
CS 598 3DV: Representations

Shenlong Wang

UIUC

Some materials borrowed from Angjoo Kanazawa and Shubham Tulsiani

Seeing the World in 3D

2

Throw a basketball with fire towards vase with flowers
 and break the vase with collision.

Creating the World in 3D

3

Key Challenge: How to Represent 3D?

4

Life is good in 2D world

5

Meanwhile in 3D…

6

Mesh 2.5D Point Cloud Voxel Octree SDF

Meanwhile in 3D…

7

Mesh 2.5D Point Cloud Voxel Octree SDF

What is the best representations?

Meanwhile in 3D…

8

Mesh 2.5D Point Cloud Voxel Octree SDF

What is the best representations?

Answer: well, it really depends…

Today’s Agenda

Understand different 3D representations

• Case studies

• Pros and cons

• 2.5D, Points, Meshes, Voxels, Octree, SDFs, etc.

9

2.5D
Representation

10Image credits: Paul Bourke

2.5D
Representation

11Image credits: Paul Bourke

2.5D
Representation

12Image credits: Paul Bourke
Quiz: is it possible to get normal from depth?

2.5D
Representation

2D Tensor, Each element encode distance
(optionally other attributes: such as color,
reflectance, etc.)

Pros:

- 2D tensor, compact and efficient

- Off-the-shelf CNN perception

- Coupled with state/action space (Birds’ eye view)

- Coupled with raw sensor measures

13

equirectangular LiDAR

Birds-eye-view LiDAR Perspective Depth Image

2.5D can be processed as images

14
Saurabh Gupta, Learning Rich Features from RGB-D Images for Object Detection and Segmentation, ECCV 2014

2.5D can be generated as images

15
Zrianov, et al. Learning to Generate Realistic LiDAR Point Clouds, ECCV 2022

3D point cloud

2.5D (where diffusion happens)

BEV 2.5D is coupled with state space

16
Liu, et al. BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation, ICRA 2023

Which space is easier for motion planner?

2.5D
Representation

2D Tensor, Each element encode distance
(optionally other attributes: such as color,
reflectance, etc.)

Cons:

- Information loss along a dimension

- Resolution loss due to rasterization

- Neighbor pixels can be far in 3D

17Image credits: Shubham Tulsiani

2.5D
Representation

2D Tensor, Each element encode distance (optionally
other attributes: such as color, reflectance, etc.)

Pros:

- 2D tensor, compact and efficient

- Off-the-shelf CNN perception

- Coupled with state/action space (Birds’ eye view)

- Coupled with raw sensor measures

Cons:

- Information loss along a dimension

- Resolution loss due to rasterization

- Neighbor pixels can be far in 3D

18

equirectangular LiDAR

Birds-eye-view LiDAR Perspective Depth Image

3D Point Cloud

3D unordered point, each encodes spatial location

19

Stored as Nx3 matrix, but keep in mind

they are permutation invariant!

Image credits: Angjoo Kanazawa

3D Point Cloud

3D unordered point, each encodes spatial location

20

Could be extended to carry additional

information, e.g. color, or normal

Quiz: how to get

normal from point?

Image credits: Angjoo Kanazawa

3D Point Cloud

3D unordered point, each encodes spatial location

21

Could be further extended to be a set

of small disks. Why?
Image credits: Surfel Meshing

3D Point Cloud

3D unordered point, each encodes spatial location

22

Could be extended to carry additional

information, e.g. color, or normal

Quiz: how to apply

deep learning?

3D Point Cloud

3D unordered point, each encodes spatial location

Pros:

- No geometry loss

- Memory and computational efficient processing

Cons:

- No topology; No occupancy/surface

- Need to splat or hole filling for rendering

- Hard to retrieve neighbors (need kd-tree, r-tree,
octree, etc)

23

Point Cloud from Kinect

Point Cloud from Surveying Lidar

Point Cloud from Surveying Lidar

Meshes

• A mesh is a set of vertices with faces that defines the topology

• Mesh = {Vertices, Faces}
• Vertices: N x 3

• Faces: |F| x {3, 4, …} specifying the edges of a polygon

• Triangle faces most common but tetrahedrons (tets) are also.

• Surface is explicitly modeled by the faces

• Most common modeling representation

Image credits: Angjoo Kanazawa

Meshes

Meshes are great for texturing

UV Image

Image credits: Angjoo Kanazawa

UV Mapping

• Defined by UV mapping : (x,y,z) → (u,v)

• “texture coordinates”

UV image

UV map
Texture

sampling

Image credits: Angjoo Kanazawa

Mesh
Representation

A collection of vertices and faces that defines the shape of a
polyhedral object

Pros:

- Memory efficient

- Easy to deform, easy to texturing

- Explicit surface

Cons:

- Topology restrictions

- Hard for ML (parametric shape, template, GNNs)

28

Voxel Representation

• Expressive power dependent on voxel resolution

29Image credits: Shubham Tulsiani

Voxel
Representation

Dense grid, each voxel encodes
occupancy

Pros:

- Easy to learn/process (3D CNNs)

- Can be accurate (with very high-
resolution)

- Easy to compute occupancy/freespace

30

Voxel
Representation

Dense grid, each voxel encodes occupancy

Pros:

- Easy to learn/process (3D CNNs)

- Can be accurate (with very high-resolution)

- Easy to compute occupancy/freespace

Cons:

- Intensive memory, requires special data
structure to scale up

- Hard to render (volume rendering)

31

3D Sensors Require Storage

32

> 1TB / 8hr

• Location: (x, y, z)

• Octant: 7

• Level: 2

• Parent: 00100001

Octree

• Location: (x, y, z)

• Octant: 7

• Level: 2

• Parent: 00100001

Octree

• Location: (x, y, z)

• Octant: 7

• Level: 2

• Parent: 00100001

Octree

• Location: (x, y, z)

• Octant: 7

• Level: 2

• Parent: 00100001

Octree

OctSqueeze

Octree
Representation

Hierarchical occupancy representation (other
options, KD-Tree)

Pros:

- Compressive

- Hard to render (volume rendering)

- Coarse-to-fine representation

Cons:

- Non-trivial to learn/process (OctNet, Tree-
structured Network)

- Expensive to update (KD-Tree)

40

Implicit Representation

41

Learning implicit function in the 3D continuous space to represent surfaces

Image from: DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation

Implicit
Representation

Signed distance function determines the distance of a given point x
from the boundary of a shape

Pros:

- Flexible, easy to compose

- Expressive

- Easy to change topology

- Dense in space, no resolution loss

Cons:

- Hard to render (ray marching)

- Additional steps to extract surface (marching cube)

42

Throw a basketball with fire towards vase with flowers
 and break the vase with collision.

AutoVFX: Let’s make LLM code for you

44

Input Video VFX Modules

“Throw a basketball with fire
towards the vase”

LLM Code Generation

Input Instruction

Scene Modeling

(SfM, GSplats, Neural SDF,

SAM, HDR light)

Holistic Scene Models

LightingAppearance

Geometry Semantics

def auto_vfx(video):

scene modeling and understanding

scene = scene_modeling(video)

generate object asset

ball = retrieve(”basketball”)

if ball is None:

ball = generate(”basketball”)

fireball = add_fire(ball)

segment and localize existing objects from the scene

vase = localize_object(scene, “vase”)

vase = enable_fracture(vase)

animate new objects

traj = set_trajectory(fireball, vase)

animated_objs = set_animation(fireball, vase, traj)

physical interaction with existing scene

output_scene = simulate(scene, animated_objs)

render and composite

output_video = composite(video, render(output_scene))

return output_video

Physical Simulation

add_fire() fracture()

…

Animate

set_trajectory()

…

3D Asset Retrieval

retrieval()

…

Rendering & Composite

+ +

composite()

…

AutoVFX: Physically Realistic Video Editing from Natural Language Instructions, arXiv soon

AutoVFX: Let’s make LLM code for you

45

Input Video VFX Modules

“Throw a basketball with fire
towards the vase”

LLM Code Generation

Input Instruction

Scene Modeling

(SfM, GSplats, Neural SDF,

SAM, HDR light)

Holistic Scene Models

LightingAppearance

Geometry Semantics

def auto_vfx(video):

scene modeling and understanding

scene = scene_modeling(video)

generate object asset

ball = retrieve(”basketball”)

if ball is None:

ball = generate(”basketball”)

fireball = add_fire(ball)

segment and localize existing objects from the scene

vase = localize_object(scene, “vase”)

vase = enable_fracture(vase)

animate new objects

traj = set_trajectory(fireball, vase)

animated_objs = set_animation(fireball, vase, traj)

physical interaction with existing scene

output_scene = simulate(scene, animated_objs)

render and composite

output_video = composite(video, render(output_scene))

return output_video

Physical Simulation

add_fire() fracture()

…

Animate

set_trajectory()

…

3D Asset Retrieval

retrieval()

…

Rendering & Composite

+ +

composite()

…

AutoVFX: Physically Realistic Video Editing from Natural Language Instructions, arXiv soon

Make the vase with flowers to be like a mirror.

Drop 5 basketballs on the table.

Insert an animated Pikachu on the table.

Make a bird flying around and above the table.

Generate a smiling sunflower with cartoon style and put it on the sink.

Insert an animated dragon moving above and around the floor.

Put a Tony Stark on the floor covered with smoke.

Simulate books falling from the sofa.

Setup a camp fire in the middle of the floor.

Drop four barrels onto the floor: one mirror-like, one with fabric textures,
one resembling pavement, and one unchanged.

Break the sculpture.

Insert a physics-enabled Benz G 20 meters in front of us with random 2D rotation. Add a Ferrari
moving forward.

Others

• Surfels / Polygon Soup

• Tetrahedron mesh (tets).

• Stixels

• Radiance Field

• KD-tree

• Voxel hashing

2.5D
Representation

2D Tensor, Each element encode distance (optional:
intensity)

Pros:

- 2D tensor, compact and efficient

- Off-the-shelf CNN perception

- Coupled with state/action space (Birds’ eye view)

- Coupled with raw sensor measures

Cons:

- Information loss along a dimension

- Resolution loss due to rasterization

- Neighbor pixels can be far in 3D

60

equirectangular LiDAR

Birds-eye-view LiDAR Perspective Depth Image

Point Cloud
Representation

3D unordered point, each encodes spatial location

Pros:

- No geometry loss

- Memory and computational efficient processing

Cons:

- No topology; No occupancy/surface

- Need to splat or hole filling for rendering

- Hard to retrieve neighbors (need kd-tree, r-tree,
octree, etc)

61

Point Cloud from Kinect

Point Cloud from Surveying Lidar

Point Cloud from Surveying Lidar

Voxel
Representation

Dense grid, each voxel encodes occupancy

Pros:

- Easy to learn/process (3D CNNs)

- Can be accurate (with very high-resolution)

- Easy to compute occupancy/freespace

Cons:

- Intensive memory, requires special data
structure to scale up

- Hard to render (volume rendering)

62

Octree
Representation

Hierarchical occupancy representation (other
options, KD-Tree)

Pros:

- Compressive

- Hard to render (volume rendering)

- Coarse-to-fine representation

Cons:

- Non-trivial to learn/process (OctNet, Tree-
structured Network)

- Expensive to update (KD-Tree)

63

Implicit
Representation

Signed distance function determines the distance of a given point x
from the boundary of a shape

Pros:

- Flexible, easy to compose

- Expressive

- Easy to change topology

- Dense in space, no resolution loss

Cons:

- Hard to render (ray marching)

- Additional steps to extract surface (marching cube)

64

Quiz 3: Conversions?

• Points

• Voxel

• Mesh

• SDFs

65

Key Challenge: Representations

66

Mesh 2.5D Point Cloud Voxel Octree SDF

• What representation better suits my sensor?

• What representation makes my perception easier?

• What representation helps my downstream tasks?

	Slide 1: CS 598 3DV: Representations
	Slide 2: Seeing the World in 3D
	Slide 3: Creating the World in 3D
	Slide 4: Key Challenge: How to Represent 3D?
	Slide 5: Life is good in 2D world
	Slide 6: Meanwhile in 3D…
	Slide 7: Meanwhile in 3D…
	Slide 8: Meanwhile in 3D…
	Slide 9: Today’s Agenda
	Slide 10: 2.5D Representation
	Slide 11: 2.5D Representation
	Slide 12: 2.5D Representation
	Slide 13: 2.5D Representation
	Slide 14: 2.5D can be processed as images
	Slide 15: 2.5D can be generated as images
	Slide 16: BEV 2.5D is coupled with state space
	Slide 17: 2.5D Representation
	Slide 18: 2.5D Representation
	Slide 19: 3D Point Cloud
	Slide 20: 3D Point Cloud
	Slide 21: 3D Point Cloud
	Slide 22: 3D Point Cloud
	Slide 23: 3D Point Cloud
	Slide 24: Meshes
	Slide 25: Meshes
	Slide 26: Meshes are great for texturing
	Slide 27: UV Mapping
	Slide 28: Mesh Representation
	Slide 29: Voxel Representation
	Slide 30: Voxel Representation
	Slide 31: Voxel Representation
	Slide 32: 3D Sensors Require Storage
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Octree Representation
	Slide 41: Implicit Representation
	Slide 42: Implicit Representation
	Slide 43
	Slide 44: AutoVFX: Let’s make LLM code for you
	Slide 45: AutoVFX: Let’s make LLM code for you
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Others
	Slide 60: 2.5D Representation
	Slide 61: Point Cloud Representation
	Slide 62: Voxel Representation
	Slide 63: Octree Representation
	Slide 64: Implicit Representation
	Slide 65: Quiz 3: Conversions?
	Slide 66: Key Challenge: Representations

