
MAX-FLOW ALGORITHM*

* Algorithm actually takes 𝑂෨(𝑚ସ/ଷ) time but the tighter analysis would take 2 lectures.

AGENDA

• Max-flow

• Physics (Electrical Flows, Ohm’s Law, Kirchhoff Law) Review (30 minutes)

• Properties of Electrical Networks & Applications

• Fast Laplacian Solvers using Johnson-LindenstraussTheorem

• Multiplicative Weight Update MWU Review (30 mins)

• 𝑂෨(𝑚ଵ.ହ) max-flow Algorithm. (10 mins)

MAX-FLOW

• Given a directed graph 𝐺(𝑉, 𝐸) with edge capacities 𝑐(𝑒), and two distinguished vertices 𝑠, 𝑡,
find the maximum flow from 𝑠 to 𝑡

• A flow is an assignment 𝑓: 𝐸 → ℜା that satisfies:

• 𝑓 𝑒 ≤ 𝑐(𝑒) for all 𝑒 ∈ 𝐸 (Capacity constraint)

• ∑ 𝑓(𝑢, 𝑣)௨: ௨,௩ ∈ா = ∑ 𝑓 𝑣, 𝑢 ௨: ௩,௨ ∈ா for all 𝑢, 𝑣 ∈ 𝑉 − {𝑠, 𝑡} (Conservation of flow)

• Flow value is ∑ 𝑓(𝑠, 𝑢)௨∈௏ (Total flow going out of 𝑠), or into 𝑡

EXAMPLE

Graph and Capacities

1 5

1

2
3

1 1

0

1
1

𝑠 𝑡

𝑠 𝑡
Flow

1 2

1

2
1

𝑠 𝑡
Max-Flow

PHYSICS & LINEAR ALGEBRA REVIEW

• Consider an undirected graph 𝐺 𝑉, 𝐸 such that each edge (𝑖, 𝑗) has resistance 𝑟 𝑖, 𝑗 (or conductance 𝑐 𝑖, 𝑗 =
ଵ

௥(௜,௝)
).

• A current flow 𝑓(𝑖, 𝑗) is one that obeys both:

• Kirchhoff's current law:

Flow into node 𝑣 = flow leaving node 𝑣

• Ohm’s Law:

There exists a potential 𝑝(𝑣) such that 𝑓 𝑖, 𝑗 =
௣ ௜ ି௣(௝)

௥(௜,௝)
for all 𝑖, 𝑗 ∈ 𝑉.

Note 𝑝 is translation invariant.

𝑝 𝑖 − 𝑝(𝑗) acts like “Voltage”, 𝑓(𝑖, 𝑗) as current, and 𝑟 𝑖, 𝑗 as resistance. (𝑰 =
𝑽

𝑹
)

OHM LAW - CONTD

Ohm’s Law:

There exists a potential 𝑝(𝑣) such that 𝑓 𝑖, 𝑗 =
௣ ௜ ି௣(௝)

௥(௜,௝)
for all 𝑖, 𝑗 ∈ 𝑉.

𝑝 = 0, 𝑓 = 0 satisfies Ohm’s law.

Define 𝑏 𝑢 = ∑ 𝑓(𝑢, 𝑣)௩ as the total flow (or current) into 𝑢.

To make things more interesting, we force 𝑏 𝑠 = 1, 𝑏 𝑡 = −1. Excludes 𝑝 = 0, 𝑓 = 0.

Any such flow is an electrical-flow

EXAMPLE

𝑠 𝑡

1Ω

2Ω
3Ω

4Ω

Ampere-Express

1𝐴
1𝐴

How do we find the potentials?

Ohm’s Law!

𝑢

𝑣

4Ω

EXAMPLE

𝑠 𝑡

1Ω

2Ω
3Ω

4Ω

Ampere-Express

1𝐴
1𝐴

𝑢

𝑣

4Ω

𝑠 𝑡

4

13
A

ସ

ଵଷ
A

Ampere-Express

1𝐴
1𝐴

𝑢

𝑣

5

13
𝐴

4

13
A

ସ

ଵଷ
A

EXAMPLE

𝑠 𝑡

1Ω

2Ω
3Ω

4Ω

Ampere-Express

1𝐴
1𝐴

𝑢

𝑣

4Ω

𝑠 𝑡

Ampere-Express

1𝐴

𝑢

𝑣

20

13
𝑉

ଵଶ

ଵଷ
V

16

13

0V

TANGENT 1 - LAPLACIANS

• Consider an undirected graph 𝐺 𝑉, 𝐸 with adjacency matrix 𝐴 (which can be weighted). Let 𝐷 be the (diagonal) degree
matrix defined as 𝑑௜௜ = degீ(𝑖) = ∑ 𝑎௜௝௝ and 0 otherwise.

• The Laplacian matrix is defined as 𝐿ீ = 𝐷 − 𝐴. VERY useful in Spectral Graph Theory.

• Breakthrough result of Teng et al. from 2004:

• Given a system of equations 𝐿௠×௡ 𝑥 = 𝑏 where 𝐿 is a diagonally dominant matrix, one can find an approximate solution xො in 𝑂෨(𝑚) time.

• Specifically, one can approximately compute 𝐿ା𝑏 where 𝐿ା is the pseudoinverse of 𝐿 for diagonally dominant matrices.

• A diagonally dominant matrix 𝐴 is a matrix satisfying 𝑎௜௜ > ∑ |𝑎௜௝|௝ஷ௜ for all 𝑖.

• One can prove that the Laplacian matrix is diagonally dominant.

• Needs a whole lecture for itself…

OHM & KIRCHOFF’S LAWS CONTD

• Combining both laws and some linear algebra magic, we can find a necessary condition for potentials and current.

• Suppose for a given 𝑏 (recall 𝑏 𝑢 = ∑ 𝑓(𝑢, 𝑣)௩) that we want to find the corresponding potentials 𝑝(𝑢) for the resulting
electrical flow.

• Then 𝐿ீ𝑝 = 𝑏, where the weights in the adjacency matrix are
ଵ

௥(௜,௝)
= 𝑐(𝑖, 𝑗).

• Intuitively, and with lots of handwaving, recall that “𝑉 = 𝐼𝑅” and 𝑝 = 𝐿ீ
ା𝑏. “b” acts as current 𝐼. 𝐿ீ

ା acts like 𝐿ீ
ିଵ, which we

want to be “resistance”.

𝑠 𝑡

1Ω

2Ω
3Ω

4Ω

𝑢

𝑣

4Ω
𝑏 =

1𝑠

0𝑢

0𝑣

−1𝑡

𝑡𝑣𝑢𝑠

1

4

1

1

1

2
0𝑠

1

3
00

1

2
𝑢

1

4
001𝑣

0
1

4

1

3

1

4
𝑡

𝐴 =

𝑡𝑣𝑢𝑠

000
7

4
𝑠

00
5

6
0𝑢

0
5

4
00𝑣

5

6
000𝑡

𝐷 =

𝐿ீ = 𝐷 − 𝐴 and 𝐿ீ𝑝 = 𝑏

𝑝 = 𝐿ீ
ା𝑏 =

0.62𝑠

0𝑢

0.31𝑣

−0.92𝑡

𝑝 Is Translation Invariant:

𝑝 =

1.538𝑠

0.923𝑢

1.231𝑣

0𝑡

EXAMPLE

𝑠 𝑡

Ampere-Express

1𝐴

𝑢

𝑣

20

13
𝑉

ଵଶ

ଵଷ
V

16

13

0V 𝑝 =

1.538𝑠

0.923𝑢

1.231𝑣

0𝑡

OHM & KIRCHOFF’S LAWS REVISITED

• So to find the potentials that induce demands 𝑏, we only need to solve one system:

𝐿ீ𝑝 = 𝑏

• Using Teng’s result, can solve it in 𝑂෨(𝑚) time for one b!

EFFECTIVE RESISTANCE

• Effective resistance is the potential drop between two adjacent vertices assuming we push one unit of current into one and
out of the other.

• More formally, 𝑟௘௙௙ 𝑖, 𝑗 = 𝑝 𝑖 − 𝑝(𝑗) for 𝑖𝑗 ∈ 𝐸 when the demands are 𝑏௜ = 1, 𝑏௝ = −1.

• We can compute it for each edge by solving 𝐿ீ𝑝 = 𝑏௜௝ where 𝑏௜
௜௝

= 1, 𝑏௝
௜௝

= −1 and 0 otherwise.

• Here is something to blow your mind.

TANGENT 2 – NUMBER OF TREES
CONTAINING AN EDGE

𝑠 𝑡

1Ω

1Ω
1Ω

1Ω

𝑢

𝑣

1Ω

𝑝 =

0.5𝑠

0.25𝑢

0.25𝑣

0𝑡

The effective resistance between 𝑠𝑡 is 𝑝 𝑠 − p t = 0.5.

The edge 𝑠𝑡 appears in 4/8 of the spanning trees of G!

𝑏 =

1𝑠

0𝑢

0𝑣

−1𝑡

TANGENT 2 – NUMBER OF TREES
CONTAINING AN EDGE

𝑠 𝑡

1Ω

1Ω
1Ω

1Ω

𝑢

𝑣

1Ω

𝑝 =

0.625𝑠

0𝑢

0.5𝑣

0.375𝑡

The effective resistance between 𝑠𝑢 is 𝑝 𝑠 − 𝑝 u = 0.625.

The edge 𝑠𝑢 appears in 5/8 = 0.625 of the spanning trees of G!

𝑏 =

1𝑠

−1𝑢

0𝑣

0𝑡

TANGENT 2 – NUMBER OF TREES
CONTAINING AN EDGE

The coolest Theorem you’ll see this week:

Let 𝐺(𝑉, 𝐸) be an undirected graph. If we uniformly sample a random spanning tree from 𝐺, then the
probability that 𝑖𝑗 ∈ 𝑇 is 𝑟௘௙௙(𝑖, 𝑗) in the corresponding resistor network !

This is based in real physics! You can set up a resistance network to find the probabilities an edge is in
a random spanning tree with an amperometer!

Best known algorithm to compute it runs in 𝑂෨(
௠

ఢమ) due to Chandra and Kent in SODA 21 based on

blocking flows.

Physics evidence suggests there might be linear time algorithms.

COMPUTING EFFECTIVE RESISTANCE

• Effective resistance is the potential drop between two adjacent vertices. More formally, 𝑟௘௙௙ 𝑖, 𝑗 = 𝑝 𝑖 − 𝑝(𝑗) for 𝑖𝑗 ∈ 𝐸

• For each edge 𝑖𝑗 ∈ 𝐸, define b௜௝ ∈ ℜ௡ such that 𝑏௜
௜௝

= 1, 𝑏௝
௜௝

= −1.

• To compute the effective resistance for all edges, we can solve 𝐿ீ𝑝 = 𝑏௜௝ ∀𝑖𝑗 ∈ 𝐸. Takes 𝑂෨(𝑚ଶ) time.

• However, we can approximate all effective resistances in 𝑂෨(𝑚)!

• Recall 𝑝 = 𝐿ீ
ା𝑏, and so 𝑟௘௙௙ 𝑖, 𝑗 = 𝑒௜ − 𝑒௝

்
𝐿ீ

ା(𝑒௜ − 𝑒௝). Notice that

• 𝑟௘௙௙ 𝑖, 𝑗 = 𝐿ீ

శ

మ 𝑒௜ − 𝑒௝ ଶ
= 𝑣௜ − 𝑣௝ ଶ

Where 𝑣௜ = 𝐿ீ

శ

మ 𝑒௜.

• Note: If 𝐿 is diagonally dominant, then 𝐿ଵ/ଶ𝑥 = 𝑏 can still be solved using Teng’s Method, so we’re still Kosher.

• Since effective resistance are 𝐿ଶ distances, we can use Johnson-Lindenstrauss lemma to approximate them using vectors 𝑣௜ . Details
omitted.

COMPUTING EFFECTIVE RESISTANCE

• One last interesting property about electrical flows.

• Nature is efficient, and so if we look at the energy dissipated in the network between 𝑠, 𝑡, it turns out electrical flows
minimizes that. In particular:

෍ 𝑟௘𝑓 𝑒 ଶ

௘∈ா

Is minimized by electrical flows. (Recall 𝑃𝑜𝑤𝑒𝑟 = 𝐼ଶ𝑅)

Proof uses Linear algebra, not very insightful. “Common” physics knowledge.

END OF PHYSICS REVIEW

MULTIPLICATIVE WEIGHT
UPDATES (MWU)

WHAT IS MWU?

• MWU is a “meta” algorithm, in the same sense of gradient descent. In fact, it generalizes gradient descent and many known
optimization algorithms.

• Extremely useful in optimization.

WHAT IS MWU?

• Want to bet on AMC stock. Have 3 fine experts to lean on:

• You have no idea who is legit and who isn’t. (Hint: hint)

• You want to bet everyday on 0DTE expiration options... Cause YOLO.

• Each expert either says STONKS 📈 or NOT STONKS 📉 everyday. Based on recommendations, you need to make a decision.

WHAT IS MWU?

• Initialize trust weights as 1 for all:

• Update rule is:

𝑤௜
௧ାଵ = 1 − 𝜖 𝑤௜

௧ If ”expert” answered incorrectly.

𝑤௜
௧ାଵ = w୧

௧ If “expert” answered correctly.

Our bet is 📈 if the total weight of all experts predicting up 📈
at least ∑ 𝑤௜

௧
௜ /2 and 📉 otherwise.

Fix 𝜖 = 0.1 for example.

WHAT IS MWU?

• Day 1 Guess: 📈

• Day 1 Result: 📉

• Weight updates:

📈

📈

📉

WHAT IS MWU?

• Day 1 Guess: 📈

• Day 1 Result: 📉

• Weight updates:

📉

WHAT IS MWU?

• Day 2 Guess: 📉

• Day 2 Result: 📈

• Weight updates:

📉

📈

📉

WHAT IS MWU?

• Day 2 Guess: 📉

• Day 2 Result: 📈

• Weight updates:

WHAT IS MWU?

• Theorem: Let 𝑚௜
௧ be the number of mistakes that ”expert” 𝑖, 1 ≤ 𝑖 ≤ 𝑛, does after 𝑡 days. Let 𝑀௧ be the number of mistakes

we make after 𝑡 days. Then

௧
ଶ ୪୭୥ ௡

ఢ ௜
௧ For ALL experts !

WHAT IS MWU?

௧
ଶ ୪୭୥

ఢ ௜
௧ For ALL experts !

Pf: Define the potential function Φ௧ = ∑ 𝑤௜
௧

௜ with Φଵ = 𝑛.

Every time we are wrong, at least half the weight decreases by (1 − 𝜖) factor. So

Φ௧ାଵ ≤ Φ௧
1

2
+

1

2
1 − 𝜖 = Φ௧(1 −

𝜖

2
)

Solving the recurrence, we get

Φ௧ ≤ 𝑛 1 −
𝜖

2

ெ೟

But

Φ௧ ≥ 𝑤௜
௧ ∀𝑖

Rearranging, and approximating −log 1 − 𝑥 ≤ 𝑥 + 𝑥ଶ For 𝑥 ≤
ଵ

ଶ
yields the results.

WHAT IS MWU?

Generalized Algorithm for optimization.

We assume there is a matrix 𝑀 such that 𝑀(𝑖, 𝑗) is the penalty that expert 𝑖 pays when the outcome is 𝑗 ∈ 𝑷 where 𝑷
is set of outcomes.

Assume 𝑀 𝑖, 𝑗 ∈ [0, 𝜌]. We call 𝜌 the width of the oracle 𝑀

Every step 𝑡 we have trust scores 𝑤௜
௧ to expert 𝑖.

We associate time 𝑡 with distribution 𝐷௧ = 𝑝ଵ
௧, … , 𝑝௡

௧ = {
௪భ

೟

∑௪೔
೟ , … ,

௪೙
೟

∑௪೔
೟}

We pick an expert according to distribution 𝐷௧, and use it to make our prediction. Based on the outcome 𝑗௧ in round 𝑡, the
weight is updated:

𝑤௜
௧ାଵ = 𝑤௜

௧(1 −
𝜖𝑀 𝑖, 𝑗௧

𝜌
)

WHAT IS MWU?

Theorem: After 𝑇 rounds, for any expert 𝑖, we have

෍ ෍ 𝑝௜
௧𝑤௜

௧

௜

≤
𝜌 log 𝑛

𝜖
+ 1 + 𝜖 ෍ 𝑀 𝑖, 𝑗௧

௧௧

Almost identical potential proof to theorem from before.

WHAT IS MWU?

Figuring out what the “experts” are, what the penalties/rewards 𝑀(𝑖, 𝑗) are, and what ”outcomes” is the hardest part of using
MWU.

Sometimes requires very “clever” outlooks.

WHAT IS MWU?

Packing/Covering Linear Programs (Known as Plotkin, Shmoys, Tardos framework)

Problem: Is there 𝒙 ∈ 𝑷 where 𝑨𝒙 ≥ 𝒃 ? (Feasibility).

Think of 𝑃 as the “easy” constraints, and 𝐴 as the hard ones.

Implicitly assumes the constraint rows of 𝐴 are the ”experts”

Assume the following oracle is known: ் where ௜
௧

௜௜ and ௜
௧

௜௜ ?

Natural  exists for many problems.

If so, we can solve the original feasibility problem with MWU!

WHAT IS MWU?

Packing/Covering Linear Programs (Known as Plotkin, Shmoys, Tardos framework)

Problem: Is there 𝒙 ∈ 𝑷 where 𝑨𝒙 ≥ 𝒃 ? (Feasability).

The “experts” are the constraints. Events correspond to vectors 𝑥 ∈ 𝑃! The oracle penalty is 𝐴௜𝑥 − 𝑏௜, how badly the
inequality is not satisfied.

The width here is 𝜌 = max
௫∈௉

(𝐴௜𝑥 − 𝑏௜) which can be unbounded (but there is a trick to get around this).

Theorem: It takes
𝝆

𝝐𝟐 oracle calls for MWU to converge to such that (or

conclude no such x exists).

Designing correct MWU algorithms is an art that is not easy to master. See Arora’s survey for a lot more examples.

MAX-FLOW
ALGORITHM

ଵ.ହ MAX-FLOW ALGORITHM

Idea: Apply Plotkin, Shmoys, Tardos framework on the Max-Flow linear program:

max 𝑓 = ෍ 𝑓(𝑠, 𝑢)

௨

𝑓 𝑒 ≤ 𝑐 𝑒 ∀𝑒 ∈ 𝐸

෍ 𝑓 𝑢, 𝑣 =

௩

෍ 𝑓 𝑣, 𝑢

௩

 ∀𝑢 ∈ 𝑉 − {𝑠, 𝑡}

𝑓௘ ≥ 0 ∀𝑒 ∈ 𝐸

Assume 𝑐 𝑒 = 1, makes presentation less messy and doesn’t loose generality in proof.

Binary search on 𝐹∗, the maximum flow value.

“Easy” constraints are flow conservation, non negativity, and 𝑓 ≥ 𝐹. This is is the “𝑃” from the Tardos framework.

Hard constraints are 𝑓 𝑒 ≤ 𝑐 𝑒 = 1. Or 𝐼௠𝑓 ≤ 𝑐. This is the “𝐴𝑥 ≤ 𝑏” from the Tardos framework.

What’s the width here? It is is max
௜

𝐴௜𝑥 − 𝑏௜ = max
௘∈ா

𝑓 𝑒 − 1

Max flow with unit capacity equivalent to: ∃? 𝒇 ∈ 𝑷 such that 𝑰𝒇 ≤ 𝟏.

ଵ.ହ MAX-FLOW ALGORITHM

Idea: Apply Plotkin, Shmoys, Tardos framework on the Max-Flow linear program:
max |𝑓|

𝑓 𝑒 ≤ 𝑐 𝑒 ∀𝑒 ∈ 𝐸

෍ 𝑓 𝑢, 𝑣 =

௩

෍ 𝑓 𝑣, 𝑢

௩

 ∀𝑢 ∈ 𝑉 − {𝑠, 𝑡}

𝑓௘ ≥ 0 ∀𝑒 ∈ 𝐸

Max flow with unit capacity equivalent to: ∃? 𝑓 ∈ 𝑃 such that 𝐼𝑓 ≤ 1.

What oracle do we need? ∃? 𝑓 such that 𝑓 ≥ 𝐹 (guessed max flow value) and 𝑓 𝑒 ≥ 0 and conserving flow such that

෍ 𝑝௘
௧𝑓 𝑒

௘∈ா

≤ (1 + 𝜖) ෍ 𝑝௘
௧

௘∈ா

Intuitively, this is saying the “average” capacity constraint is (approximately) satisfied.

We will answer this oracle with electrical flows!

ଵ.ହ MAX-FLOW ALGORITHM

Max flow:

𝑓 𝑒 ≤ 𝑐 𝑒 ∀𝑒 ∈ 𝐸

෍ 𝑓 𝑢, 𝑣 =

௩

෍ 𝑓 𝑣, 𝑢

௩

 ∀𝑢 ∈ 𝑉 − {𝑠, 𝑡}

𝑓௘ ≥ 0 ∀𝑒 ∈ 𝐸
𝑓 = 𝐹

Electrical flows with resistance:

෍ 𝑓 𝑢, 𝑣 =

௩

෍ 𝑓 𝑣, 𝑢

௩

 ∀𝑢 ∈ 𝑉 − {𝑠, 𝑡}

𝑓௘ ≥ 0 ∀𝑒 ∈ 𝐸

𝑓 = 𝐹

Only thing we can control is resistances on edges. Can we
play with the resistances on edges to force

෍ 𝑝௘
௧𝑓 𝑒

௘∈ா

≤ (1 + 𝜖) ෍ 𝑝௘
௧

௘∈ா

Intuitively, even though flow doesn’t have to respect capacity,
can we force it to respect it “on average”?

ଵ.ହ MAX-FLOW ALGORITHM

Idea: Apply Plotkin, Shmoys, Tardos framework on the Max-Flow linear program:
max |𝑓|

𝑓 𝑒 ≤ 𝑐 𝑒 ∀𝑒 ∈ 𝐸

෍ 𝑓 𝑢, 𝑣 =

௩

෍ 𝑓 𝑣, 𝑢

௩

 ∀𝑢 ∈ 𝑉 − {𝑠, 𝑡}

𝑓௘ ≥ 0 ∀𝑒 ∈ 𝐸

Construct an electrical network with resistances 𝑟௘ = 𝑝௘
௧ +

ఢ ∑ ௣೐
೟

೐∈ಶ

௠

 (∗)

. Put 𝐹 units of flow into 𝑠 and −𝐹 units from 𝑡.

Conservation and non-negativity of flow is free. Pushes 𝐹 flow from 𝑠 using demands. So “easy” constraints are all good.

Just need to prove the average capacity is respected and bound the width. Then apply Tardos framework.

(*) Yes ∑ 𝑝௘
௧

௘∈ா = 1, but in the capacitated case, it should be ∑ 𝑝௘
௧

௘∈ா 𝑐 𝑒 ≠ 1 so I’ll leave it as it is.

ଵ.ହ MAX-FLOW ALGORITHM

Theorem: If we set 𝑟௘ = 𝑝௘
௧ +

ఢ ∑ ௣೐
೟

೐∈ಶ

௠
 , The electrical flow oracle satisfies ∑ 𝑝௘

௧𝑓 𝑒௘∈ா ≤ (1 + 𝜖) ∑ 𝑝௘
௧

௘∈ா and in addition, the width is 𝜌 =

𝑂(
௠

ఢ
)

Proof: Let 𝑓 be the optimal electrical flow. We have

෍ 𝑝௘
௧𝑓 𝑒

௘∈ா

≤ ෍ 𝑝௘
௧𝑓 𝑒 ଶ

௘∈ா

෍ 𝑝௘
௧

௘∈ா

 (1)

So it suffices to show

෍ 𝑝௘
௧𝑓 𝑒 ଶ ≤ 1 + 𝜖 ෍ 𝑝௘

௧

௘∈ா

 (2)

௘∈ா

Because then (1) becomes:

෍ 𝑝௘
௧𝑓 𝑒)

௘∈ா

≤ 1 + 𝜖 ෍ 𝑝௘
௧

௘∈ா

Scaling 𝜖 yields the result.

ଵ.ହ MAX-FLOW ALGORITHM

Theorem: If we set 𝑟௘ = 𝑝௘
௧ +

ఢ ∑ ௣೐
೟

೐∈ಶ

௠
 , The electrical flow oracle satisfies ∑ 𝑝௘

௧𝑓 𝑒௘∈ா ≤ (1 + 𝜖) ∑ 𝑝௘
௧

௘∈ா and in addition,

the width is 𝜌 = 𝑂(
௠

ఢ
)

෍ 𝑝௘
௧𝑓 𝑒 ଶ ≤ 1 + 𝜖 ෍ 𝑝௘

௧

௘∈ா

 (2)

௘∈ா

To prove (2), we note that 𝑓 is an electrical flow, so it minimizes the energy. So we have:

௘
௧ ଶ

௘∈ா

௘
ଶ

௘∈ா

௘
௧ ௘

௧
௘∈ா ଶ

௘∈ா

௘
௧ ௘

௧
௘∈ா ∗ ଶ

௘∈ா

௘
௧ ௘

௧
௘∈ா

௘∈ா

௘
௧

௘∈ா

௘
௧

௘∈ா

௘∈ா

௘
௧

௘∈ா

ଵ.ହ MAX-FLOW ALGORITHM

Theorem: If we set 𝑟௘ = 𝑝௘
௧ +

ఢ ∑ ௣೐
೟

೐∈ಶ

௠
 , The electrical flow oracle satisfies ∑ 𝑝௘

௧𝑓 𝑒௘∈ா ≤ (1 + 𝜖) ∑ 𝑝௘
௧

௘∈ா and in addition,

the width is 𝜌 = 𝑂(
௠

ఢ
)

To prove 𝜌 = 𝑂(
௠

ఢ
), observe that

Recall

௘
ଶ

௘∈ா

௘
௧

௘∈ா

ଶ ௘
௧

௘∈ா

௘

But ௘ ௘
௧ ఢ ∑ ௣೐

೟
೐∈ಶ

௠

ఢ ∑ ௣೐
೟

೐∈ಶ

௠

∑ ௣೐
೟

೐∈ಶ

௥೐

௠

ఢ
and so

ଶ ଵାఢ ௠

ఢ

௠

ఢ

ଵ.ହ MAX-FLOW ALGORITHM

Theorem: Max flow can be solved in 𝑶෩(𝒎𝟏.𝟓) time.

The Tardos framework takes 𝑂 ఘ

ఢమ =
௠

ఢమ.ఱ iterations.

Each iteration requires computing effective resistance on a graph. Can be done in (𝑚) as discussed
earlier.

Binary search on max flow value takes (1) time.

Overall ଵ.ହ time for constant .

Same algorithm can be improved to ସ/ଷ ଵ.ଷଷଷ.. by being smarter on using the
inequalities, but analysis is more tedious.

QUESTIONS?

