Lecture 6

Fair Division w/ Indivisible Items (Contd.)

CS 598RM

$15^{\text {th }}$ September 2020

Instructor: Ruta Mehta
$\square 1 \mathrm{LLLNOIS}$

Fairness Notions for Indivisible Items

■ n agents, m indivisible items (like cell phone, painting, etc.)

- Each agent i has a valuation function over subset of items denoted by $v_{i}: 2^{m} \rightarrow \mathbb{R}$
- Goal: fair and efficient allocation

Fairness:

Envy-free (EF)
Proportionality (Prop)
Efficiency:
Pareto optimal (PO)
Maximum Nash Welfare (MNW)

Maximin Share (MMS) [B11]

Cut-and-choose.

- Suppose we allow agent i to propose a partition of items into n bundles with the condition that i will choose at the end
- Clearly, i partitions items in a way that maximizes the value of her least preferred bundle
- $\mu_{i}:=$ Maximum value of $i^{\prime} s$ least preferred bundle

Maximin Share (MMS) [B11]

Cut-and-choose.

- Suppose we allow agent i to propose a partition of items into n bundles with the condition that i will choose at the end
■ Clearly, i partitions items in a way that maximizes the value of her least preferred bundle
■ $\mu_{i}:=$ Maximum value of i 's least preferred bundle
- $\Pi:=$ Set of all partitions of items into n bundles

■ $\mu_{i}:=\max _{A \in \Pi} \min _{A_{k} \in A} v_{i}\left(A_{k}\right)$

- MMS Allocation: A is called MMS if $v_{i}\left(A_{i}\right) \geq \mu_{i}, \forall i$

■ Additive valuations: $v_{i}\left(A_{i}\right)=\sum_{j \in A_{i}} v_{i j}$

MMS value/partition/allocation

MMS value/partition/allocation

Finding MMS value is NP-hard!

What is Known?

■ PTAS for finding MMS value [W97]

Existence (MMS allocation)?
■ $n=2$: yes ExERCIISE
\Rightarrow A PTAS to find $(1-\epsilon)$-MMS allocation for any $\epsilon>0$

- $n \geq 3$: NO [PW14]

What is Known?

■ PTAS for finding MMS value [W97]

Existence (MMS allocation)?
■ $n=2$: yes ExERCIISE
\Rightarrow A PTAS to find $(1-\epsilon)$-MMS allocation for any $\epsilon>0$

- $n \geq 3$: NO [PW14]
- α-MMS allocation: $v_{i}\left(A_{i}\right) \geq \alpha \cdot \mu_{i}$
\square 2/3-MMS exists [PW14, AMNS17, BK17, KPW18, GMT18]
\square 3/4-MMS exists [GHSSY18]
$\square(3 / 4+1 /(12 n))$-MMS exists [GT20]

Properties

- Normalized valuations
\square Scale free: $v_{i j} \leftarrow c . v_{i j}, \forall j \in M$
$\square \sum_{j} v_{i j}=n \quad \Rightarrow \quad \mu_{i} \leq 1$

Properties

- Normalized valuations
\square Scale free: $v_{i j} \leftarrow c . v_{i j}, \forall j \in M$
$\square \sum_{j} v_{i j}=n \Rightarrow \mu_{i} \leq 1$
■ Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i 1} \geq v_{i 2} \geq \cdots v_{i m}$, $\forall i \in N$

Properties

- Normalized valuations
\square Scale free: $v_{i j} \leftarrow c . v_{i j}, \forall j \in M$
$\square \sum_{j} v_{i j}=n \Rightarrow \mu_{i} \leq 1$
■ Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i 1} \geq v_{i 2} \geq \cdots v_{i m}, \forall i \in N$

	\%	¢	8	第	Q		1	2	3	4	5
0	3	1	2	5	4	θ	5	4	3	2	1
(\%)	4	4	5	3	2	(\%)	5	4	4	3	2

Challenge

- Allocation of high-value items!
- If for all $i \in N$
$\square v_{i}(M)=n \Rightarrow \mu_{i} \leq 1$
$\square v_{i j} \leq \epsilon, \forall i, j$

$$
v_{i j} \leq \epsilon, \forall i, j
$$

Bag Filling Algorithm:

Repeat until every agent is assigned a bag

- Start with an empty bag B
- Keep adding items to B until some agent i values it $\geq(1-\epsilon)$
- Assign B to i and remove them

$v_{i j} \leq \epsilon, \forall i, j$

Chm: Every agent gets at least $(1-\epsilon)$.

Bag Filling Algorithm:

Repeat until every agent is assigned a bag

- Start with an empty bag B
- Keep adding items to B until some agent i values it $\geq(1-\epsilon)$
- Assign B to i and remove them

Warm Up: 1/2-MMS Allocation

- Assume that μ_{i} is known for all i
\square Scale valuations so that $\mu_{i}=1 \Rightarrow v_{i}(M) \geq n$
■ If all $v_{i j} \leq 1 / 2$ then ?

Properties

- Normalized valuations
$\square \quad$ Scale free: $v_{i j} \leftarrow c \cdot v_{i j}, \forall j \in M$
$\square \quad \sum_{j} v_{i j}=n \quad \Rightarrow \quad \mu_{i} \leq 1$
- Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i 1} \geq v_{i 2} \geq \cdots v_{i m}, \forall i \in N$
- Valid Reduction (α-MMS): If there exists $S \subseteq M$ and $i^{*} \in N$
$\square v_{i^{*}}(S) \geq \alpha \cdot \mu_{i^{*}}^{n}(M)$
$\square \mu_{i}^{n-1}(M \backslash S) \geq \mu_{i}^{n}(M), \forall i \neq i^{*}$
\Rightarrow We can reduce the instance size!

1/2-MMS Allocation

- Assume that μ_{i} is known for all i
\square Scale valuations so that $\mu_{i}=1 \Rightarrow v_{i}(M) \geq n$

Step 1: Valid Reductions
\square If $v_{i 1} \geq 1 / 2$ then assign item 1 to i

Step 2: Bag Filling

1/2-MMS Allocation

- Assume that μ_{i} is known for all i
\square Scale valuations so that $\mu_{i}=1 \Rightarrow v_{i}(M) \geq n$

```
Step 1: Valid Reductions
\(\square\) If \(v_{i 1} \geq 1 / 2\) then assign item 1 to \(i\)
```

Step 2: Bag Filling

1/2-MMS Allocation

- μ_{i} is not known

Step 0: Normalized Valuations: $\sum_{j} v_{i j}=n \Rightarrow \mu_{i} \leq 1$ Step 1: Valid Reductions
\square If $v_{i 1} \geq 1 / 2$ then assign item 1 to i
\square After every valid reduction, normalize valuations
Step 2: Bag Filling

2/3-MMS Allocation [GMT19]

- Assume that μ_{i} is known for all i
\square Scale valuations so that $\mu_{i}=1 \Rightarrow v_{i}(M) \geq n$
- If all $v_{i j} \leq 1 / 3$ then?

Step 1: Valid Reductions
\square If $v_{i 1} \geq 2 / 3$ then assign item 1 to i
\square If $v_{i n}+v_{i(n+1)} \geq 2 / 3$ then assign $\{n, n+1\}$ to i
Step 2: Generalized Bag Filling
\square Initialize n bags $\left\{B_{1}, \ldots B_{n}\right\}$ with $B_{k}=\{k\}, \forall k$

- Assume that μ_{i} is known for all i
\square Scale valuations so that $\mu_{i}=1 \Rightarrow v_{i}(M) \geq n$
Step 1: Valid Reductions
\square If $v_{i 1} \geq 2 / 3$ then assign item 1 to i
\square If $v_{i n}+v_{i(n+1)} \geq 2 / 3$ then assign $\{n, n+1\}$ to i

Step 2: Generalized Bag Filling

\square Initialize n bags $\left\{B_{1}, \ldots B_{n}\right\}$ with $B_{k}=\{k\}, \forall k$

n

2/3-MMS Allocation [GMT19]

- μ_{i} is not known

Step 0: Normalized Valuations: $\sum_{j} v_{i j}=n \Rightarrow \mu_{i} \leq 1$
Step 1: Valid Reductions
\square If $v_{i 1} \geq 2 / 3$ then assign item 1 to i
\square If $v_{i n}+v_{i(n+1)} \geq 2 / 3$ then assign $\{n, n+1\}$ to i
\square After every valid reduction, normalize valuations
Step 2: Generalized Bag Filling
\square Initialize n bags $\left\{B_{1}, \ldots B_{n}\right\}$ with $B_{k}=\{k\}, \forall k$

Summary

Covered

- Additive Valuations:
\square Prop1 + PO (polynomial-time algorithm)
\square 2/3-MMS allocation (polynomial-time algorithm)

Not Covered

- $\left(\frac{3}{4}+\right)$-MMS allocation [GT20]
- More general valuations
\square MMS [GHSSY18]
■ Groupwise-MMS [BBKN18]
■ Chores: 11/9-MMS [HL19]

Major Open Questions (additive)

■ c-MMS + PO: polynomial-time algorithm for a constant $c>0$
■ Existence of $4 / 5-\mathrm{MMS}$ allocation? For 5 agents?

New Fairness Notions

■ n agents, m indivisible items (like cell phone, painting, etc.)
■ Each agent i has a valuation function over subset of items denoted by $v_{i}: 2^{m} \rightarrow \mathbb{R}$

- Goal: fair and efficient allocation

```
Fairness:
    Envy-free (EF)
    Proportionality (Prop)
Efficiency:
    Pareto optimal (PO)
Maximum Nash Welfare (MNW)
```


Allocation of Indivisible Items to Agents

- Set M of m indivisible items
- Set N of n agents

■ Allocation $A=\left(A_{1}, \ldots, A_{n}\right)$ is a partition of items to agents where each item is assigned to at most one agent

Objectives

- Maximize the sum of valuations
(Utilitarian Welfare):

$$
S W(A)=\sum_{i} v_{i}\left(A_{i}\right)
$$

Objectives

- Maximize the sum of valuations
(Utilitarian Welfare):

$$
S W(A)=\sum_{i} v_{i}\left(A_{i}\right)
$$

- Maximize the minimum of valuations (Max-Min-Fairness, Egalitarian Welfare):

$$
S W(A)=\min _{i} v_{i}\left(A_{i}\right)
$$

Objectives

- Maximize the sum of valuations
(Utilitarian Welfare):

$$
S W(A)=\sum_{i} v_{i}\left(A_{i}\right)
$$

- Maximize the minimum of valuations (Max-Min-Fairness, Egalitarian Welfare):

$$
S W(A)=\min _{i} v_{i}\left(A_{i}\right)
$$

- Maximize the geometric mean of valuations (\approx Efficiency + Fairness, Maximum Nash Welfare):

$$
\mathrm{N} W(A)=\left(\prod_{i \in A} v_{i}\left(A_{i}\right)\right)^{1 / n}
$$

Scale invariant

Maximum Nash Welfare (MNW)

■ Maximum Nash welfare (MNW): An allocation A that maximizes the Nash welfare among all feasible allocations i.e.,

$$
A^{*}=\arg \max _{A}\left(\prod_{i} v_{i}\left(A_{i}\right)\right)^{1 / n}
$$

Additive Valuations $\left(v_{i}\left(A_{i}\right)=\sum_{j \in A_{i}} v_{i j}\right)$:
■ Divisible Items: MNW \equiv CEEI \Rightarrow Envy-free + Prop + PO $+\ldots$
■ Indivisible Items: $\mathrm{MNW} \Rightarrow \mathrm{EF} 1+\mathrm{PO}+\Omega\left(\frac{1}{\sqrt{n}}\right)$-MMS [CKMPSW16]
\square Existence of EF1 + PO allocation

MNW (additive)

■ APX-hard [Lee17]; 1.069-hardness [G.HM18]

Approximation:

- ρ-approximate MNW allocation A satisfies: ρ. NW $(A) \geq M N W$
$\square 2$ [CG15, CDGJMVY17], e [AOSS17]
$\square 1.45$ [BKV18] (pEF1 approach)
- Fairness Guarantees
\square Prop1 $+\mathrm{PO}+\frac{1}{2 n}$-MMS +2 -MNW [GM19]

MNW (additive)

Non-linear integer program:

$$
\begin{aligned}
\max & \left(\prod_{i \in N} \sum_{j \in M} v_{i j} x_{i j}\right)^{1 / n} \\
& \sum_{i \in N} x_{i j}=1, \quad \forall j \in M \\
& x_{i j} \in\{0,1\}, \quad \forall i \in N, j \in M
\end{aligned}
$$

MNW (additive)

Non-linear integer program:

$$
\begin{aligned}
& \left.\max \frac{1}{n}\left(\sum_{i \in N} \log \left(\sum_{j \in M} v_{i j} x_{i j}\right)\right)\right) \\
& \sum_{i \in N} x_{i j}=1, \quad \forall j \in M \\
& x_{i j} \in\{0,1\}, \quad \forall i \in N, j \in M
\end{aligned}
$$

Relaxation: Eisenberg-Gale Convex Program

$$
\begin{gathered}
\max \frac{1}{n}\left(\sum_{i \in N} \log \left(\sum_{j \in M} v_{i j} x_{i j}\right)\right) \\
\sum_{i \in N} x_{i j}=1, \quad \forall j \in M \\
x_{i j} \geq 0, \quad \forall i \in N, j \in M
\end{gathered}
$$

Optimal Solutions \equiv Competitive equilibrium with equal incomes

Natural Approach

MNW problem \rightarrow E-G convex program
\equiv Competitive equilibrium with linear utilities

$$
\downarrow
$$

Round it to an integral allocation

However, no meaningful approximation guarantee for MNW by rounding [CG15]

$$
\begin{gathered}
\operatorname{MNW}(\mathrm{CEEI})=\frac{V+1}{2} \\
\mathrm{MNW}=\sqrt{V}
\end{gathered}
$$

Integrality Gap $=\Omega(\sqrt{V})$

Natural Approach

MNW problem \rightarrow E-G cor ex program
\equiv Competitive equilibrium with linear utilities
\downarrow
Round it to an integral allocation

However, no meaningful approximation guarantee for MNW by rounding [CG15]

Approach

MNW problem \rightarrow
Competitive equilibrium with linear utilities and spending restriction of \$1 on each item
\downarrow
Round it to an integral allocation

Competitive Equilibrium vs SR-Equilibrium

Approach: Spending-Restricted Equilibrium

Round it to an integral allocation

Extensions:

- Budget-additive (BA) [GHM18]
- Separable Concave (SC) [AMOV18]
- BA + SC [CCGGHM18]

MNW: Generalizations

- Non-symmetric Agents (different entitlements/weights)
\square Weighted envy-free, weighted proportionality
\square MNW (weighted geometric mean)
- Beyond Additive Valuations

Additive $\subset \underset{\text { Budget additive }}{\mathrm{SC} \subset \text { OXS } \subset \mathrm{GS}} \quad \subset$ Submodular $\subset \mathrm{XOS} \subset$ Subadditive

MNW: Generalizations

- Non-symmetric Agents (different entitlements/weights)
\square Weighted envy-free, weighted proportionality
\square MNW (weighted geometric mean)
- Beyond Additive Valuations

Additive $\subset \underset{\text { Sudget additive }}{\mathrm{SC} \subset \mathrm{OXS} \subset \mathrm{GS}} \subset$ Submodular $\subset \mathrm{XOS} \subset$ Subadditive

The non-symmetric MNW Problem

- Non-symmetric MNW was proposed in [HS72, K77] and has been extensively studied and used in many applications
\square Agent i has a weight of w_{i}
- Allocation $A=\left(A_{1}, \ldots, A_{n}\right)$ is partition of items to agents

$$
\mathrm{NW}(A)=\left(\prod_{i} v_{i}\left(A_{i}\right)^{w_{i}}\right)^{1 / \sum_{i} w_{i}} \text { weighted geometric mean of agents' valuations }
$$

- A^{*} : allocation maximizing the NW
- ρ-approximate MNW allocation A satisfies:

$$
\rho . \operatorname{NW}(A) \geq \operatorname{NW}\left(A^{*}\right)=\mathrm{MNW}
$$

Example (additive)

$\mathrm{MNW}=\mathrm{NW}(A)=\left(10^{1} \cdot 3^{1}\right)^{1 / 2}$

Example (additive)

$\mathrm{NW}(A)=\left(10^{2} \cdot 3^{1}\right)^{1 / 3}$

Example (additive)

$\operatorname{NW}(A)=\left(10^{2} \cdot 3^{1}\right)^{1 / 3}<\left(20^{2} \cdot 1^{1}\right)^{1 / 3}=\operatorname{NW}\left(A^{\prime}\right)=\mathrm{MNW}$

MNW Approximations: Additive

	Lower bound	Upper Bound
Symmetric	1.069	1.45
Non-symmetric	1.069	$\mathrm{O}(n)$

n : \# of agents

$m=n:$ Matching

$$
\begin{gathered}
\operatorname{NW}(A)=\left(\prod_{i} v_{i}\left(A_{i}\right)^{w_{i}}\right)^{1 / \Sigma_{i} w_{i}} \\
\mathrm{MNW}=\max _{\mathrm{A}} \operatorname{NW}(A) \equiv \max _{\mathrm{A}} \sum_{i} w_{i} \log v_{i}\left(A_{i}\right)
\end{gathered}
$$

Claim: If $m=n$, then max-weight matching outputs MNW

$m>n$

- How good is max-weight matching?

$$
\begin{aligned}
& \operatorname{NW}\left(A^{*}\right) \simeq m \\
& \operatorname{NW}(A) \simeq \sqrt{2 m}
\end{aligned}
$$

- Issue: Allocation of high-value items!

Round Robin Procedure

■ Guarantee (per agent) ?

- $u_{i}=v_{i}\left(M \backslash H_{i}\right)$
- g_{i}^{*} : highest-valued item in MNW allocation A_{i}^{*}
- $v_{i}\left(A_{i}^{*}\right) \leq n v_{i}\left(g_{i}^{*}\right)+u_{i}=n\left(v_{i}\left(g_{i}^{*}\right)+\frac{u_{i}}{n}\right)$
- If we obtain an allocation A such that $v_{i}\left(A_{i}\right) \geq v_{i}\left(g_{i}^{*}\right)+\frac{u_{i}}{n}$, then A is $O(n)$-approximation!

$O(n)-\mathrm{MNW}+\mathrm{EF} 1$ [GKK20]

- $H_{i}=2 n$ highest-valued items for agent i
- $u_{i}=v_{i}\left(M \backslash H_{i}\right)$
- Allocate one item to each agent using max-weight matching with weights $w_{i} \log \left(v_{i}(g)+\frac{u_{i}}{n}\right): y_{i}^{*}$ is allocated to i
- $A \leftarrow$ Allocate remaining items using round-robin procedure
- $H_{i}=2 n$ highest-valued items for agent i
- $u_{i}=v_{i}\left(M \backslash H_{i}\right)$
- Allocate one item to each agent using max-weight matching with weights $w_{i} \log \left(v_{i}(g)+\frac{u_{i}}{n}\right): y_{i}^{*}$ is allocated to i
- $A \leftarrow$ Allocate remaining items using round-robin procedure
- g_{i}^{*} : highest-valued item in MNW allocation A_{i}^{*}
- $v_{i}\left(A_{i}^{*}\right) \leq 2 n v_{i}\left(g_{i}^{*}\right)+u_{i} \leq 2 n\left(v_{i}\left(g_{i}^{*}\right)+\frac{u_{i}}{n}\right)$
- $v_{i}\left(A_{i}\right) \geq v_{i}\left(y_{i}^{*}\right)+\frac{u_{i}}{n}$
$\Rightarrow N W(A) \geq\left(\Pi_{i}\left(v_{i}\left(y_{i}^{*}\right)+\frac{u_{i}}{n}\right)^{w_{i}}\right)^{\frac{1}{\sum_{i} w_{i}}} \geq\left(\Pi_{i}\left(v_{i}\left(g_{i}^{*}\right)+\frac{u_{i}}{n}\right)^{w_{i}}\right)^{\frac{1}{\sum_{i} w_{i}}}$

Generalizations

- Non-symmetric Agents (different entitlements/weights)
\square Weighted envy-free, weighted proportionality
\square MNW (weighted geometric mean)
- Beyond Additive

Additive $\subset \underset{\text { Budget additive }}{\mathrm{SC} \subset \mathrm{OXS} \subset \mathrm{GS}} \subset$ Submodular $\subset \mathrm{XOS} \subset$ Subadditive
non-negative monotone: $v(S) \leq v(T), S \subseteq T$

Subadditive: $\quad v(A \cup B) \leq v(A)+v(B), \quad \forall A, B$

References (Indivisible Case).

[AMNS17] Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi. "Approximation algorithms for computing maximin share allocations". In: ACM Trans. Algorithms 13.4 (2017)
[BBKN18] Siddharth Barman, Arpita Biswas, Sanath Kumar Krishnamurthy, and Y. Narahari. "Groupwise maximin fair allocation of indivisible goods". In: AAAI 2018
[BK17] Siddharth Barman and Sanath Kumar Krishna Murthy. "Approximation algorithms for maximin fair division". In EC 2017
[BK19] Siddharth Barman and Sanath Kumar Krishnamurthy. "On the Proximity of Markets with Integral Equilibria" In AAAI 2019
[BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient allocations. In: EC 2018
[B11] Eric Budish. "The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes". In: J. Political
Economy 119.6 (2011)
[CKMPSW14] Ioannis Caragiannis, David Kurokawa, Herve Moulin, Ariel Procaccia, Nisarg Shah, and Junxing Wang. "The Unreasonable Fairness of Maximum Nash Welfare". In: EC 2016
[GMT19] Jugal Garg, Peter McGlaughlin, and Setareh Taki. "Approximating Maximin Share Allocations". In: SOSA@SODA 2019
[GT20] Jugal Garg and Setareh Taki. "An Improved Approximation Algorithm for Maximin Shares". In: EC 2020
[GHSSY18] Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Seddighin, and Hadi Yami. "Fair allocation of indivisible goods: Improvement and generalization". In EC 2018
[HL19] Xin Huang and Pinyan Lu. "An algorithmic framework for approximating maximin share allocation of chores". In: arxiv:1907.04505
[KBKZ09] Bart de Keijzer, Sylvain Bouveret, Tomas Klos, and Yingqian Zhang. "On the Complexity of Efficiency and Envy-Freeness in Fair Division of Indivisible Goods with Additive Preferences". In: Algorithmic Decision Theory (ADT). 2009
[KPW18] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. "Fair Enough: Guaranteeing Approximate Maximin Shares". In: J. ACM 65.2 (2018), 8:1-8:27
[PW14] Ariel D Procaccia and Junxing Wang. "Fair enough: Guaranteeing approximate maximin shares". In EC 2014
[W97] Gerhard J Woeginger. "A polynomial-time approximation scheme for maximizing the minimum machine completion time". In:
Operations Research Letters 20.4 (1997)

