CS 598 3DV: Representations

Shenlong Wang UIUC

I ILLINOIS

Some materials borrowed from Angjoo Kanazawa and Shubham Tulsiani

Seeing the World in 3D

Sense, Interpret and Understand the Physical Environment

Image credit: Google, Waymo Open Dataset, ScanNet

2

Creating the World in 3D

Throw a basketball with fire towards vase with flowers and break the vase with collision.

Key Challenge: How to Represent 3D?

Life is good in 2D world

Meanwhile in 3D...

Meanwhile in 3D...

7

Meanwhile in 3D...

SDF

Today's Agenda

Understand different 3D representations

- Case studies
- Pros and cons
- 2.5D, Points, Meshes, Voxels, Octree, SDFs, etc.

Image credits: Paul Bourke

Image credits: Paul Bourke

Quiz: is it possible to get normal from depth? 12

Image credits: Paul Bourke

2D Tensor, Each element encode distance (optionally other attributes: such as color, reflectance, etc.)

equirectangular LiDAR

Pros:

- 2D tensor, compact and efficient
- Off-the-shelf CNN perception
- Coupled with state/action space (Birds' eye view)
- Coupled with raw sensor measures

Birds-eye-view LiDAR

Perspective Depth Image

2.5D can be processed as images

2.5D can be generated as images

BEV 2.5D is coupled with state space

Which space is easier for motion planner?

2D Tensor, Each element encode distance (optionally other attributes: such as color, reflectance, etc.)

- Information loss along a dimension
- Resolution loss due to rasterization
- Neighbor pixels can be far in 3D

2D Tensor, Each element encode distance (optionally other attributes: such as color, reflectance, etc.)

equirectangular LiDAR

Pros:

- 2D tensor, compact and efficient
- Off-the-shelf CNN perception
- Coupled with state/action space (Birds' eye view)
- Coupled with raw sensor measures

Cons:

- Information loss along a dimension
- Resolution loss due to rasterization
- Neighbor pixels can be far in 3D

Birds-eye-view LiDAR

Perspective Depth Image

3D unordered point, each encodes spatial location

 $\{\mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_N\}$ Unordered set of points

Stored as Nx3 matrix, but keep in mind they are **permutation invariant**!

3D unordered point, each encodes spatial location

Quiz: how to get normal from point?

 $\{(\mathbf{p}_1,\mathbf{n}_1),(\mathbf{p}_2,\mathbf{n}_2),\cdots,(\mathbf{p}_N,\mathbf{n}_N)\}$

Could be extended to carry additional information, e.g. color, or normal

3D unordered point, each encodes spatial location

Could be further extended to be a set of small disks. Why?

Image credits: Surfel Meshing

3D unordered point, each encodes spatial location

Quiz: how to apply deep learning?

 $\{(\mathbf{p}_1,\mathbf{n}_1),(\mathbf{p}_2,\mathbf{n}_2),\cdots,(\mathbf{p}_N,\mathbf{n}_N)\}$

Could be extended to carry additional information, e.g. color, or normal

3D unordered point, each encodes spatial location

Pros:

- No geometry loss
- Memory and computational efficient processing

Cons:

- No topology; No occupancy/surface
- Need to splat or hole filling for rendering
- Hard to retrieve neighbors (need kd-tree, r-tree, octree, etc)

Point Cloud from Surveying Lidar

Point Cloud from Kinect

Point Cloud from Surveying Lidar

Meshes

- A mesh is a set of vertices with faces that defines the topology
- Mesh = {Vertices, Faces}
 - Vertices: N x 3
 - Faces: |F| x {3, 4, ...} specifying the edges of a polygon
 - Triangle faces most common but tetrahedrons (tets) are also.
- Surface is explicitly modeled by the faces
- Most common modeling representation

Image credits: Angjoo Kanazawa

Meshes

Vertices

x1,y1,z1
·

Faces

Positions of Vertices

Connectivity (indices of **three** vertices that make a 'face')

Meshes are great for texturing

UV Image

Image credits: Angjoo Kanazawa

UV Mapping

- Defined by UV mapping : $(x,y,z) \rightarrow (u,v)$
- "texture coordinates"

Image credits: Angjoo Kanazawa

Texture sampling

Mesh Representation

A collection of vertices and faces that defines the shape of a polyhedral object

Pros:

- Memory efficient
- Easy to deform, easy to texturing
- Explicit surface

- Topology restrictions
- Hard for ML (parametric shape, template, GNNs)

Voxel Representation

• Expressive power dependent on voxel resolution

Voxel Representation

Dense grid, each voxel encodes occupancy

Pros:

- Easy to learn/process (3D CNNs)
- Can be accurate (with very high-resolution)
- Easy to compute occupancy/freespace

Voxel Representation

Dense grid, each voxel encodes occupancy

Pros:

- Easy to learn/process (3D CNNs)
- Can be accurate (with very high-resolution)
- Easy to compute occupancy/freespace

- Intensive memory, requires special data structure to scale up
- Hard to render (volume rendering)

3D Sensors Require Storage

Octree

Octree

OctSqueeze

Octree Construction

Octree Representation

Hierarchical occupancy representation (other options, KD-Tree)

Pros:

- Compressive
- Hard to render (volume rendering)
- Coarse-to-fine representation

- Non-trivial to learn/process (OctNet, Treestructured Network)
- Expensive to update (KD-Tree)

Implicit Representation

Learning implicit function in the 3D continuous space to represent surfaces

Image from: DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Implicit Representation

Signed distance function determines the distance of a given point x from the boundary of a shape

Pros:

- Flexible, easy to compose
- Expressive
- Easy to change topology
- Dense in space, no resolution loss

- Hard to render (ray marching)
- Additional steps to extract surface (marching cube)

Throw a basketball with fire towards vase with flowers and break the vase with collision.

7:

AutoVFX: Let's make LLM code for y

AutoVFX: Let's make LLM code for you

AutoVFX: Physically Realistic Video Editing from Natural Language Instructions, arXiv soon

Setup a camp fire in the middle of the floor.

**

Drop four barrels onto the floor: one mirror-like, one with fabric textures, one resembling pavement, and one unchanged.

11:

Insert a physics-enabled Benz G 20 meters in front of us with random 2D rotation. Add a Ferrari moving forward.

Others

- Surfels / Polygon Soup
- Tetrahedron mesh (tets).
- Stixels
- Radiance Field
- KD-tree
- Voxel hashing

2D Tensor, Each element encode distance (optional: intensity)

Pros:

- 2D tensor, compact and efficient
- Off-the-shelf CNN perception
- Coupled with state/action space (Birds' eye view)
- Coupled with raw sensor measures

Cons:

- Information loss along a dimension
- Resolution loss due to rasterization
- Neighbor pixels can be far in 3D

Birds-eye-view LiDAR

Point Cloud Representation

3D unordered point, each encodes spatial location

Pros:

- No geometry loss
- Memory and computational efficient processing -

Cons:

- No topology; No occupancy/surface -
- Need to splat or hole filling for rendering -
- Hard to retrieve neighbors (need kd-tree, r-tree, octree, etc)

Point Cloud from Surveying Lidar

Point Cloud from Surveying Lidar

Voxel Representation

Dense grid, each voxel encodes occupancy

Pros:

- Easy to learn/process (3D CNNs)
- Can be accurate (with very high-resolution)
- Easy to compute occupancy/freespace

- Intensive memory, requires special data structure to scale up
- Hard to render (volume rendering)

Octree Representation

Hierarchical occupancy representation (other options, KD-Tree)

Pros:

- Compressive
- Hard to render (volume rendering)
- Coarse-to-fine representation

- Non-trivial to learn/process (OctNet, Treestructured Network)
- Expensive to update (KD-Tree)

Implicit Representation

Signed distance function determines the distance of a given point x from the boundary of a shape

Pros:

- Flexible, easy to compose
- Expressive
- Easy to change topology
- Dense in space, no resolution loss

- Hard to render (ray marching)
- Additional steps to extract surface (marching cube)

Quiz 3: Conversions?

- Points
- Voxel
- Mesh
- SDFs

Key Challenge: Representations

- What representation better suits my sensor?
- What representation makes my perception easier?
- What representation helps my downstream tasks?