Lecture 7 Fair Division w/ Indivisible Items (Contd.)

CS 598RM

17th September 2020

Instructor: Ruta Mehta

Fairness Notions for Indivisible Items

■ *n* agents, *m* indivisible items (like cell phone, painting, etc.)

- Each agent *i* has a valuation function over subset of items denoted by $v_i : 2^m \to \mathbb{R}$
- Goal: fair and efficient allocation

Allocation of Indivisible Items to Agents

- Set *M* of *m* indivisible items
- Set *N* of *n* agents
- Allocation $A = (A_1, \dots, A_n)$ is a partition of items to agents where each item is assigned to at most one agent

Objectives

Maximize the sum of valuations
 (Utilitarian Welfare): SW(A) =

$$SW(A) = \sum_{i} v_i(A_i)$$

 Maximize the minimum of valuations (Max-Min-Fairness, Egalitarian Welfare):

 $SW(A) = \min_i v_i(A_i)$

Maximize the geometric mean of valuations
 (≈ Efficiency + Fairness, Maximum Nash Welfare):

$$NW(A) = \left(\prod_{i \in A} v_i(A_i)\right)^{1/n}$$

Scale invariant

Maximum Nash Welfare (MNW)

Maximum Nash welfare (MNW): An allocation A that maximizes the Nash welfare among all feasible allocations i.e.,

$$A^* = \arg\max_{A} (\prod_i v_i(A_i))^{1/n}$$

Additive Valuations $(v_i(A_i) = \sum_{j \in A_i} v_{ij})$:

- **Divisible Items:** MNW \equiv CEEI \Rightarrow Envy-free + Prop + PO + ...
- Indivisible Items: MNW \Rightarrow EF1 + PO + $\Omega(\frac{1}{\sqrt{n}})$ -MMS [CKMPSW16]

 \Box Existence of EF1 + PO allocation

MNW: Generalizations

- Non-symmetric Agents (different entitlements/weights)
 Weighted envy-free, weighted proportionality
 MNW (weighted geometric mean)
- Beyond Additive Valuations

Additive \subset GS \subset Submodular \subset XOS \subset Subadditive

MNW: Generalizations

Non-symmetric Agents (different entitlements/weights)
 Weighted envy-free, weighted proportionality
 MNW (weighted geometric mean)

Beyond Additive Valuations

Additive \subset GS \subset Submodular \subset XOS \subset Subadditive

The non-symmetric MNW Problem

- Non-symmetric MNW was proposed in [HS72, K77] and has been extensively studied and used in many applications
 - \Box Agent *i* has a weight of w_i
- Allocation $A = (A_1, \dots, A_n)$ is partition of items to agents

$$NW(A) = \left(\prod_{i} v_{i}(A_{i})^{w_{i}}\right)^{1/\sum_{i} w_{i}}$$
 weighted geometric mean of agents' valuations

- A^* : allocation maximizing the NW
- ρ -approximate MNW allocation A satisfies:

$$\rho$$
.NW(A) \geq NW(A^*) = MNW

Example (additive)

MNW=NW(A) = $(10^1 \cdot 3^1)^{1/2}$

Example (additive)

$NW(A) = (10^2 \cdot 3^1)^{1/3}$

Example (additive)

 $NW(A) = (10^2 \cdot 3^1)^{1/3} < (20^2 \cdot 1^1)^{1/3} = NW(A') = MNW$

MNW Approximations: Additive

	Lower bound	Upper Bound
Symmetric	1.069	1.45
Non-symmetric	1.069	0(<i>n</i>)

n: # of agents

m = n: Matching

$$NW(A) = \left(\prod_{i}^{w_i} v_i(A_i)\right)^{1/\sum_{i} w_i}$$

$$m = n$$
 : Matching

$$NW(A) = \left(\prod_{i} v_i (A_i)^{w_i}\right)^{1/\sum_{i} w_i}$$

$$MNW = \max_{A} NW(A) \equiv \max_{A} \sum_{i} w_{i} \log v_{i}(A_{i})$$

Claim: If m = n, then max-weight matching outputs MNW

m > n

• How good is max-weight matching?

 $\mathrm{NW}(A^*) \simeq m$

$$NW(A) \simeq \sqrt{2m}$$

Issue: Allocation of high-value items!

Guarantee (per agent) at the optimum?

- $H_i = n$ highest-valued items of agent *i*. $u_i = v_i(M \setminus H_i)$
- g_i^* : highest-valued item in MNW allocation A_i^*

$$v_i(A_i^*) = v_i(A_i^* \cap H_i) + v_i(A_i^* \cap (M \setminus H_i))$$

$$\leq nv_i(g_i^*) + u_i = n(v_i(g_i^*) + \frac{u_i}{n})$$

• If we obtain an allocation A such that $v_i(A_i) \ge v_i(g_i^*) + \frac{u_i}{n}$, then A is O(n)-approximation!

Round Robin Procedure

Guarantee (per agent)?

• $H_i = n$ highest-valued items of agent *i*. $u_i = v_i(M \setminus H_i)$

O(n)-MNW + EF1 [GKK20]

- $H_i = 2n$ highest-valued items for agent *i*. $H = \bigcup_i H_i$
- $u_i = v_i(M \setminus H_i)$
- Allocate as per max-weight matching from *H* with weights $w_i \log(v_i(g) + \frac{u_i}{n})$: y_i^* is allocated to *i*
- $A \leftarrow \text{Allocate } M \setminus (\cup_i y_i^*) \text{ using round-robin procedure}$

Claim.
$$v_i(A_i) \ge v_i(y_i^*) + \frac{u_i}{n}$$

- $H_i = 2n$ highest-valued items for agent *i*
- $u_i = v_i(M \setminus H_i)$
- Allocate one item to each agent using max-weight matching with weights $w_i \log(v_i(g) + \frac{u_i}{n})$: y_i^* is allocated to *i*

• $A \leftarrow$ Allocate remaining items using round-robin procedure

Claim.
$$v_i(A_i) \ge v_i(y_i^*) + \frac{u_i}{n}$$

• g_i^* : highest-valued item in MNW allocation A_i^*

$$v_{i}(A_{i}^{*}) \leq 2nv_{i}(g_{i}^{*}) + u_{i} \leq 2n(v_{i}(g_{i}^{*}) + \frac{u_{i}}{n})$$

$$\Rightarrow NW(A) \geq \left(\Pi_{i}\left(v_{i}(y_{i}^{*}) + \frac{u_{i}}{n}\right)^{w_{i}}\right)^{\frac{1}{\sum_{i}w_{i}}} \geq \left(\Pi_{i}\left(v_{i}(g_{i}^{*}) + \frac{u_{i}}{n}\right)^{w_{i}}\right)^{\frac{1}{\sum_{i}w_{i}}}$$

$$\geq \frac{1}{2n}\left(\Pi_{i}(v_{i}(A_{i}^{*}))^{w_{i}}\right)^{\frac{1}{\sum_{i}w_{i}}}$$

Additive valuations are restrictive

100

Additive valuations are restrictive

100

100

Additive valuations are restrictive

Generalizations

Non-symmetric Agents (different entitlements/weights)

□ Weighted envy-free, weighted proportionality

□ MNW (weighted geometric mean)

Beyond Additive

Additive \subset GS \subset Submodular \subset XOS \subset Subadditive

non-negative monotone: $v(S) \le v(T)$, $S \subseteq T$

Subadditive: $v(A \cup B) \le v(A) + v(B), \forall A, B$

Envy-free (EF) Allocation

Claim: An EF allocation A is O(n)-approximation

¹/₂-EFX:

Max-matching + Envy-cycle procedure

¹/₂-EFX Allocation

• ¹/₂-EFX allocation *A*: $v_i(A_i) \ge \frac{1}{2}v_i(A_j \setminus g), \forall g \in A_j, \forall i, j$ Claim: If $|A_i| \ge 2, \forall i$, then *A* is O(n)-approximation

O(n) Algorithm [CGM.20]

- *H_i* : *n* highest-valued items for agent *i*. *H* = ∪_{*i*} *H_i u_i* = ^{*v_i(M*\H_i)}/_{*n*}
- Allocate as per max-weight matching from *H* with weights $w_i \log(v_i(g) + \frac{u_i}{n}) : y_i^*$ is allocated to *i*
- $Y = \bigcup_i y_i^*$
- $A \leftarrow \text{Allocate } M \setminus Y \text{ using } \frac{1}{2} \text{-EFX algorithm}$

Claim: A is O(n)-MNW and $\frac{1}{2}$ -EFX allocation

O(n) Algorithm

Claim: A is O(n)-MNW Proof (sketch):

• g_i^* : highest-valued item in MNW allocation A_i^*

•
$$v_i(A_i^*) \leq nv_i(g_i^*) + v_i(M \setminus H_i) = n\left(v_i(g_i^*) + \frac{v_i(M \setminus H_i)}{n}\right)$$

$$v_{i}(A_{i}) \geq v_{i}(y_{i}^{*})$$

$$v_{i}(A_{i}) \geq \frac{v_{i}(M \setminus Y)}{4n} \geq \frac{v_{i}(M \setminus H_{i}) - nv_{i}(y_{i}^{*})}{4n}$$

$$v_{i}(A_{i}) \geq \frac{1}{8} \left(v_{i}(y_{i}^{*}) + \frac{v_{i}(M \setminus H_{i})}{n} \right) \geq \frac{1}{8} \left(v_{i}(g_{i}^{*}) + \frac{v_{i}(M \setminus H_{i})}{n} \right)$$

MNW Approximations: Symmetric Agents

Additive \subset $\begin{array}{c} SC \subset OXS \subset GS \\ Budget additive \end{array}$ \subset Submodular $\subset XOS \subset$ Subadditive

Valuation	Lower bound	Upper Bound
Additive Budget additive Separable concave	1.069	1.45
OXS Gross-Substitutes	1.069	0(1)*
Submodular XOS Subadditive	1.58	0(<i>n</i>)

*This is a very recent result [GHV20]

n: # of agents

MNW Approximations: Non-symmetric Agents

Additive \subset SC \subset OXS \subset GS
Budget additive \subset Submodular \subset XOS \subset Subadditive

Valuation	Lower bound	Upper Bound
Additive Budget additive Separable concave OXS Gross-Substitutes	1.069	0(<i>n</i>)
Submodular XOS Subadditive	1.58	0(n)

n: # of agents

[CG15] Richard Cole and Vasilis Gkatzelis. Approximating the Nash social welfare with indivisible items. STOC 2015

[CDGJMVY17] Richard Cole, Nikhil R. Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V. Vazirani, and Sadra Yazdanbod. Convex program duality, Fisher markets, and Nash social welfare. EC 2017

[AMOV18] Nima Anari, Tung Mai, Shayan Oveis Gharan, and Vijay V. Vazirani. Nash social welfare for indivisible items under separable, piecewiselinear concave utilities. SODA 2018

[GHM18] Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. Approximating the Nash social welfare with budget-additive valuations. SODA 2018

[BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient allocations. EC 2018

[CCGGHM18] Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, and Kurt Mehlhorn. On Fair Division for Indivisible Items. FSTTCS 2018

[GKK19] Jugal Garg, Pooja Kulkarni, and Rucha Kulkarni. Approximating Nash social welfare under submodular valuations. Unpublished, 2019 [BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient allocations. In: *EC 2018*

[B11] Eric Budish. "The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes". In: J. Political Economy 119.6 (2011), pp. 1061–1103

[CKMPSW14] Ioannis Caragiannis, David Kurokawa, Herve Moulin, Ariel Procaccia, Nisarg Shah, and Junxing Wang. "The Unreasonable Fairness of Maximum Nash Welfare". In: EC 2016

[CGH20] Ioannis Caragiannis, Nick Gravin, and Xin Huang. Envy-freeness up to any item with high Nash welfare: The virtue of donating items. In: *EC 2019*

[CGM20] Bhaskar Ray Chaudhury, Jugal Garg, Kurt Mehlhorn: EFX Exists for Three Agents. In: EC 2020

[CKMS20] Bhaskar Ray Chaudhury, Telikepalli Kavitha, Kurt Mehlhorn, and Alkmini Sgouritsa. A little charity guarantees almost envyfreeness. In: SODA 2020

[LMMS04] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. "On approximately fair allocations of indivisible goods". In: EC 2004

[PR18] Benjamin Plaut and Tim Roughgarden. Almost envy-freeness with general valuations. In: SODA 2018

[P20] Ariel Procaccia: An answer to fair division's most enigmatic question: technical perspective. In: *Commun. ACM 63(4): 118 (2020)* [CDGJMVY17] Richard Cole, Nikhil R. Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V. Vazirani, and Sadra Yazdanbod. Convex

program duality, Fisher markets, and Nash social welfare. EC 2017

[AMOV18] Nima Anari, Tung Mai, Shayan Oveis Gharan, and Vijay V. Vazirani. Nash social welfare for indivisible items under separable, piecewise-linear concave utilities. SODA 2018

[GHM18] Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. Approximating the Nash social welfare with budget-additive valuations. SODA 2018

[CCGGHM18] Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, and Kurt Mehlhorn. On Fair Division for Indivisible Items. FSTTCS 2018

[GKK19] Jugal Garg, Pooja Kulkarni, and Rucha Kulkarni. Approximating Nash social welfare under submodular valuations. Unpublished, 2019