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(Recall) Fisher’s Model
 Set 𝐴𝐴 of 𝑛𝑛 agents. Set 𝐺𝐺 of 𝑚𝑚 divisible goods.

 Each agent 𝑖𝑖 has 
 budget of 𝐵𝐵𝑖𝑖 dollars
 valuation function 𝑣𝑣𝑖𝑖:𝑅𝑅+𝑚𝑚 → 𝑅𝑅+ over bundles of goods.

Linear: for bundle 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖, … , 𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑣𝑣𝑖𝑖 𝑥𝑥𝑖𝑖 = ∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

 Supply of every good is one. 
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(Recall) Competitive Equilibrium
Pirces 𝑝𝑝 = 𝑝𝑝1, … ,𝑝𝑝𝑚𝑚 and allocation 𝑋𝑋 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

 Optimal bundle: Agent 𝑖𝑖 demands 
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥∈𝑅𝑅𝑚𝑚+ : 𝑝𝑝⋅𝑥𝑥≤𝐵𝐵𝑖𝑖
𝑣𝑣𝑖𝑖(𝑥𝑥)

 Market clears: For each good 𝑗𝑗,
demand = supply

[DPSV’08] Flow-based Algorithm

Fairness and efficiency
guarantees:

Pareto optimal (PO)
Weighted Envy-free 
Weighted Proportional
Maximizes W. NW.

R. Mehta (ADFOCS’20)



Efficient Flow-based Algorithms

 Polynomial running-time
 Compute balanced-flow: minimizing 𝑙𝑙2 norm of agents’ 

surplus [DPSV’08]

 Strongly polynomial: Flow + scaling [Orlin’10]

Exchange model (barter): 
 Polynomial time [DM’16, DGM’17, CM’18]

 Strongly polynomial for exchange
 Flow + scaling + approximate LP [GV’19]

R. Mehta (ADFOCS’20)



Hylland-Zeckhauser
(an extension)

R. Mehta (ADFOCS’20)



Motivation: Matching

Goal: Design a method to match 
goods to agents so that
• The outcome is Pareto-optimal and 

envy-free
• Strategy-proof: Agents have no 

incentive to lie about their 𝑣𝑣𝑖𝑖𝑖𝑖𝑠𝑠. 
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Motivation: Matching

Hylland-Zeckhauser’79: Compute CEEI where every agent wants 
total amount of at most one unit. 

But the outcome is a fractional allocation! 
Think of it as probabilities/time-shares/… [HZ’79, BM’04]

Goal: Design a method to match 
goods to agents so that
• The outcome is Pareto-optimal and 

envy-free
• Strategy-proof: Agents have no 

incentive to lie about their 𝑣𝑣𝑖𝑖𝑖𝑖𝑠𝑠. 

Indivisible
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HZ Equilibrium
Given:
 Agents 𝐴𝐴 = 1, … ,𝑛𝑛 , indivisible goods 𝐺𝐺 = {1, … ,𝑛𝑛}
 𝑣𝑣𝑖𝑖𝑖𝑖: value of agent 𝑖𝑖 for good 𝑗𝑗.

 If 𝑖𝑖 gets 𝑗𝑗 w/ prob. 𝑥𝑥𝑖𝑖𝑖𝑖, then the expected value is: ∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

Want: prices 𝑝𝑝 = (𝑝𝑝1, … , 𝑝𝑝𝑛𝑛), allocation 𝑋𝑋 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)
 Each good 𝑗𝑗 is allocated: ∑𝑖𝑖∈𝐴𝐴 𝑥𝑥𝑖𝑖𝑖𝑖 = 1
 Each agent 𝑖𝑖 gets an optimal bundle subject to

 $1 budget, and unit allocation.

𝑥𝑥𝑖𝑖 ∈ argmax
𝑥𝑥∈𝑅𝑅+𝑚𝑚

�
𝑗𝑗

𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗 �
𝒋𝒋

𝒙𝒙𝒋𝒋 = 𝟏𝟏,�
𝑗𝑗

𝑝𝑝𝑗𝑗𝑥𝑥𝑗𝑗 ≤ 1
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Exists. Pareto optimal, Strategy proof in large markets.



VY’20 Algorithm 
(𝑣𝑣𝑖𝑖𝑖𝑖 ∈ 0,1 )

Perfect matching ⇒ An equilibrium is,
 Allocation on the matching edges
 Zero prices 

𝑣𝑣𝑖𝑖𝑖𝑖 = 1

G A

𝑗𝑗 𝑖𝑖

1

n

1

n

⋮

⋮

⋮

⋮
At equilibrium, an agent’s 
utility is at most 1. 

Want: 𝑝𝑝,𝑋𝑋
All goods are sold. 
Each agent 𝑖𝑖 gets 
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥:∑𝑗𝑗 𝑥𝑥𝑗𝑗=1,∑𝑗𝑗 𝑝𝑝𝑗𝑗𝑥𝑥𝑗𝑗≤1
∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗

R. Mehta (ADFOCS’20)



No perfect matching
 Min vertex cover: (𝐺𝐺1 ∪ 𝐴𝐴2)

 No 𝐴𝐴1 − 𝐺𝐺2 edge

𝑣𝑣𝑖𝑖𝑖𝑖 = 1
edges

G A

VY’20 Algorithm 
(𝑣𝑣𝑖𝑖𝑖𝑖 ∈ 0,1 )

𝐺𝐺1 𝐴𝐴1

𝐺𝐺2 𝐴𝐴2

Want: 𝑝𝑝,𝑋𝑋
Each good 𝑗𝑗 is sold (1 unit)
Each agent 𝑖𝑖 gets 
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥:∑𝑗𝑗 𝑥𝑥𝑗𝑗=1,∑𝑗𝑗 𝑝𝑝𝑗𝑗𝑥𝑥𝑗𝑗≤1
∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗

R. Mehta (ADFOCS’20)



No perfect matching
 Min vertex cover:(𝐺𝐺1 ∪ 𝐴𝐴2)

 No 𝐴𝐴1 − 𝐺𝐺2 edge
 For each 𝑆𝑆 ⊆ 𝐴𝐴2, 𝑁𝑁 𝑆𝑆 ∩ 𝐺𝐺2 ≥ |𝑆𝑆|

 Else get smaller VC by replacing 𝑆𝑆 with 
𝑁𝑁 𝑆𝑆 ∩ 𝐺𝐺2

𝑣𝑣𝑖𝑖𝑖𝑖 = 1
edges

G A

VY’20 Algorithm 
(𝑣𝑣𝑖𝑖𝑖𝑖 ∈ 0,1 )

𝐺𝐺1 𝐴𝐴1

𝐺𝐺2 𝐴𝐴2

Want: 𝑝𝑝,𝑋𝑋
Each good 𝑗𝑗 is sold (1 unit)
Each agent 𝑖𝑖 gets 
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥:∑𝑗𝑗 𝑥𝑥𝑗𝑗=1,∑𝑗𝑗 𝑝𝑝𝑗𝑗𝑥𝑥𝑗𝑗≤1
∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗

𝑆𝑆

𝑁𝑁(𝑆𝑆)

Subgraph (𝐺𝐺2,𝐴𝐴2) satisfies
hall’s condition for 𝐴𝐴2.

Max matching in (𝐺𝐺2,𝐴𝐴2)
matches all of 𝐴𝐴2.

R. Mehta (ADFOCS’20)



VY’20 Algorithm 
(𝑣𝑣𝑖𝑖𝑖𝑖 ∈ 0,1 )

Want: 𝑝𝑝,𝑋𝑋
Each good 𝑗𝑗 is sold (1 unit)
Each agent 𝑖𝑖 gets 
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥:∑𝑗𝑗 𝑥𝑥𝑗𝑗=1,∑𝑗𝑗 𝑝𝑝𝑗𝑗𝑥𝑥𝑗𝑗≤1
∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗

𝐺𝐺1 𝐴𝐴1

𝐺𝐺2 𝐴𝐴2

Max matching

CEEI

No perfect matching
 Min vertex cover:(𝐺𝐺1 ∪ 𝐴𝐴2)

 No 𝐴𝐴1 − 𝐺𝐺2 edge
 For each 𝑆𝑆 ⊆ 𝐴𝐴2, 𝑁𝑁 𝑆𝑆 ∩ 𝐺𝐺2 ≥ |𝑆𝑆|

 Max matching in 𝐺𝐺2,𝐴𝐴2 matches all of 𝐴𝐴2.

R. Mehta (ADFOCS’20)



No perfect matching
 Min vertex cover:(𝐺𝐺1 ∪ 𝐴𝐴2)
 Eq. Prices: CEEI prices for 𝐺𝐺1, and 

0 prices for 𝐺𝐺2
 Eq. Allocation

 𝑖𝑖 ∈ 𝐴𝐴2 gets her matched good
 𝑖𝑖 ∈ A1 gets CEEI allocation + 

unmatched goods from 𝐺𝐺2

VY’20 Algorithm 
(𝑣𝑣𝑖𝑖𝑖𝑖 ∈ 0,1 )

𝐺𝐺1 𝐴𝐴1

𝐺𝐺2 𝐴𝐴2

Want: 𝑝𝑝,𝑋𝑋
Each good 𝑗𝑗 is sold (1 unit)
Each agent 𝑖𝑖 gets 
𝑥𝑥𝑖𝑖 ∈ argmax

𝑥𝑥:∑𝑗𝑗 𝑥𝑥𝑗𝑗=1,∑𝑗𝑗 𝑝𝑝𝑗𝑗𝑥𝑥𝑗𝑗≤1
∑𝑗𝑗∈𝐺𝐺 𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗

Max matching

CEEI
Prices
𝑝𝑝 at

CEEI

0
⋮
0

Running-time:
Strongly polynomial

R. Mehta (ADFOCS’20)



Reduces to 𝑣𝑣𝑖𝑖𝑖𝑖 ∈ {0,1}

Exercise.

VY’20 Algorithm 
bi-values: 𝑣𝑣𝑖𝑖𝑖𝑖 ∈ 𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖 , 0 ≤ 𝑎𝑎𝑖𝑖 < 𝑏𝑏𝑖𝑖

R. Mehta (ADFOCS’20)



Open Questions

R. Mehta (ADFOCS’20)



HZ Equilibrium

Computation for the general case.
Is it hard? OR is it (approximation) polynomial-time?

 Efficient algorithm when #goods or #agents is a 
constant [DK’08, AKT’17]

 Cell-decomposition and enumeration

R. Mehta (ADFOCS’20)



What about chores?

 CEEI exists but may form a non-convex set [BMSY’17]

 Efficient Computation? 
Open: Fisher as well as for CEEI
 For constantly many agents (or chores) [BS’19, GM’20]

 Fast path-following algorithm [CGMM.’20]

 Hardness result for an exchange model [CGMM.’20]

R. Mehta (ADFOCS’20)



Indivisible Items

R. Mehta (ADFOCS’20)



UCLA Kidney Exchange Program.



 𝑛𝑛 agents, 𝑚𝑚 indivisible items (like cell phone, painting, etc.)
 Agent 𝑖𝑖 has a valuation function 𝑣𝑣𝑖𝑖 ∶ 2𝑚𝑚 → ℝ over subsets of items
 Goal: fair and efficient allocation 

Indivisible Items

Fairness:
Envy-free (EF)
Proportionality (Prop)

Efficiency:
Pareto optimal (PO)

Maximum Nash Welfare (MNW) 

22
J. Garg (ADFOCS 2020)



 𝑛𝑛 agents, 𝑚𝑚 indivisible items (like cell phone, painting, etc.)
 Agent 𝑖𝑖 has a valuation function 𝑣𝑣𝑖𝑖 ∶ 2𝑚𝑚 → ℝ over subsets of items
 Goal: fair and efficient allocation 

Fairness Notions for Indivisible Items

EF1      EFX

Prop1       MMS

Guarantees

Fairness:
Envy-free (EF)
Proportionality (Prop)

Efficiency:
Pareto optimal (PO)

Maximum Nash Welfare (MNW) 

J. Garg (ADFOCS 2020)



Envy-Freeness up to One Item (EF1) [B11]

 An allocation (𝐴𝐴1, … ,𝐴𝐴𝑛𝑛) is EF1 if for every agent 𝑖𝑖

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑘𝑘 ∖ 𝑔𝑔 , ∃𝑔𝑔 ∈ 𝐴𝐴𝑘𝑘 , ∀𝑘𝑘

That is, agent 𝑖𝑖 may envy agent 𝑘𝑘, but the envy can be eliminated 
if we remove a single item from 𝑘𝑘′𝑠𝑠 bundle

J. Garg (ADFOCS 2020)



Envy-Freeness up to One Item (EF1) [B11]

 An allocation (𝐴𝐴1, … ,𝐴𝐴𝑛𝑛) is EF1 if for every agent 𝑖𝑖

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑘𝑘 ∖ 𝑔𝑔 , ∃𝑔𝑔 ∈ 𝐴𝐴𝑘𝑘 , ∀𝑘𝑘

That is, agent 𝑖𝑖 may envy agent 𝑘𝑘, but the envy can be eliminated 
if we remove a single item from 𝑘𝑘′𝑠𝑠 bundle

 Existence? 

J. Garg (ADFOCS 2020)



Additive Valuations: 𝑣𝑣𝑖𝑖 𝑆𝑆 = ∑𝑗𝑗∈𝑆𝑆 𝑣𝑣𝑖𝑖𝑖𝑖

10

25

15
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Claim:  The final allocation is EF1
Observe that intermediate 

(partial) allocation is also EF1 

Round Robin Algorithm (Additive)

 Fix an ordering of agents arbitrarily 
 While there is an item unallocated 

 𝑖𝑖: next agent in the round robin order
 Allocate 𝑖𝑖 her most valuable item among the unallocated ones

J. Garg (ADFOCS 2020)



 General Monotonic Valuations: 𝑣𝑣𝑖𝑖 𝑆𝑆 ≤ 𝑣𝑣𝑖𝑖 𝑇𝑇 , ∀𝑆𝑆 ⊆ 𝑇𝑇 ⊆ 𝑀𝑀
(𝑀𝑀: Set of all items)

Envy-Cycle Procedure (General) [LMMS04]

J. Garg (ADFOCS 2020)



 General Monotonic Valuations:  𝑣𝑣𝑖𝑖 𝑆𝑆 ≤ 𝑣𝑣𝑖𝑖 𝑇𝑇 , ∀𝑆𝑆 ⊆ 𝑇𝑇 ⊆ 𝑀𝑀

 Envy-graph of a partial allocation (𝐴𝐴1, … ,𝐴𝐴𝑛𝑛) where ∪𝑖𝑖 𝐴𝐴𝑖𝑖 ⊆ 𝑀𝑀
 Vertices = Agents
 Directed edge 𝑖𝑖, 𝑖𝑖𝑖 if 𝑖𝑖 envies 𝑖𝑖𝑖 (i.e., 𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 < 𝑣𝑣𝑖𝑖(𝐴𝐴𝑖𝑖𝑖))

Envy-Cycle Procedure (General) [LMMS04]

J. Garg (ADFOCS 2020)



 General Monotonic Valuations:  𝑣𝑣𝑖𝑖 𝑆𝑆 ≤ 𝑣𝑣𝑖𝑖 𝑇𝑇 , ∀𝑆𝑆 ⊆ 𝑇𝑇 ⊆ 𝑀𝑀
 Envy-graph of a partial allocation (𝐴𝐴1, … ,𝐴𝐴𝑛𝑛) where ∪𝑖𝑖 𝐴𝐴𝑖𝑖 ⊆ 𝑀𝑀

 Vertices = Agents
 Directed edge 𝑖𝑖, 𝑖𝑖𝑖 if 𝑖𝑖 envies 𝑖𝑖𝑖 (i.e., 𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 < 𝑣𝑣𝑖𝑖(𝐴𝐴𝑖𝑖𝑖))

 Suppose we have a partial EF1 allocation 
 Then, we can assign one unallocated item 𝑗𝑗 to a source 𝑖𝑖 (in-

degree 0 agent) and the resulting allocation is still EF1!
 No agent envies 𝑖𝑖 if we remove 𝑗𝑗

Envy-Cycle Procedure (General) [LMMS04]

J. Garg (ADFOCS 2020)



 If there is no source in envy-graph, then 
 there must be cycles
 How to eliminate them? 

J. Garg (ADFOCS 2020)
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 If there is no source in envy-graph, then 
 there must be cycles
 keep eliminating them by exchanging bundles along each cycle

 Terminate?

J. Garg (ADFOCS 2020)
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 If there is no source in envy-graph, then 
 there must be cycles
 keep eliminating them by exchanging bundles along each cycle

 Terminate?
 Number of edges decrease after each cycle is eliminated 

 EF1?
 Valuation of each agent?

J. Garg (ADFOCS 2020)



 If there is no source in envy-graph, then 
 there must be cycles
 keep eliminating them by exchanging bundles along each cycle

 Terminate?
 Number of edges decrease after each cycle is eliminated 

 EF1?
 Valuation of each agent?
 The bundles remain the same – We are only changing their owners!

J. Garg (ADFOCS 2020)



𝐴𝐴 ← ∅, … ,∅
𝑅𝑅 ← 𝑀𝑀 // unallocated items
While 𝑅𝑅 ≠ ∅

 If envy-graph has no source, then there must be cycles
 Keep removing cycles by exchanging bundles until there is a source
 Pick a source, say 𝑖𝑖, and allocate one item 𝑔𝑔 from 𝑅𝑅 to 𝑖𝑖

(𝐴𝐴𝑖𝑖 ← 𝐴𝐴𝑖𝑖 ∪ 𝑔𝑔; 𝑅𝑅 ← 𝑅𝑅 ∖ 𝑔𝑔) 

Output 𝐴𝐴

 Running Time? 

Envy-Cycle Procedure [LMMS04]

J. Garg (ADFOCS 2020)



How Good is an EF1 Allocation?

1000

1000
1

1

J. Garg (ADFOCS 2020)



 Certainly not desirable! 

How Good is an EF1 Allocation?

1000

1000
1

1

J. Garg (ADFOCS 2020)
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 Issue: Many EF1 allocations! 
 We want an algorithm that outputs a good EF1 allocation

 Pareto optimal (PO) 

J. Garg (ADFOCS 2020)



 Issue: Many EF1 allocations! 
 We want an algorithm that outputs a good EF1 allocation

 Pareto optimal (PO) 

 Goal: EF1 + PO allocation
 Existence?

 NO [CKMPS14] for general (subadditive) valuations 
 YES for additive valuations [CKMPS14]

submodular valuations

J. Garg (ADFOCS 2020)



 Issue: Many EF1 allocations! 
 We want an algorithm that outputs a good EF1 allocation

 Pareto optimal (PO) 

 Goal: EF1 + PO allocation
 Existence?

 NO [CKMPS14] for general (subadditive) valuations 
 YES for additive valuations [CKMPS14]

submodular valuations

J. Garg (ADFOCS 2020)

Computation?



 Computation: pseudo-polynomial time algorithm [BKV18] 

 Difficulty: Deciding if an allocation is PO is co-NP-hard [KBKZ09]

EF1+PO (Additive)

Complexity of finding an EF1+PO allocation
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 Computation: pseudo-polynomial time algorithm [BKV18] 

 Difficulty: Deciding if an allocation is PO is co-NP-hard [KBKZ09]

 Approach: Achieve EF1 while maintaining PO
 PO certificate: competitive equilibrium! 

EF1+PO (Additive)

Complexity of finding an EF1+PO allocation

J. Garg (ADFOCS 2020)



 𝑛𝑛 agents, 𝑚𝑚 indivisible items (like cell phone, painting, etc.)
 Agent 𝑖𝑖 has a valuation function 𝑣𝑣𝑖𝑖 ∶ 2𝑚𝑚 → ℝ over subsets of items
 Goal: fair and efficient allocation 

Fairness Notions for Indivisible Items

EF1      EFX

Prop1       MMS

Guarantees

Fairness:
Envy-free (EF)
Proportionality (Prop)

Efficiency:
Pareto optimal (PO)

Maximum Nash Welfare (MNW) 

J. Garg (ADFOCS 2020)



Envy-Freeness up to One Item (EF1)

 An allocation (𝐴𝐴1, … ,𝐴𝐴𝑛𝑛) is EF1 if for every agent 𝑖𝑖

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑘𝑘 ∖ 𝑔𝑔 , ∃𝑔𝑔 ∈ 𝐴𝐴𝑘𝑘 , ∀𝑘𝑘

That is, agent 𝑖𝑖 may envy agent 𝑘𝑘, but the envy can be eliminated 
if we remove a single item from 𝑘𝑘′𝑠𝑠 bundle

J. Garg (ADFOCS 2020)



Envy-Freeness up to Any Item (EFX) [CKMPS14]

 An allocation (𝐴𝐴1, … ,𝐴𝐴𝑛𝑛) is EFX if for every agent 𝑖𝑖

𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 ≥ 𝑣𝑣𝑖𝑖 𝐴𝐴𝑘𝑘 ∖ 𝑔𝑔 , ∀𝑔𝑔 ∈ 𝐴𝐴𝑘𝑘 , ∀𝑘𝑘

That is, agent 𝑖𝑖 may envy agent 𝑘𝑘, but the envy can be eliminated 
if we remove any single item from 𝑘𝑘′𝑠𝑠 bundle

[15, 10, 20]

[1, 20, 10]

EF1 ? 

EFX ? 

J. Garg (ADFOCS 2020)



EFX: Existence

 General Valuations [PR18]  
 Identical Valuations 
 𝑛𝑛 = 2

 Additive Valuations 
 𝑛𝑛 = 3 [CGM20]   

Additive (𝑛𝑛 > 3), General (𝑛𝑛 > 2)
“Fair division’s biggest problem” [P20]

J. Garg (ADFOCS 2020)



Summary

Covered
 EF1 (existence/polynomial-

time algorithm)
 EF1 + PO (partially)
 EFX 

Not Covered
 EFX for 3 (additive) agents
 Partial EFX allocations

 Little Charity [CKMS20]
 High Nash welfare [CGH19]

 Chores
 EF1 (existence/ polynomial-

time algorithm)

Major Open Questions (additive valuations)
 EF1+PO: Polynomial-time algorithm 
 EF1+PO: Existence for chores
 EFX : Existence 

J. Garg (ADFOCS 2020)
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