsilon}+2(1+\epsilon) m_{i}^{t} \quad \text { For ALL experts } i!
$$

Pf: Define the potential function $\Phi^{t}=\sum_{i} w_{i}^{t}$ with $\Phi^{1}=n$.
Every time we are wrong, at least half the weight decreases by $(1-\epsilon)$ factor. So

$$
\Phi^{t+1} \leq \Phi^{t}\left(\frac{1}{2}+\frac{1}{2}(1-\epsilon)\right)=\Phi^{t}\left(1-\frac{\epsilon}{2}\right)
$$

Solving the recurrence, we get

$$
\Phi^{t} \leq n\left(1-\frac{\epsilon}{2}\right)^{M_{t}}
$$

But

$$
\Phi^{t} \geq w_{i}^{t} \quad \forall i
$$

Rearranging, and approximating $-\log (1-x) \leq x+x^{2}$ For $x \leq \frac{1}{2}$ yields the results.

WHAT IS MWU?

Generalized Algorithm for optimization.
We assume there is a matrix M such that $M(i, j)$ is the penalty that expert i pays when the outcome is $j \in \boldsymbol{P}$ where \boldsymbol{P} is set of outcomes.
Assume $M(i, j) \in[0, \rho]$. We call ρ the width of the oracle M
Every step t we have trust scores w_{i}^{t} to expert i.
We associate time t with distribution $D^{t}=\left\{p_{1}^{t}, \ldots, p_{n}^{t}\right\}=\left\{\frac{w_{1}^{t}}{\sum w_{i}^{t}}, \ldots, \frac{w_{n}^{t}}{\sum w_{i}^{t}}\right\}$
We pick an expert according to distribution D^{t}, and use it to make our prediction. Based on the outcome j_{t} in round t, the weight is updated:

$$
w_{i}^{t+1}=w_{i}^{t}\left(1-\frac{\epsilon M\left(i, j_{t}\right)}{\rho}\right)
$$

WHAT IS MWU?

Theorem: After T rounds, for any expert i, we have

$$
\sum_{t} \sum_{i} p_{i}^{t} w_{i}^{t} \leq \frac{\rho \log (n)}{\epsilon}+(1+\epsilon) \sum_{t} M\left(i, j_{t}\right)
$$

Almost identical potential proof to theorem from before.

WHAT IS MWU?

Figuring out what the "experts" are, what the penalties/rewards $M(i, j)$ are, and what "outcomes" is the hardest part of using MWU.

Sometimes requires very "clever" outlooks.

Packing/Covering Linear Programs (Known as Plotkin, Shmoys, Tardos framework)

Problem: Is there $x \in P$ where $A x \geq b$? (Feasibility).

Think of P as the "easy" constraints, and A as the hard ones.

Implicitly assumes the constraint rows of A are the "experts"

Assume the following oracle is known: $\exists ? x \in P: c^{T} x \geq(1-\epsilon) d$ where $\mathrm{c}=\sum_{i} p_{i}^{t} A_{i}$ and $d=\sum_{i} p_{i}^{t} b_{i}$?

Natural \rightarrow exists for many problems.

If so, we can solve the original feasibility problem with MWU!

WHAT IS MWU?

Packing/Covering Linear Programs (Known as Plotkin, Shmoys, Tardos framework)
Problem: Is there $x \in P$ where $A x \geq b$? (Feasability).

The "experts" are the constraints. Events correspond to vectors $x \in P$! The oracle penalty is $A_{i} x-b_{i}$, how badly the inequality is not satisfied.

The width here is $\rho=\max _{x \in P}\left(A_{i} x-b_{i}\right)$ which can be unbounded (but there is a trick to get around this).

Theorem: It takes $\widetilde{\boldsymbol{O}}\left(\frac{\rho}{\epsilon^{2}}\right)$ oracle calls for MWU to converge to x such that $A x \geq(1-\epsilon) b$ (or conclude no such x exists).

Designing correct MWU algorithms is an art that is not easy to master. See Arora's survey for a lot more examples.

$\widetilde{O}\left(m^{1.5}\right)$ MAX-FLOW ALGORITHM

$\widetilde{O}\left(m^{1.5}\right)$ MAX-FLOW ALGORITHM

Idea: Apply Plotkin, Shmoys, Tardos framework on the Max-Flow linear program:

$$
\begin{gathered}
\max |f|=\sum_{u} f(s, u) \\
f(e) \leq c(e) \\
\sum_{v} f(u, v)=\sum_{v} f(v, u) \quad \forall u \in E-\{s, t\} \\
f_{e} \geq 0
\end{gathered} \quad \forall e \in E \quad \$
$$

Assume $c(e)=1$, makes presentation less messy and doesn't loose generality in proof.
Binary search on F^{*}, the maximum flow value.
"Easy" constraints are flow conservation, non negativity, and $|f| \geq F$. This is is the " P " from the Tardos framework. Hard constraints are $f(e) \leq c(e)=1$. Or $I_{m} f \leq c$. This is the " $A x \leq b$ " from the Tardos framework. What's the width here? It is is $\max _{i} A_{i} x-b_{i}=\max _{e \in E} f(e)-1$

Max flow with unit capacity equivalent to: \exists ? $f \in P$ such that If ≤ 1.

$\widetilde{O}\left(m^{1.5}\right)$ MAX-FLOW ALGORITHM

Idea: Apply Plotkin, Shmoys, Tardos framework on the Max-Flow linear program:

$$
\begin{array}{cl}
\max ^{\prime}|f| & \\
f(e) \leq c(e) & \forall e \in E \\
\sum_{v} f(u, v)=\sum_{v} f(v, u) & \forall u \in V-\{s, t\} \\
f_{e} \geq 0 & \forall e \in E
\end{array}
$$

Max flow with unit capacity equivalent to: \exists ? $f \in P$ such that $I f \leq 1$.
What oracle do we need? \exists ? f such that $|f| \geq F$ (guessed max flow value) and $f(e) \geq 0$ and conserving flow such that

$$
\sum_{e \in E} p_{e}^{t} f(e) \leq(1+\epsilon) \sum_{e \in E} p_{e}^{t}
$$

Intuitively, this is saying the "average" capacity constraint is (approximately) satisfied.
We will answer this oracle with electrical flows!

$\widetilde{O}\left(m^{1.5}\right)$ MAX-FLOW ALGORITHM

Max flow:

$$
\begin{array}{cl}
f(e) \leq c(e) & \forall e \in E \\
\sum_{v} f(u, v)=\sum_{v} f(v, u) & \forall u \in V-\{s, t\} \\
f_{e} \geq 0 & \forall e \in E \\
|f|=F &
\end{array}
$$

Electrical flows with resistance:

$$
\begin{array}{ll}
\sum_{v} f(u, v)=\sum_{v} f(v, u) & \forall u \in V-\{s, t\} \\
f_{e} \geq 0 & \forall e \in E \\
|f|=F &
\end{array}
$$

Only thing we can control is resistances on edges. Can we play with the resistances on edges to force

$$
\sum_{e \in E} p_{e}^{t} f(e) \leq(1+\epsilon) \sum_{e \in E} p_{e}^{t}
$$

Intuitively, even though flow doesn't have to respect capacity, can we force it to respect it "on average"?

$\widetilde{O}\left(m^{1.5}\right)$ MAX-FLOW ALGORITHM

Idea: Apply Plotkin, Shmoys, Tardos framework on the Max-Flow linear program:

$$
\begin{array}{cl}
\max ^{\max }|f| & \\
\sum_{v} f(u, v)=\sum_{v} f(e) & \forall e \in E \\
f_{o} \geq 0 & \forall u \in V-\{s, t\} \\
& \forall e \in E
\end{array}
$$

Construct an electrical network with resistances $r_{e}=p_{e}^{t}+\frac{\epsilon \sum_{e \in E} p_{e}^{t}(*)}{m}$. Put F units of flow into s and $-F$ units from t.

Conservation and non-negativity of flow is free. Pushes F flow from s using demands. So "easy" constraints are all good.

Just need to prove the average capacity is respected and bound the width. Then apply Tardos framework.
${ }^{(*)}$ Yes $\sum_{e \in E} p_{e}^{t}=1$, but in the capacitated case, it should be $\sum_{e \in E} p_{e}^{t} c(e) \neq 1$ so l'll leave it as it is.

$\widetilde{O}\left(m^{1.5}\right)$ MAX-FLOW ALGORITHM

Theorem: If we set $r_{e}=p_{e}^{t}+\frac{\epsilon \sum_{e \in E} p_{e}^{t}}{m}$, The electrical flow oracle satisfies $\sum_{e \in E} p_{e}^{t} f(e) \leq(1+\epsilon) \sum_{e \in E} p_{e}^{t}$ and in addition, the width is $\rho=$ $O\left(\sqrt{\frac{m}{\epsilon}}\right)$
Proof: Let f be the optimal electrical flow. We have

$$
\begin{equation*}
\sum_{e \in E} p_{e}^{t} f(e) \leq \sqrt{\sum_{e \in E} p_{e}^{t} f(e)^{2}} \sqrt{\sum_{e \in E} p_{e}^{t}} \tag{1}
\end{equation*}
$$

So it suffices to show

$$
\begin{equation*}
\sum_{e \in E} p_{e}^{t} f(e)^{2} \leq(1+\epsilon) \sum_{e \in E} p_{e}^{t} \tag{2}
\end{equation*}
$$

Because then (I) becomes:

$$
\left.\sum_{e \in E} p_{e}^{t} f(e)\right) \leq \sqrt{1+\epsilon} \sum_{e \in E} p_{e}^{t}
$$

Scaling ϵ yields the result.

$\widetilde{O}\left(m^{1.5}\right)$ MAX-FLOW ALGORITHM

Theorem: If we set $r_{e}=p_{e}^{t}+\frac{\epsilon \sum_{e \in E} p_{e}^{t}}{m}$, The electrical flow oracle satisfies $\sum_{e \in E} p_{e}^{t} f(e) \leq(1+\epsilon) \sum_{e \in E} p_{e}^{t}$ and in addition, the width is $\rho=O\left(\sqrt{\frac{m}{\epsilon}}\right)$

$$
\begin{equation*}
\sum_{e \in E} p_{e}^{t} f(e)^{2} \leq(1+\epsilon) \sum_{e \in E} p_{e}^{t} \tag{2}
\end{equation*}
$$

To prove (2), we note that f is an electrical flow, so it minimizes the energy. So we have:

$$
\begin{aligned}
\sum_{e \in E} p_{e}^{t} f(e)^{2} & \leq \sum_{e \in E} r_{e} f(e)^{2}=\sum_{e \in E}\left(p_{e}^{t}+\frac{\epsilon \sum_{e \in E} p_{e}^{t}}{m}\right) f(e)^{2} \leq \sum_{e \in E}\left(p_{e}^{t}+\frac{\epsilon \sum_{e \in E} p_{e}^{t}}{m}\right) f^{*}(e)^{2} \\
& \leq \sum_{e \in E}\left(p_{e}^{t}+\frac{\epsilon \sum_{e \in E} p_{e}^{t}}{m}\right)=\sum_{e \in E} p_{e}^{t}+\epsilon \sum_{e \in E} \frac{\epsilon \sum_{e \in E} p_{e}^{t}}{m}=(1+\epsilon) \sum_{e \in E} p_{e}^{t}
\end{aligned}
$$

$\widetilde{O}\left(m^{1.5}\right)$ MAX-FLOW ALGORITHM

Theorem: If we set $r_{e}=p_{e}^{t}+\frac{\epsilon \sum_{e \in E} p_{e}^{t}}{m}$, The electrical flow oracle satisfies $\sum_{e \in E} p_{e}^{t} f(e) \leq(1+\epsilon) \sum_{e \in E} p_{e}^{t}$ and in addition, the width is $\rho=O\left(\sqrt{\frac{m}{\epsilon}}\right)$
To prove $\rho=O\left(\sqrt{\frac{m}{\epsilon}}\right)$, observe that

$$
\rho=\max (f(e)-1)
$$

Recall

$$
\sum_{e \in E} r_{e} f(e)^{2} \leq(1+\epsilon) \sum_{e \in E} p_{e}^{t} \Rightarrow f(e)^{2} \leq \frac{(1+\epsilon) \sum_{e \in E} p_{e}^{t}}{r_{e}}
$$

But $r_{e}=p_{e}^{t}+\frac{\epsilon \sum_{e \in E} p_{e}^{t}}{m} \geq \frac{\epsilon \sum_{e \in E} p_{e}^{t}}{m} \Rightarrow \frac{\sum_{e \in E} p_{e}^{t}}{r_{e}} \leq \frac{m}{\epsilon}$ and so
$f(e)^{2} \leq \frac{(1+\epsilon) m}{\epsilon} \Rightarrow f(e)=O\left(\sqrt{\frac{m}{\epsilon}}\right)$

$\widetilde{O}\left(m^{1.5}\right)$ MAX-FLOW ALGORITHM

Theorem: Max flow can be solved in $\widetilde{\mathbf{0}}\left(m^{1.5}\right)$ time.

The Tardos framework takes $O\left(\frac{\rho}{\epsilon^{2}}\right)=O\left(\frac{\sqrt{m}}{\epsilon^{2.5}}\right)$ iterations.
Each iteration requires computing effective resistance on a graph. Can be done in $\tilde{O}(m)$ as discussed earlier.

Binary search on max flow value takes $\tilde{O}(1)$ time.
Overall $\tilde{O}\left(m^{1.5}\right)$ time for constant ϵ.
Same algorithm can be improved to $\tilde{O}\left(\mathrm{~m}^{4 / 3}\right)=\tilde{O}\left(\mathrm{~m}^{1.333 . .}\right)$ by being smarter on using the inequalities, but analysis is more tedious.

QUESTIONS?

