CS 598 3D Vision: Multi-View Geometry

Shenlong Wang UIUC

IILLINOIS

Some materials borrowed from Matthew O'Toole, Kris Kitani, Jianxiong Xiao, Derek Hoeim, Sanja Fidler

Logistics

- **Quiz 1** If we didn't reach out, it's satisfactory!
- Quiz 2 Will be out tonight (due next Tuesday).
- Group assignment is out!
- Survey due date has been extended (Sept 26 → Oct 3). Do meet earlier to conduct a literature review and select 25+ papers, then organize them into groups and assign jobs within the group.
- **Role-playing group**: 1) discuss your tackling plans with us during Thursday office hours, the week before your presentation, or arrange a quick ad-hoc meeting. 2) share your presentation for feedback three days before your group presentation.

Today's Agenda

- Camera Calibration
- Structure from Motion
- Other Cameras

Big picture: 3 key components in 3D

How do I know K?

- **Inputs** : A collection of images with points whose 2D image coordinates and 3D world coordinates are known.
- **Outputs**: The 3x3 camera intrinsic matrix, the rotation and translation of each image.

Capture multiple images of the checkerboard from different viewpoints

Find checkerboard corners

Finding camera parameters by minimizing 3D-2D reprojection err

Minimizing the reprojection error

Extrinsic parameters

https://www.mathworks.com/help/vision/camera-calibration.html https://github.com/ethz-asl/kalibr https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html

Switch to camera-center

Structure-from-Motion

Each pair of 2D-2D correspondence establish triagulaler relationships

Structure-from-Motion

- Structure = 3D Point Cloud of the Scene
- Motion = Camera Location and Orientation
- SFM = Get the Point Cloud from Moving Cameras
- Structure and Motion: Joint Problems to Solve

Structure-from-Motion

- Establish 2D-2D correspondences across images
- Jointly refine camera pose and 3D points in an optimization framework

Two View Reconstruction

Keypoints Detection

• Step 1: Detect distinctive keypoints that are suitable for matching

Descriptor for each point

• Step 2: Compute visual descriptors (SIFT features)

Descriptor for each point

• Step 3: Measure pairwise distance / similarity between features

• Step 3: Measure pairwise distance / similarity between features

SIFT (scale-invariant feature transform)

- Step 1: Detect distinctive keypoints that are suitable for matching
- Step 2: Compute oriented histogram gradient features
- Step 3: Measure distance between each pair

• How many pair-wise matching I need to conduct?

• What if there are bad matches?

Match Points in Practice

How can we make SIFT matching faster than exhaustive search?

- Approximate nearest neighbor search
- Hashing, KD-tree, etc.

How can we ensure a pair of match is good?

- Ratio test: my nearest neighbor should be much better than other candidates
- Consistency-check: (1) keypoint A's nearest neighbor in image 2 is keypoint
 B; (2) keypoint B's nearest neighbor in image 1 is also keypoint A.

- **Inputs** : A collection of images with points whose 2D image coordinates and 3D world coordinates are known.
- **Outputs**: The 3x3 camera intrinsic matrix, the rotation and translation of each image.

Capture multiple images of the checkerboard from different viewpoints

Find checkerboard corners

Finding camera parameters by minimizing 3D-2D reprojection err

Minimizing the reprojection error

Two View Reconstruction

Fundamental Matrix

 $\mathbf{x'}^{\mathsf{T}}\mathbf{F}\mathbf{x} = 0$

Eight-Point Algorithm

Given a correspondence

$$\mathbf{x} \leftrightarrow \mathbf{x}'$$

Assume

$$\mathbf{x}' = \begin{bmatrix} x'\\y'\\1 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x\\y\\1 \end{bmatrix} \quad \mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13}\\f_{21} & f_{22} & f_{23}\\f_{31} & f_{32} & f_{33} \end{bmatrix}$$
$$\mathbf{f} = \begin{bmatrix} f_{11} & f_{12} & f_{13} & f_{21} & f_{22} & f_{23} & f_{31} & f_{32} & f_{33} \end{bmatrix}^{\mathsf{T}}$$

• We can get $\mathbf{x'}^{\mathsf{T}} \mathbf{F} \mathbf{x} = 0$ $\mathbf{\nabla}$ $\begin{bmatrix} x'x \ x'y \ x' \ y'x \ y'y \ y' \ x \ y \ 1 \end{bmatrix} \mathbf{f} = 0$

Eight-Point Algorithm

Given 8 correspondences

- Nontrivial solution
 - f is in null space of A

SVD!

Eight-Point Algorithm

Rank constraint

 $\mathbf{F} \to \mathbf{F'} \quad \det \mathbf{F'} = 0$

• Minimize Frobenius norm

$$\min_{\mathbf{F}'} \|\mathbf{F} - \mathbf{F}'\|_{\mathsf{F}} \quad ^{\text{subject to}} \quad \det \mathbf{F}' = 0$$
$$\mathbf{F} = \mathbf{U} \operatorname{diag}(\sigma_1, \sigma_2, \sigma_3) \mathbf{V}^{\mathsf{T}} \sqsubset \mathbf{F}' = \mathbf{U} \operatorname{diag}(\sigma_1, \sigma_2, 0) \mathbf{V}^{\mathsf{T}}$$

Rank Constraint

RANSAC Estimation

- For many times
 - Pick 8 points
 - \circ Compute a solution for **F** using these 8 points
 - Count number of inliers that with geometric error close to 0
- Pick the one with the largest number of inliers
- Only the inliers are kept as correspondences

Essential Matrix

Essential Matrix Decomposition

• Essential matrix **E** to **R** and **t**

Result 9.19. For a given essential matrix $\mathbf{E} = \mathbf{U} \operatorname{diag}(1,1,0) \mathbf{V}^{T}$,

and the first camera matrix $\mathbf{P}_1 = [\mathbf{I}|\mathbf{0}]$, there are four possible choices for the second camera matrix \mathbf{P}_2 :

$$\mathbf{P}_{2} = \begin{bmatrix} \mathbf{U}\mathbf{W}\mathbf{V}^{T} | + \mathbf{u}_{3} \end{bmatrix}$$
$$\mathbf{P}_{2} = \begin{bmatrix} \mathbf{U}\mathbf{W}\mathbf{V}^{T} | - \mathbf{u}_{3} \end{bmatrix}$$
$$\mathbf{P}_{2} = \begin{bmatrix} \mathbf{U}\mathbf{W}^{T}\mathbf{V}^{T} | + \mathbf{u}_{3} \end{bmatrix}$$
$$\mathbf{W} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\mathbf{P}_{2} = \begin{bmatrix} \mathbf{U}\mathbf{W}^{T}\mathbf{V}^{T} | - \mathbf{u}_{3} \end{bmatrix}$$

Try to verify by yourself

Extending to Multiple Views

Bundle Adjustment

Bundle Adjustment

What is the difference between calibration vs structure from motion?

Continuous Optimization

MAP inference: find the best configuration that minimize the energy

$$\mathbf{y}^* = \operatorname*{argmin}_{\mathbf{y} \in \mathcal{Y}} E(\mathbf{x}, \mathbf{y}; \boldsymbol{\theta})$$

There is no universal solution. Inference algorithm choice is depending on:

- Continuous vs Discrete Variables: numerical approach or search-based
- Energy Functions: convex, submodular, piecewise linear, quadratic, etc.
- Graphical Model Structures: containing loops or not; having high-order terms or not?

MAP Inference: Gradient Descent

• Minimize continuous-valued energy based models by numerical optimization:

$$\mathbf{y}^{(t+1)} = \mathbf{y}^{(t)} - \gamma \nabla_{\mathbf{y}} E(\mathbf{x}, \mathbf{y}^{(t)})$$

- Pros: simple and straightforward, works for all differentiable energies
- Cons: (sub-)differentiability requirements and slow to convergence

MAP Inference: Newton Method

• For twice-differentiable energy function, one could use Newton's method:

$$\mathbf{y}^{(t+1)} = \mathbf{y}^{(t)} - \left(\nabla_{\mathbf{y}}^2 E(\mathbf{x}, \mathbf{y}^{(t)})\right)^{-1} \nabla_{\mathbf{y}} E(\mathbf{x}, \mathbf{y}^{(t)})$$

MAP Inference: Newton Method

• For twice-differentiable energy function, one could use Newton's method:

$$\mathbf{y}^{(t+1)} = \mathbf{y}^{(t)} - \left(\nabla_{\mathbf{y}}^2 E(\mathbf{x}, \mathbf{y}^{(t)})\right)^{-1} \nabla_{\mathbf{y}} E(\mathbf{x}, \mathbf{y}^{(t)})$$

- Pros: capturing curvature, better convergence, less likely stuck, less tuning
- Cons: expensive to compute inverse Hessian, hard to scale

MAP Inference: Gauss-Newton

• If the energy has a sum of square form:

$$E(\mathbf{y}) = \sum_{\alpha} E_{\alpha}(\mathbf{y}) = \sum_{\alpha} (r_{\alpha}(\mathbf{y}))^{2} = \|\mathbf{r}(\mathbf{y})\|_{2}^{2}$$

- For each iteration t:
 - Taylor approximation for the residual function: $\mathbf{r}(\mathbf{y}) pprox \mathbf{r}(\mathbf{y}^{(t)}) + \mathbf{J}_{\mathbf{r}}^T(\mathbf{y} \mathbf{y}^{(t)})$
 - Solving least square:

$$\mathbf{y}^{(t+1)} = \arg\min_{\mathbf{y}} \|\mathbf{r}(\mathbf{y}^{(t)}) + \mathbf{J}_{\mathbf{r}}^{T}(\mathbf{y} - \mathbf{y}^{(t)})\|_{2}^{2}$$

How to get the solution? Today's Quiz

Multi-View Stereo

- Input: images from several viewpoints with known camera poses and calibratior
- Output: 3D object model

Why are SFM 3D points insufficient?

Figures by Carlos Hernandez

Measuring the matching cost

Measuring the matching cost

Colmap: Photometric + Geometric Cost + View Select

• Photometric consistency: normalized cross correlation

$$\rho_l^m = \frac{\operatorname{cov}_w(\boldsymbol{w}_l, \boldsymbol{w}_l^m)}{\sqrt{\operatorname{cov}_w(\boldsymbol{w}_l, \boldsymbol{w}_l) \, \operatorname{cov}_w(\boldsymbol{w}_l^m, \boldsymbol{w}_l^m)}}$$

• Geometry consistency: forward-backward reprojection error

Pixelwise View Selection for Unstructured Multi-View Stereo, 2016

MVSNet

MVSNet: Depth Inference for Unstructured Multi-view Stereo, 2018

3D Reconstruction: SFM + MVS

49 Image credit: Google, Michael Keass

Visual SLAM: Online SFM

50

Camera Distortion

$$x_{distorted} = x(1 + k_1r^2 + k_2r^4 + k_3r^6)$$

$$y_{distorted} = y(1 + k_1r^2 + k_2r^4 + k_3r^6)$$

No distortion

itive radial distortion (Barrel distortion) Negative radial distortion (Pincushion distortion)

Camera Distortion

Remember to cv2.undistort the image if you want to reason in 3D.

before

Event Cameras

Standard Camera

Event Camera (ON, OFF events)

$\Delta T = 40 \text{ ms}_{53}$ <u>Image credit: Davide Scaramuzza</u>

Fisheye Camera / Omnidirectional Camera

What I Didn't Cover

• Stereo Rectification

Making two stereo camera frontal parallel.

• Five-Point Algorithms

Recover Essential/Fundamental Matrix from 2D-2D Correspondences

Projection Matrix Decomposition

Recover R and t from camera projection matrix

Essential Decomposition

Recover R and t from essential matrix estimation

• Perspective-n-Projection (PnP)

Recover R and t from 2D-3D correspondences

Check Szeliski or MVG Book if you want to know these concepts