Lecture 6 Fair Division w/ Indivisible Items (Contd.)

CS 598RM

15th September 2020

Instructor: Ruta Mehta

Fairness Notions for Indivisible Items

■ *n* agents, *m* indivisible items (like cell phone, painting, etc.)

- Each agent *i* has a valuation function over subset of items denoted by $v_i : 2^m \to \mathbb{R}$
- Goal: fair and efficient allocation

Fairness: Envy-free (EF)	EF1	EFX
Proportionality (Prop)	Prop1	<mark>MMS</mark>
Efficiency: Pareto optimal (PO)		
Maximum Nash Welfare (MNW)	Guara	ntees

Maximin Share (MMS) [B11] Cut-and-choose.

- Suppose we allow agent *i* to propose a partition of items into *n* bundles with the condition that *i* will choose at the end
- Clearly, *i* partitions items in a way that maximizes the value of her least preferred bundle
- $\mu_i :=$ Maximum value of *i*'s least preferred bundle

Maximin Share (MMS) [B11] Cut-and-choose.

- Suppose we allow agent *i* to propose a partition of items into *n* bundles with the condition that *i* will choose at the end
- Clearly, *i* partitions items in a way that maximizes the value of her least preferred bundle
- $\mu_i :=$ Maximum value of *i*'s least preferred bundle
- $\Pi \coloneqq$ Set of all partitions of items into *n* bundles
- $\mu_i \coloneqq \max_{A \in \Pi} \min_{A_k \in A} \nu_i(A_k)$
- MMS Allocation: A is called MMS if v_i(A_i) ≥ μ_i, ∀i
 Additive valuations: v_i(A_i) = Σ_{j∈Ai} v_{ij}

MMS value/partition/allocation

Agent\Items	Ŏ	k	
	3	1	2
	4	4	5

5 5

	\bigcap	\bigcap
Value	3	3
MMS Value	3	

MMS value/partition/allocation

Agent\Items	Ŏ	~	
	3	1	2
	4	4	5

	\square	\square
Value	3	3
MMS Value	3	

Value	8	5
MMS Value	5	

Finding MMS value is NP-hard!

What is Known?

PTAS for finding MMS value [W97]

Existence (MMS allocation)?

n = 2 : yes EXERCISE ⇒ A PTAS to find (1 − ε)-MMS allocation for any ε > 0
 n ≥ 3 : NO [PW14]

What is Known?

PTAS for finding MMS value [W97]

Existence (MMS allocation)?

- n = 2 : yes EXERCISE \Rightarrow A PTAS to find $(1 - \epsilon)$ -MMS allocation for any $\epsilon > 0$ • $n \ge 3$: NO [DW14]
- $n \ge 3$: NO [PW14]
- α-MMS allocation: v_i(A_i) ≥ α. μ_i
 2/3-MMS exists [PW14, AMNS17, BK17, KPW18, GMT18]
 3/4-MMS exists [GHSSY18]
 (3/4 + 1/(12n))-MMS exists [GT20]

Normalized valuations

 $\square \text{ Scale free: } v_{ij} \leftarrow c. v_{ij} , \forall j \in M$

$$\Box \quad \sum_{j} v_{ij} = n \quad \Rightarrow \quad \mu_i \leq 1$$

- Normalized valuations
 - $\square \text{ Scale free: } v_{ij} \leftarrow c. v_{ij} , \forall j \in M$

$$\Box \ \sum_{j} v_{ij} = n \quad \Rightarrow \quad \mu_i \leq 1$$

• Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i1} \ge v_{i2} \ge \cdots v_{im}, \forall i \in N$

- Normalized valuations
 - $\square \text{ Scale free: } v_{ij} \leftarrow c. v_{ij} , \forall j \in M$

$$\Box \sum_{j} v_{ij} = n \quad \Rightarrow \quad \mu_i \leq 1$$

• Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i1} \ge v_{i2} \ge \cdots v_{im}, \forall i \in N$

Challenge

- Allocation of high-value items!
- If for all $i \in N$

$$\Box v_i(M) = n \Rightarrow \mu_i \le 1$$

$$\Box v_{ij} \leq \epsilon, \forall i, j$$

 $v_{ij} \leq \epsilon, \forall i, j$

Bag Filling Algorithm:

Repeat until every agent is assigned a bag

- Start with an empty bag B
- Keep adding items to B until some agent i values it $\geq (1 \epsilon)$
- Assign *B* to *i* and remove them

$$v_{ij} \leq \epsilon, \forall i, j$$

Thm: Every agent gets at least $(1 - \epsilon)$.

Bag Filling Algorithm:

Repeat until every agent is assigned a bag

- Start with an empty bag B
- Keep adding items to B until some agent i values it $\geq (1 \epsilon)$
- Assign *B* to *i* and remove them

Warm Up: 1/2-MMS Allocation

• Assume that μ_i is known for all *i*

□ Scale valuations so that $\mu_i = 1 \Rightarrow v_i(M) \ge n$

• If all $v_{ij} \leq 1/2$ then ?

Normalized valuations

- $\square \quad \text{Scale free: } v_{ij} \leftarrow c. v_{ij}, \forall j \in M$
- $\Box \quad \sum_{j} v_{ij} = n \quad \Rightarrow \quad \mu_i \leq 1$
- Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i1} \ge v_{i2} \ge \cdots v_{im}$, $\forall i \in N$

■ Valid Reduction (*α*-MMS): If there exists $S \subseteq M$ and $i^* \in N$ □ $v_{i^*}(S) \ge \alpha . \mu_{i^*}^n(M)$ □ $\mu_i^{n-1}(M \setminus S) \ge \mu_i^n(M), \forall i \neq i^*$

 \Rightarrow We can reduce the instance size!

1/2-MMS Allocation

• Assume that μ_i is known for all *i*

□ Scale valuations so that $\mu_i = 1 \Rightarrow v_i(M) \ge n$

Step 1: Valid Reductions \Box If $v_{i1} \ge 1/2$ then assign item 1 to *i* Step 2: Bag Filling

1/2-MMS Allocation

• Assume that μ_i is known for all *i*

□ Scale valuations so that $\mu_i = 1 \Rightarrow v_i(M) \ge n$

Step 1: Valid Reductions \Box If $v_{i1} \ge 1/2$ then assign item 1 to *i* Step 2: Bag Filling

1/2-MMS Allocation

μ_i is not known

Step 0: Normalized Valuations: $\sum_{j} v_{ij} = n \Rightarrow \mu_i \leq 1$ Step 1: Valid Reductions

 \Box If $v_{i1} \ge 1/2$ then assign item 1 to *i*

□ After every valid reduction, normalize valuations

Step 2: Bag Filling

2/3-MMS Allocation [GMT19]

• Assume that μ_i is known for all *i*

□ Scale valuations so that $\mu_i = 1 \Rightarrow v_i(M) \ge n$

• If all $v_{ij} \leq 1/3$ then ?

• Assume that μ_i is known for all *i*

□ Scale valuations so that $\mu_i = 1 \Rightarrow \nu_i(M) \ge n$

Step 1: Valid Reductions \Box If $v_{i1} \ge 2/3$ then assign item 1 to i \Box If $v_{in} + v_{i(n+1)} \ge 2/3$ then assign $\{n, n + 1\}$ to iStep 2: Generalized Bag Filling \Box Initialize n bags $\{B_1, \dots, B_n\}$ with $B_k = \{k\}, \forall k$

2/3-MMS Allocation [GMT19]

μ_i is not known

Step 0: Normalized Valuations: $\sum_{i} v_{ii} = n \implies \mu_i \le 1$

Step 1: Valid Reductions

 \Box If $v_{i1} \ge 2/3$ then assign item 1 to *i*

 $\Box \text{ If } v_{in} + v_{i(n+1)} \ge 2/3 \text{ then assign } \{n, n+1\} \text{ to } i$

□ After every valid reduction, normalize valuations

Step 2: Generalized Bag Filling

□ Initialize *n* bags $\{B_1, \dots, B_n\}$ with $B_k = \{k\}, \forall k$

Summary

Covered

- Additive Valuations:
 - Prop1 + PO (polynomial-time algorithm)
 - 2/3-MMS allocation
 (polynomial-time algorithm)

Not Covered

- $\left(\frac{3}{4}+\right)$ -MMS allocation [GT20]
 - More general valuations
 - □ MMS [GHSSY18]
 - Groupwise-MMS [BBKN18]
- Chores: 11/9-MMS [HL19]

Major Open Questions (additive)

- c-MMS + PO: polynomial-time algorithm for a constant c > 0
- Existence of 4/5-MMS allocation? For 5 agents?

New Fairness Notions

■ *n* agents, *m* indivisible items (like cell phone, painting, etc.)

- Each agent *i* has a valuation function over subset of items denoted by $v_i : 2^m \to \mathbb{R}$
- Goal: fair and efficient allocation

Allocation of Indivisible Items to Agents

- Set *M* of *m* indivisible items
- Set *N* of *n* agents
- Allocation $A = (A_1, ..., A_n)$ is a partition of items to agents where each item is assigned to at most one agent

Objectives

Maximize the sum of valuations (Utilitarian Welfare): $SW(A) = \sum_{i} v_i(A_i)$

Objectives

• Maximize the sum of valuations (Utilitarian Welfare): $SW(A) = \sum$

$$SW(A) = \sum_{i} v_i(A_i)$$

Auction Page

 Maximize the minimum of valuations (Max-Min-Fairness, Egalitarian Welfare):

$$SW(A) = \min_i v_i(A_i)$$

Objectives

Maximize the sum of valuations (Utilitarian Welfare): $SW(A) = \sum$

$$SW(A) = \sum_{i} v_i(A_i)$$

 Maximize the minimum of valuations (Max-Min-Fairness, Egalitarian Welfare):

 $SW(A) = \min_i v_i(A_i)$

Maximize the geometric mean of valuations
 (≈ Efficiency + Fairness, Maximum Nash Welfare):

$$NW(A) = \left(\prod_{i \in A} v_i(A_i)\right)^{1/2}$$

Scale invariant

Maximum Nash Welfare (MNW)

Maximum Nash welfare (MNW): An allocation A that maximizes the Nash welfare among all feasible allocations i.e.,

$$A^* = \arg\max_{A} (\prod_i v_i(A_i))^{1/n}$$

Additive Valuations $(v_i(A_i) = \sum_{j \in A_i} v_{ij})$:

- **Divisible Items:** MNW \equiv CEEI \Rightarrow Envy-free + Prop + PO + ...
- Indivisible Items: MNW \Rightarrow EF1 + PO + $\Omega(\frac{1}{\sqrt{n}})$ -MMS [CKMPSW16]

 \Box Existence of EF1 + PO allocation

MNW (additive)

APX-hard [Lee17]; 1.069-hardness [G.HM18]

Approximation:

ρ-approximate MNW allocation A satisfies: *ρ*.NW(A) ≥ MNW
 □ 2 [CG15, CDGJMVY17], *e* [AOSS17]
 □ 1.45 [BKV18] (pEF1 approach)

Fairness Guarantees

$$\square \operatorname{Prop1} + \operatorname{PO} + \frac{1}{2n} \operatorname{-MMS} + 2 \operatorname{-MNW} [GM19]$$

MNW (additive)

Non-linear integer program:

$$\max \left(\prod_{i \in N} \sum_{j \in M} v_{ij} x_{ij} \right)^{1/n}$$
$$\sum_{i \in N} x_{ij} = 1, \qquad \forall j \in M$$
$$x_{ij} \in \{0, 1\}, \qquad \forall i \in N, j \in M$$

MNW (additive)

Non-linear integer program:

$$\max \frac{1}{n} \left(\sum_{i \in N} \log(\sum_{j \in M} v_{ij} x_{ij})) \right)$$
$$\sum_{i \in N} x_{ij} = 1, \quad \forall j \in M$$

$$x_{ij} \in \{0, 1\}, \qquad \forall i \in N, j \in M$$

Relaxation: Eisenberg-Gale Convex Program

$$\max \frac{1}{n} \left(\sum_{i \in N} \log(\sum_{j \in M} v_{ij} x_{ij}) \right)$$
$$\sum_{i \in N} x_{ij} = 1, \quad \forall j \in M$$

 $x_{ij} \ge 0, \qquad \forall i \in N, j \in M$

Optimal Solutions \equiv Competitive equilibrium with equal incomes

Natural Approach

Integrality Gap = $\Omega(\sqrt{V})$

Natural Approach

However, no meaningful approximation guarantee for MNW by rounding [CG15]

Approach

MNW problem→ Competitive equilibrium with linear utilities **and spending restriction of \$1 on each item** ↓ Round it to an integral allocation

Competitive Equilibrium vs SR-Equilibrium

Approach: Spending-Restricted Equilibrium

MNW problem→ Competitive equilibrium with linear utilities and spending restriction of \$1 on each item

Round it to an integral allocation

Extensions:

- Budget-additive (BA) [GHM18]
- Separable Concave (SC) [AMOV18]
- BA + SC [CCGGHM18]

MNW: Generalizations

Non-symmetric Agents (different entitlements/weights)
 Weighted envy-free, weighted proportionality
 MNW (weighted geometric mean)

Beyond Additive Valuations

Additive \subset SC \subset OXS \subset GS
Budget additive \subset Submodular \subset XOS \subset Subadditive

MNW: Generalizations

Non-symmetric Agents (different entitlements/weights)
 Weighted envy-free, weighted proportionality
 MNW (weighted geometric mean)

Beyond Additive Valuations

Additive \subset SC \subset OXS \subset GS
Budget additive \subset Submodular \subset XOS \subset Subadditive

The non-symmetric MNW Problem

- Non-symmetric MNW was proposed in [HS72, K77] and has been extensively studied and used in many applications
 - \Box Agent *i* has a weight of w_i
- Allocation $A = (A_1, \dots, A_n)$ is partition of items to agents

$$NW(A) = \left(\prod_{i} v_{i}(A_{i})^{w_{i}}\right)^{1/\sum_{i} w_{i}}$$
 weighted geometric mean of agents' valuations

- A^* : allocation maximizing the NW
- ρ -approximate MNW allocation A satisfies:

$$\rho$$
.NW(A) \geq NW(A^*) = MNW

Example (additive)

MNW=NW(A) = $(10^1 \cdot 3^1)^{1/2}$

Example (additive)

$NW(A) = (10^2 \cdot 3^1)^{1/3}$

Example (additive)

 $NW(A) = (10^2 \cdot 3^1)^{1/3} < (20^2 \cdot 1^1)^{1/3} = NW(A') = MNW$

MNW Approximations: Additive

	Lower bound	Upper Bound
Symmetric	1.069	1.45
Non-symmetric	1.069	0(<i>n</i>)

n: # of agents

$$m = n$$
: Matching

$$NW(A) = \left(\prod_{i}^{w_i} v_i(A_i)\right)^{1/\sum_{i} w_i}$$

$$MNW = \max_{A} NW(A) \equiv \max_{A} \sum_{i} w_{i} \log v_{i}(A_{i})$$

Claim: If m = n, then max-weight matching outputs MNW

m > n

• How good is max-weight matching?

 $\mathrm{NW}(A^*) \simeq m$

$$NW(A) \simeq \sqrt{2m}$$

Issue: Allocation of high-value items!

Round Robin Procedure

- Guarantee (per agent) ?
- $u_i = v_i(M \setminus H_i)$
- g_i^* : highest-valued item in MNW allocation A_i^*

•
$$v_i(A_i^*) \le nv_i(g_i^*) + u_i = n(v_i(g_i^*) + \frac{u_i}{n})$$

If we obtain an allocation A such that $v_i(A_i) \ge v_i(g_i^*) + \frac{u_i}{n}$, then A is O(n)-approximation!

O(n)-MNW + EF1 [GKK20]

- $H_i = 2n$ highest-valued items for agent *i*
- $u_i = v_i(M \setminus H_i)$
- Allocate one item to each agent using max-weight matching with weights $w_i \log(v_i(g) + \frac{u_i}{n})$: y_i^* is allocated to *i*
- $A \leftarrow$ Allocate remaining items using round-robin procedure

- $H_i = 2n$ highest-valued items for agent *i*
- $u_i = v_i(M \setminus H_i)$
- Allocate one item to each agent using max-weight matching with weights $w_i \log(v_i(g) + \frac{u_i}{n})$: y_i^* is allocated to *i*

• $A \leftarrow$ Allocate remaining items using round-robin procedure

• g_i^* : highest-valued item in MNW allocation A_i^*

•
$$v_i(A_i^*) \le 2nv_i(g_i^*) + u_i \le 2n(v_i(g_i^*) + \frac{u_i}{n})$$

 $v_i(A_i) \ge v_i(y_i^*) + \frac{u_i}{n}$ $\Rightarrow NW(A) \ge \left(\prod_i \left(v_i(y_i^*) + \frac{u_i}{n} \right)^{w_i} \right)^{\sum_i w_i} \ge \left(\prod_i \left(v_i(g_i^*) + \frac{u_i}{n} \right)^{w_i} \right)^{\sum_i w_i}$

Generalizations

Non-symmetric Agents (different entitlements/weights)

□ Weighted envy-free, weighted proportionality

□ MNW (weighted geometric mean)

Beyond Additive

Additive \subset SC \subset OXS \subset GS
Budget additive \subset Submodular \subset XOS \subset Subadditive

non-negative monotone: $v(S) \le v(T)$, $S \subseteq T$

Subadditive: $v(A \cup B) \le v(A) + v(B), \forall A, B$

References (Indivisible Case).

[AMNS17] Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi. "Approximation algorithms for computing maximin share allocations". In: ACM Trans. Algorithms 13.4 (2017)

[BBKN18] Siddharth Barman, Arpita Biswas, Sanath Kumar Krishnamurthy, and Y. Narahari. "Groupwise maximin fair allocation of indivisible goods". In: AAAI 2018

[BK17] Siddharth Barman and Sanath Kumar Krishna Murthy. "Approximation algorithms for maximin fair division". In EC 2017

[BK19] Siddharth Barman and Sanath Kumar Krishnamurthy. "On the Proximity of Markets with Integral Equilibria" In AAAI 2019

[BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient allocations. In: EC 2018

[B11] Eric Budish. "The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes". In: J. Political Economy 119.6 (2011)

[CKMPSW14] Ioannis Caragiannis, David Kurokawa, Herve Moulin, Ariel Procaccia, Nisarg Shah, and Junxing Wang. "The Unreasonable Fairness of Maximum Nash Welfare". In: *EC* 2016

[GMT19] Jugal Garg, Peter McGlaughlin, and Setareh Taki. "Approximating Maximin Share Allocations". In: SOSA@SODA 2019

[GT20] Jugal Garg and Setareh Taki. "An Improved Approximation Algorithm for Maximin Shares". In: EC 2020

[GHSSY18] Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Seddighin, and Hadi Yami. "Fair allocation of indivisible goods: Improvement and generalization". In EC 2018

[HL19] Xin Huang and Pinyan Lu. "An algorithmic framework for approximating maximin share allocation of chores". In: *arxiv:1907.04505* [KBKZ09] Bart de Keijzer, Sylvain Bouveret, Tomas Klos, and Yingqian Zhang. "On the Complexity of Efficiency and Envy-Freeness in Fair Division of Indivisible Goods with Additive Preferences". In: *Algorithmic Decision Theory (ADT)*. 2009

[KPW18] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. "Fair Enough: Guaranteeing Approximate Maximin Shares". In: J. ACM 65.2 (2018), 8:1–8:27

[PW14] Ariel D Procaccia and Junxing Wang. "Fair enough: Guaranteeing approximate maximin shares". In EC 2014

[W97] Gerhard J Woeginger. "A polynomial-time approximation scheme for maximizing the minimum machine completion time". In: *Operations Research Letters 20.4 (1997)*