Lecture 5: Fair Division w/ Indivisible Items

CS 598RM

10th September 2020

Instructor: Ruta Mehta

Fairness Notions for Indivisible Items

- \blacksquare n agents, m indivisible items (like cell phone, painting, etc.)
- Agent *i* has a valuation function $v_i : 2^m \to \mathbb{R}$ over subsets of items
- Goal: fair and efficient allocation

Fairness:

Envy-free (EF)

Proportionality (Prop)

Efficiency:

Pareto optimal (PO)

Maximum Nash Welfare (MNW)

Envy-Freeness up to One Item (EF1)

■ An allocation $(A_1, ..., A_n)$ is EF1 if for every agent i

$$v_i(A_i) \ge v_i(A_k \setminus g), \quad \exists g \in A_k, \quad \forall k$$

That is, agent i may envy agent k, but the envy can be eliminated if we remove a single item from k's bundle

Envy-Freeness up to Any Item (EFX) [CKMPS14]

■ An allocation $(A_1, ..., A_n)$ is EFX if for every agent i

$$v_i(A_i) \ge v_i(A_k \setminus g), \quad \forall g \in A_k, \quad \forall k$$

That is, agent i may envy agent k, but the envy can be eliminated if we remove any single item from k's bundle

EFX: Existence

- General Valuations [PR18]
 - ☐ Identical Valuations
 - \square n = 2

- Additive Valuations
 - $\square n = 3 [CGM20]$

Additive (n > 3), General (n > 2)

"Fair division's biggest problem" [P20]

Fairness Notions for Indivisible Items

- \blacksquare n agents, m indivisible items (like cell phone, painting, etc.)
- Agent i has a valuation function $v_i: 2^m \to \mathbb{R}$ over subsets of items
- Goal: fair and efficient allocation

Fairness:

Envy-free (EF)
Proportionality (Prop)

Efficiency:

Pareto optimal (PO)

Maximum Nash Welfare (MNW)

Proportionality up to One Item (Prop1)

- \blacksquare A set *N* of *n* agents, a set *M* of *m* indivisible items
- Proportionality (Prop): Allocation $A = (A_1, ..., A_n)$ is proportional if each agent gets at least 1/n share of all items:

$$v_i(A_i) \ge \frac{v_i(M)}{n}, \quad \forall i \in N$$

۲

Proportionality up to One Item (Prop1)

- \blacksquare A set N of n agents, a set M of m indivisible items
- Prop: $A = (A_1, ..., A_n)$ is proportional if each agent gets at least 1/n share of all items:

$$v_i(A_i) \ge \frac{1}{n} v_i(M), \quad \forall i \in N$$

■ Prop1: A is proportional up to one item if each agent gets at least 1/n share of all items after adding one more item from outside:

$$v_i(A_i \cup \{g\}) \ge \frac{1}{n} v_i(M), \quad \exists g \in M \setminus A_i, \forall i \in N$$

Prop1

- EF1 implies Prop1 for subadditive valuations
- EXERCISE
- ⇒ Envy-cycle procedure outputs a Prop1 allocation
- Additive Valuations
 - \square EF1 + PO allocation exists but no polynomial-time algorithm is known!
 - □ Prop1 + PO?

۲

Prop1 + PO[BK19]

- \blacksquare (p,x): CEEI
- \blacksquare x is envy-free \Rightarrow proportional
- we can assume that support of x is a forest (set of trees)
- In each tree:
 - ☐ Make some agent the root
 - ☐ Assign each item to its parent agent

Theorem: The output of the above algorithm is Prop1 + PO

Prop1 + PO[BK19]

- \blacksquare (p,x): CEEI
- x is envy-free \Rightarrow proportional
- we can assume that support ofx is a forest (set of trees)
- In each tree:
 - ☐ Make some agent the root
 - ☐ Assign each item to its parent agent

Theorem: The output of the above algorithm is Prop1 + PO

- \blacksquare n agents, m indivisible items (like cell phone, painting, etc.)
- Each agent *i* has a valuation function over subset of items denoted by $v_i: 2^m \to \mathbb{R}$
- Goal: fair and efficient allocation

Fairness:

Envy-free (EF)
Proportionality (Prop)

Efficiency:

Pareto optimal (PO)

Maximum Nash Welfare (MNW)

Proportionality

- \blacksquare A set *N* of *n* agents, a set *M* of *m* indivisible items
- Proportionality: Allocation $A = (A_1, ..., A_n)$ is proportional if each agent gets at least 1/n share of all items:

$$v_i(A_i) \ge \frac{v_i(M)}{n}, \quad \forall i \in N$$

Cut-and-choose?

М

Maximin Share (MMS) [B11]

Cut-and-choose.

- Suppose we allow agent *i* to propose a partition of items into *n* bundles with the condition that *i* will choose at the end
- Clearly, *i* partitions items in a way that maximizes the value of her least preferred bundle
- $\mu_i :=$ Maximum value of i's least preferred bundle

ĸ,

Maximin Share (MMS) [B11]

Cut-and-choose.

- Suppose we allow agent *i* to propose a partition of items into *n* bundles with the condition that *i* will choose at the end
- Clearly, *i* partitions items in a way that maximizes the value of her least preferred bundle
- $\mu_i := \text{Maximum value of } i's \text{ least preferred bundle}$
- $\Pi := \text{Set of all partitions of items into } n \text{ bundles}$
- $\blacksquare \mu_i \coloneqq \max_{A \in \Pi} \min_{A_k \in A} v_i(A_k)$
- MMS Allocation: A is called MMS if $v_i(A_i) \ge \mu_i$, $\forall i$
- Additive valuations: $v_i(A_i) = \sum_{i \in A_i} v_{ij}$

MMS value/partition/allocation

Agent\Items	Č	2	
	3	1	2
5 5	4	4	5

Value	3	3
MMS Value	3	3

MMS value/partition/allocation

Agent\Items	Č	1	
	3	1	2
2 2	4	4	5

	\bigcap	
Value	3	3
MMS Value	3	3

5 5		
Value	8	5
MMS Value		5

Finding MMS value is NP-hard!

м

What is Known?

■ PTAS for finding MMS value [W97]

Existence (MMS allocation)?

- n = 2: yes EXERCISE \Rightarrow A PTAS to find $(1 - \epsilon)$ -MMS allocation for any $\epsilon > 0$
- $n \ge 3$: NO [PW14]

M

What is Known?

■ PTAS for finding MMS value [W97]

Existence (MMS allocation)?

- n = 2: yes EXERCISE \Rightarrow A PTAS to find $(1 - \epsilon)$ -MMS allocation for any $\epsilon > 0$
- $n \ge 3$: NO [PW14]
- α -MMS allocation: $v_i(A_i) \ge \alpha . \mu_i$
 - □ 2/3-MMS exists [PW14, AMNS17, BK17, KPW18, GMT18]
 - □ 3/4-MMS exists [GHSSY18]
 - \Box (3/4 + 1/(12*n*))-MMS exists [GT20]

Properties

Normalized valuations

- \square Scale free: $v_{ij} \leftarrow c.v_{ij}$, $\forall j \in M$
- $\square \sum_{j} v_{ij} = n \quad \Rightarrow \quad \mu_i \leq 1$

M

Properties

- Normalized valuations
 - \square Scale free: $v_{ij} \leftarrow c.v_{ij}$, $\forall j \in M$
 - $\square \sum_{i} v_{ij} = n \Rightarrow \mu_i \leq 1$
- Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i1} \ge v_{i2} \ge \cdots v_{im}$, $\forall i \in N$

۲

Properties

Normalized valuations

 \square Scale free: $v_{ij} \leftarrow c.v_{ij}$, $\forall j \in M$

$$\square \sum_{i} v_{ij} = n \Rightarrow \mu_i \leq 1$$

■ Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i1} \ge v_{i2} \ge \cdots v_{im}$, $\forall i \in N$

	B	S	C. C	0	1	2	3	4	5
3	1	2	5	4	5	4	3	2	1
4	4	5	3	2	5	4	4	3	2

м

Challenge

- Allocation of high-value items!
- If for all $i \in N$
 - $\square v_i(M) = n \Rightarrow \mu_i \leq 1$
 - $\square v_{ij} \leq \epsilon, \forall i, j$

Challenge

(<u>:</u>

- Allocation of high-value items!
- If for all $i \in N$
 - $\square v_i(M) = n \Rightarrow \mu_i \leq 1$
 - $\square v_{ij} \leq \epsilon, \forall i, j$

Bag Filling Algorithm:

Repeat until every agent is assigned a bag

- Start with an empty bag B
- Keep adding items to B until some agent i values it $\geq (1 \epsilon)$
- \blacksquare Assign *B* to *i* and remove them

<u>(i)</u>

- Allocation of high-value items!
- If for all $i \in N$
 - $\square v_i(M) = n \Rightarrow \mu_i \leq 1$
 - $\square v_{ij} \leq \epsilon, \forall i, j$

- Repeat until every agent is assigned a bag
- Start with an empty bag B
- Keep adding items to B until some agent i values it $\geq (1 \epsilon)$
- \blacksquare Assign *B* to *i* and remove them

Every agent gets at least $(1 - \epsilon)!$

M

Warm Up: 1/2-MMS Allocation

- **Assume** that μ_i is known for all i
 - \square Scale valuations so that $\mu_i = 1 \Rightarrow v_i(M) \geq n$
- If all $v_{ij} \leq 1/2$ then?

м

Properties

- Normalized valuations
 - \square Scale free: $v_{ij} \leftarrow c.v_{ij}$, $\forall j \in M$
 - $\square \quad \sum_{i} v_{ij} = n \quad \Rightarrow \quad \mu_i \leq 1$
- Ordered Instance: We can assume that agents' order of preferences for items is same: $v_{i1} \ge v_{i2} \ge \cdots v_{im}$, $\forall i \in N$
- Valid Reduction (α -MMS): If there exists $S \subseteq M$ and $i^* \in N$
 - $\square v_{i^*}(S) \geq \alpha . \mu_{i^*}^n(M)$
 - $\square \mu_i^{n-1}(M \setminus S) \ge \mu_i^n(M), \forall i \ne i^*$
 - ⇒ We can reduce the instance size!

м

1/2-MMS Allocation

- **Assume** that μ_i is known for all i
 - \square Scale valuations so that $\mu_i = 1 \Rightarrow v_i(M) \geq n$

Step 1: Valid Reductions

 \square If $v_{i1} \ge 1/2$ then assign item 1 to i

Step 2: Bag Filling

1/2-MMS Allocation

- Assume that μ_i is known for all i
 - \square Scale valuations so that $\mu_i = 1 \Rightarrow v_i(M) \geq n$

Step 1: Valid Reductions

□ If $v_{i1} \ge 1/2$ then assign item 1 to *i*

Step 2: Bag Filling

1/2-MMS Allocation

 \blacksquare μ_i is not known

```
Step 0: Normalized Valuations: \sum_{j} v_{ij} = n \Rightarrow \mu_i \leq 1
```

Step 1: Valid Reductions

- \square If $v_{i1} \ge 1/2$ then assign item 1 to i
- ☐ After every valid reduction, normalize valuations

Step 2: Bag Filling

м

2/3-MMS Allocation [GMT19]

- Assume that μ_i is known for all i
 - \square Scale valuations so that $\mu_i = 1 \Rightarrow v_i(M) \geq n$
- If all $v_{ij} \leq 1/3$ then?

Step 1: Valid Reductions

- \square If $v_{i1} \ge 2/3$ then assign item 1 to i
- □ If $v_{in} + v_{i(n+1)} \ge 2/3$ then assign $\{n, n+1\}$ to i

Step 2: Generalized Bag Filling

□ Initialize *n* bags $\{B_1, ..., B_n\}$ with $B_k = \{k\}, \forall k$

- Assume that μ_i is known for all i
 - \square Scale valuations so that $\mu_i = 1 \Rightarrow v_i(M) \ge n$

Step 1: Valid Reductions

- \square If $v_{i,1} \ge 2/3$ then assign item 1 to i
- \square If $v_{in} + v_{i(n+1)} \ge 2/3$ then assign $\{n, n+1\}$ to i

Step 2: Generalized Bag Filling

□ Initialize *n* bags $\{B_1, ..., B_n\}$ with $B_k = \{k\}, \forall k$

2/3-MMS Allocation [GMT19]

 \blacksquare μ_i is not known

```
Step 0: Normalized Valuations: \sum_{j} v_{ij} = n \Rightarrow \mu_i \leq 1
```

Step 1: Valid Reductions

- \square If $v_{i1} \ge 2/3$ then assign item 1 to i
- \square If $v_{in} + v_{i(n+1)} \ge 2/3$ then assign $\{n, n+1\}$ to i
- ☐ After every valid reduction, normalize valuations

Step 2: Generalized Bag Filling

 \square Initialize *n* bags $\{B_1, ..., B_n\}$ with $B_k = \{k\}, \forall k$

Summary

Covered

- Additive Valuations:
 - □ Prop1 + PO (polynomial-time algorithm)
 - □ 2/3-MMS allocation (polynomial-time algorithm)

Not Covered

- More general valuations
 - □ MMS [GHSSY18]
- Groupwise-MMS [BBKN18]
- Chores: 11/9-MMS [HL19]

Major Open Questions (additive)

- c-MMS + PO: polynomial-time algorithm for a constant c > 0
- Existence of 4/5-MMS allocation? For 5 agents?

References (Indivisible Case).

[AMNS17] Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi. "Approximation algorithms for computing maximin share allocations". In: ACM Trans. Algorithms 13.4 (2017)

[BBKN18] Siddharth Barman, Arpita Biswas, Sanath Kumar Krishnamurthy, and Y. Narahari. "Groupwise maximin fair allocation of indivisible goods". In: AAAI 2018

[BK17] Siddharth Barman and Sanath Kumar Krishna Murthy. "Approximation algorithms for maximin fair division". In EC 2017

[BK19] Siddharth Barman and Sanath Kumar Krishnamurthy. "On the Proximity of Markets with Integral Equilibria" In AAAI 2019

[BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and efficient allocations. In: EC 2018

[B11] Eric Budish. "The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes". In: J. Political Economy 119.6 (2011)

[CKMPSW14] Ioannis Caragiannis, David Kurokawa, Herve Moulin, Ariel Procaccia, Nisarg Shah, and Junxing Wang. "The Unreasonable Fairness of Maximum Nash Welfare". In: EC 2016

[GMT19] Jugal Garg, Peter McGlaughlin, and Setareh Taki. "Approximating Maximin Share Allocations". In: SOSA@SODA 2019

[GT20] Jugal Garg and Setareh Taki. "An Improved Approximation Algorithm for Maximin Shares". In: EC 2020

[GHSSY18] Mohammad Ghodsi, Mohammad Taghi Haji Aghayi, Masoud Seddighin, Saeed Seddighin, and Hadi Yami. "Fair allocation of indivisible goods: Improvement and generalization". In EC 2018

[HL19] Xin Huang and Pinyan Lu. "An algorithmic framework for approximating maximin share allocation of chores". In: arxiv:1907.04505

[KBKZ09] Bart de Keijzer, Sylvain Bouveret, Tomas Klos, and Yingqian Zhang. "On the Complexity of Efficiency and Envy-Freeness in Fair Division of Indivisible Goods with Additive Preferences". In: *Algorithmic Decision Theory (ADT)*. 2009

[KPW18] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. "Fair Enough: Guaranteeing Approximate Maximin Shares". In: *J. ACM 65.2* (2018), 8:1–8:27

[PW14] Ariel D Procaccia and Junxing Wang. "Fair enough: Guaranteeing approximate maximin shares". In EC 2014

[W97] Gerhard J Woeginger. "A polynomial-time approximation scheme for maximizing the minimum machine completion time". In: *Operations Research Letters 20.4 (1997)*