# Introduction to Lighting and Rendering

Zhi-Hao Lin

#### Creating realistic contents is CRUCIAL



#### Video game

AR/VR

Self-driving simulation

https://www.youtube.com/watch?v=inQelDKULOQ https://www.youtube.com/watch?v=IY4x85zqoJM https://www.youtube.com/watch?v=-L9VuPpzVdQ

#### We are going to talk about ...

- What are the basic components of rendering process?
- How to render an image?
- What is inverse rendering? Why is it challenging?



#### How to render 2D from 3D?



3D scene

2D images/videos

Photo credit: Neuralangelo: High-Fidelity Neural Surface Reconstruction (CVPR'23) Tanks and Temples (https://www.tanksandtemples.org/)

Geometry

In rendering pipeline, the geometry is usually represented as meshes



FlexiCubes (ToG, SIGGRAPH 2023)

What papers did we discuss for geometry reconstruction/generation?

### Light sources







Directional light

Point light

Spotlight

# Light direction

#### Lambert's Law

Light intensity at surface is proportional to cosine of angle between light direction and surface normal



#### Why do we have seasons?



Summer (Northern hemisphere) Winter (Northern hemisphere)

#### Earth's axis of rotation: ~23.5° off axis

#### Material



### Some basic reflection functions

Ideal specular Perfect mirror



- Ideal diffuse Uniform reflection in all directions
- Glossy specular Majority of light distributed in reflection direction
- Retro-reflective Reflects light back toward source



#### BRDF

#### **Bidirectional Reflectance Distribution Function**

Encodes behavior of light that **<u>bounces off</u>** surface

$$f(\omega_i, \omega_o) = \frac{L_o(\omega_o)}{L_i(\omega_i)}$$

 $= \frac{\text{Outgoing light in direction } \omega_o}{\text{Incoming light in direction } \omega_i}$ 

Helmholtz reciprocity:  $f(\omega_1, \omega_2) = f(\omega_2, \omega_1)$  $f(\omega_i, \omega_o) \ge 0$ 



#### Can BRD



# More light & material behaviors

In addition to reflecting off surfaces, light may be transmitted through surfaces

We didn't cover:

- Refraction
- Fresnel reflection
- Subsurface scattering
- BSDF





#### **Rendering equation**



Rendering equation is **recursive**!

## **Ray Tracing**

• Basic strategy: trace the ray from sensors to light sources!



### **Ray Tracing**

- March the ray until it hits surface
- Sample ray from specific distribution  $p(\omega)$ (e.g. BRDF)
- Approximate the integral with Monte Carlo integration

#### Interreflections

• Reflect light N times before heading to light source





http://en.wikipedia.org/wiki/Ray\_tracing\_(graphics)#mediaviewer/File:Ray-traced\_steel\_balls.jpg

Slide credit: CS445 Computational Photography, Derek Hoiem

Diffuse

N=2

#### Denoising

• Few ray samples lead to noisy images



#### https://developer.nvidia.com/blog/ray-tracing-essentials-part-7-denoising-for-ray-tracing/

# Denoising

- Based on the information of neighboring pixels, fill in the missing ones
- Deep learning could be used for image denoising



# Denoising

- Based on the information of neighboring pixels, fill in the missing ones
- Deep learning could be used for image denoising



# Ray tracing

• Conceptually simple but hard to do fast

Design choices:

. . .

- Ray paths: light  $\rightarrow$  camera vs. camera  $\rightarrow$  light
- How many samples per pixel?
- How to sample the rays?
- When should the rays stop?
- How to denoise the image?

 $L_o$   $L_o$   $L_o$   $L_o$ 

#### How to render 2D from 3D?



3D scene

2D images/videos

Photo credit: Neuralangelo: High-Fidelity Neural Surface Reconstruction (CVPR'23) Tanks and Temples (https://www.tanksandtemples.org/)

#### Creating virtual contents is EXPENSIVE



https://www.youtube.com/watch?v=zaqmn55w4IA

#### Can we reduce the cost?



2D images/videos

3D scene

Applications (AR/VR)

Photo credit: Neuralangelo: High-Fidelity Neural Surface Reconstruction (CVPR'23) Tanks and Temples (<u>https://www.tanksandtemples.org/</u>) https://www.youtube.com/watch?v=IY4x85zqoJM

#### **Inverse rendering** How to reconstruct 3D from 2D?

Reconstruct



#### 3D scene

2D images/videos

Photo credit: Neuralangelo: High-Fidelity Neural Surface Reconstruction (CVPR'23) Tanks and Temples (https://www.tanksandtemples.org/)

#### Inverse rendering is CHALLENGING



Ill-posed problem



Incomplete observation



Limited real 3D data Noise in real 2D data



Shape, illumination, and reflectance from shading (TPAMI'15)

#### **Strategies**



Increase observation







#### Differentiable rendering

Shadow NeuS: Neural SDF Reconstruction by Shadow Ray Supervision (CVPR'23) Shape, illumination, and reflectance from shading (TPAMI'15)

### **Differentiable rendering**

- 1. Set the scene as learnable parameters
- 2. Differentiable forward rendering



### **Differentiable rendering**

#### 3. Optimize scene parameters with gradient descent!



### Neural Radiance Field (NeRF)





Multi-view images + Camera pose 3D scene

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV'20)

#### **NeRF: representation**



How to calculate the color of the pixel?



- 1. Cast a ray from camera to the scene
- 2. Sample multiple points along the ray



3. Predict color, density of each point









NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV'20)

#### **NeRF: optimization**

Rendered GT





NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (ECCV'20)

# Neural Radiance Field (NeRF)



#### Strength

- Realistic novel view synthesis
- GT 3D data is not required

#### Weakness

- Limited to small scenes
- No lighting and material decomposition
- Slow optimization & rendering

#### We have talked about ...

- What are the basic components of rendering process?
  - Geometry, lighting, material, BRDF
- How to render an image?
  - Rendering equation, Ray tracing, denoising
- What is inverse rendering? Why is it challenging?
  - Ill-posed problem, incomplete observation, limited data



3D scene

2D images/videos

#### We have NOT talked about ...

- How to parameterize lighting and material (e.g. BRDF)?
- What are other ways to render an image?
  - Rasterization, 3D Gaussian Splatting
- How to estimate smooth surfaces from images?
- How to estimate lighting and material?
- How to insert virtual objects in real-world images/videos?
- Data-driven approaches for inverse rendering

•

We will discuss some of the topics in the following lectures!