# Lecture 11 <br> Other Solution Concepts and Game Models 

## CS598

Ruta Mehta

Some slides are borrowed from V. Conitzer's presentations.

## So far

- Normal-form games
$\square$ Multiple rational players, single shot, simultaneous move
- Nash equilibrium
$\square$ Existence
$\square$ Computation in two-player games.


## Today:

■ Issues with NE
$\square$ Multiplicity
$\square$ Selection: How players decide/reach any particular NE

- Possible Solutions
$\square$ Dominance: Dominant Strategy equilibria
$\square$ Arbitrator/Mediator: Correlated equilibria, Coarsecorrelated equilibria
$\square$ Communication/Contract: Stackelberg equilibria, Nash bargaining
- Other Games
$\square$ Extensive-form Games, Bayesian Games


## Dominance

- Strict dominance: For player move $s_{i}$ strictly dominates $s_{i}^{\prime}$ if no matter what others play $s_{i}$ gives better payoff than $s_{i}^{\prime}$
$\square$ for all $s_{-i}, u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right) \quad-i=$ "the player(s)
- $s_{i}$ weakly dominates $s_{i}^{\prime}$ if other than $i$ "
$\square$ for all $s_{-i}, u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$; and
$\square$ for some $s_{-i}, u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$



## Dominant Strategy Equilibrium

Playing move $s$ is best for me, no matter what others play.

- For each player $i$, there is a (move) strategy $s_{i}$ that (weakly) dominates all other strategies.
$\square$ for all $\mathrm{i}, \mathrm{s}_{\mathrm{i}}^{\prime}, s_{-i}, u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$;
Example?


## Dominance by Mixed strategies

- Example of dominance by a mixed strategy:



## Iterated dominance: path (in)dependence

Iterated weak dominance is path-dependent: sequence of eliminations may determine which solution we get (if any) (whether or not dominance by mixed strategies allowed)


Iterated strict dominance is path-independent: elimination process will always terminate at the same point (whether or not dominance by mixed strategies allowed)


NE: $\quad x^{T} A y \geq x^{\prime T} A y, \forall x^{\prime} \quad x^{T} B y \geq x^{T} B y^{\prime}, \forall y^{\prime}$
No one plays dominated strategies. What if they can discuss beforehand?

## Players: \{Alice, Bob\}

Two options: \{Football, Tennis\}


Instead they agree on $1 / 2(\mathrm{~F}, \mathrm{~T}), 1 / 2(\mathrm{~T}, \mathrm{~F})$
Payoffs are $(1.5,1.5) \quad$ Fair!
Needs a common coin toss!

## Correlated Equilibrium - (CE) (Aumann'74)

- Mediator declares a joint distribution $P$ over $\mathrm{S}=\times_{i} S_{i}$
- Tosses a coin, chooses $s=\left(s_{1}, \ldots, s_{n}\right) \sim P$.
- Suggests $\mathrm{s}_{i}$ to player $i$ in private
- $P$ is at equilibrium if each player wants to follow the suggestion when others do.
$\square U_{i}\left(s_{i}, P_{\left(s_{i}, .\right)}\right) \geq U_{i}\left(s_{i}^{\prime}, P_{\left(s_{i}, .\right)}\right), \forall s_{i}^{\prime} \in S_{1}$ $\sum_{s_{-i} \in S_{-i}} P\left(s_{i}, s_{-i}\right) U_{i}\left(s_{i}, s_{-i}\right) \quad$ Linear in P variables!

Players: \{Alice, Bob\}
Two options: \{Football, Shopping\}


Instead they agree on $1 / 2(\mathrm{~F}, \mathrm{~S}), 1 / 2(\mathrm{~S}, \mathrm{~F})$
Payoffs are (1.5, 1.5) Fair!

> Prisoner's Dilemma
> NC is dominated (Aumann)
> When Alice is suggested R
> Bob must be following $P_{(R, .)}=(0,1 / 6,1 / 6)$
> Following the suggestion gives her $1 / 6$
> While P gives 0 , and S gives $1 / 6$.

## Computation: Linear Feasibility Problem

Game (A, B). Find, J.D. $P=\left[\begin{array}{ccc}p_{11} & \ldots & p_{1 n} \\ \vdots & \vdots & \vdots \\ p_{m 1} & \ldots & p_{m n}\end{array}\right]$
$\begin{array}{lll} & \sum_{j} A_{i j} p_{i j} \geq \sum_{j} A_{i^{\prime} j} p_{i j} & \forall i, i^{\prime} \in S_{1} \\ \text { s.t. } & \sum_{i} B_{i j} p_{i j} \geq \sum_{i} B_{i j^{\prime}} p_{i j} & \forall j, j^{\prime} \in S_{2}\end{array}$

$$
\sum_{i j} p_{i j}=1
$$

N-player game: Find distribution P over $S=\times_{i=1}^{N} S_{i}$ s.t. $U_{i}\left(s_{i}, P_{\left(s_{i}, .\right)}\right) \geq U_{i}\left(s_{i}^{\prime}, P_{\left(s_{i}, .\right)}\right), \forall s_{i}, s_{i}^{\prime} \in S_{i}$

$$
\uparrow \sum_{s \in S} P(s)=1
$$

$$
\sum_{s_{-i} \in S_{-i}} U_{i}\left(s_{i}, s_{-i}\right) P\left(s_{i}, s_{-i}\right) \quad \text { Linear in } \mathrm{P} \text { variables! }
$$

## Computation: Linear Feasibility Problem

N-player game: Find distribution P over $S=\times_{i=1}^{N} S_{i}$
s.t. $U_{i}\left(s_{i}, P_{(i, .)}\right) \geq U_{i}\left(s_{i}^{\prime}, P_{\left(s_{i, .}\right)}\right), \forall s_{i}, s_{i}^{\prime} \in S_{i}$

$$
\begin{aligned}
& \quad \uparrow \quad \sum_{s \in S} P(s)=1 \\
& \sum_{s_{-i} \in S_{-i}} U_{i}\left(s_{i}, s_{-i}\right) P\left(s_{i}, s_{-i}\right) \quad \text { Linear in P variables! }
\end{aligned}
$$

Can optimize any convex function as well!

## Coarse- Correlated Equilibrium

- After mediator declares $P$, each player opts in or out.
- Mediator tosses a coin, and chooses $\mathrm{s} \sim \mathrm{P}$.
- If player $i$ opted in, then the mediator suggests her $s_{i}$ in private, and she has to obey.
■ If she opted out, then (knowing nothing about s) plays a fixed strategy $t \in S_{i}$
- At equilibrium, each player wants to opt in, if others are.

$$
U_{i}(P) \geq U_{i}\left(t, P_{-i}\right), \forall t \in S_{i}
$$

Where $P_{-i}$ is joint distribution of all players except $i$.

## Importance of (Coarse) CE

- Natural dynamics quickly arrive at approximation of such equilibria.
$\square$ No-regret, Multiplicative Weight Update (MWU)
- Poly-time computable in the size of the game.
$\square$ Can optimize a convex function too.


## Show the following



## Extensive-form Game

- Players move one after another
$\square$ Chess, Poker, etc.
$\square$ Tree representation.

Strategy of a player:
What to play at each of its node.


Entry game

## A poker-like game

- Both players put 1 chip in the pot
- Alice gets a card (King is a winning card, Jack a losing card)
- Alice decides to raise (add one to the pot) or check
- Bob decides to call (match) or fold (P1 wins)
- If Bob called, Alice's
card determines pot winner



## Poker-like game in normal form



|  | cc | cf | fc | ff |
| :---: | :---: | :---: | :---: | :---: |
| cr | 0,0 | 0,0 | $1,-1$ | $1,-1$ |
| rc | $.5,-.5$ | $1.5,-1.5$ | 0,0 | $1,-1$ |
| cr | $-.5, .5$ | $-.5, .5$ | $1,-1$ | $1,-1$ |
| cc | 0,0 | $1,-1$ | 0,0 | $1,-1$ |
|  |  |  |  |  |

Can be exponentially big!

## Sub-Game Perfect Equilibrium

- Every sub-tree is at equilibrium
- Computation when perfect information (no nature/chance move): Backward induction



## Sub-Game Perfect Equilibrium

- Every sub-tree is at equilibrium
- Computation when perfect information (no nature/chance move): Backward induction




# Corr. Eq. in Extensive form Game 

- How to define?
$\square \mathrm{CE}$ in its normal-form representation.
- Is it computable?
$\square$ Recall: exponential blow up in size.
- Can there be other notions?

See "Extensive-Form Correlated Equilibrium: Definition and Computational Complexity" by von Stengel and Forges, 2008.

Commitment (Stackelberg strategies)

## Commitment



- Suppose the game is played as follows:
- Alice commits to playing one of the rows,
- Bob observes the commitment and then chooses a column
- Optimal strategy for Alice: commit to Down


## Commitment: an extensive-form game

For the case of committing to a pure strategy:


## Commitment to mixed strategies



Also called a Stackelberg (mixed) strategy

## Commitment: an extensive-form game

- ... for the case of committing to a mixed strategy:

- Economist: Just an extensive-form game, nothing new here
- Computer scientist: Infinite-size game! Representation matters


# Computing the optimal mixed strategy to commit to <br> [Conitzer \& Sandholm EC'06] 

- Player 1 (Alice) is a leader.

■ Separate LP for every column $j^{*} \in S_{2}$ :
$\operatorname{maximize} \sum_{i} x_{i} A_{i j^{*}} \quad$ Alice's utility when Bob plays $j^{*}$
subject to $\forall j, \quad\left(x^{T} B\right)_{j^{*}} \geq\left(x^{T} B\right)_{j} \quad$ Playing $j^{*}$ is best for Bob

$$
x \geq 0, \sum_{i} x_{i}=1 \quad x \text { is a probability distribution }
$$

Among soln. of all the LPs, pick the one that gives max utility.

## On the game we saw before


maximize $1 x_{1}+0 x_{2}$
subject to

$$
\begin{gathered}
x_{1}+x_{2}=1 \\
x_{1} \geq 0, x_{2} \geq 0
\end{gathered}
$$

maximize $3 x_{1}+2 x_{2}$ subject to

$$
\mathbf{0} x_{1}+1 x_{2} \geq 1 x_{1}+\mathbf{0} x_{2}
$$

$$
x_{1}+x_{2}=1
$$

$$
x_{1} \geq 0, x_{2} \geq 0
$$

## Generalizing beyond zero-sum games

Minimax, Nash, Stackelberg all agree in zero-sum games

minimax strategies
zero-sum games
general-sum games

Nash equilibrium
zero-sum games
general-sum games

Stackelberg mixed strategies

## Other nice properties of commitment to mixed strategies

- No equilibrium selection problem

- Leader's payoff at least as good as any

Nash eq. or even correlated eq.
(von Stengel \& Zamir [GEB '10])


## Bayesian Games

## So far in Games,

- Complete information (each player has perfect information regarding the element of the game).


## Bayesian Game

- A game with incomplete information
- Each player has initial private information, type.
- Bayesian equilibrium: solution of the Bayesian game


## Bayesian game

- Utility of a player depends on her type and the actions taken in the game
$\square \theta_{\mathrm{i}}$ is player i's type, $\theta_{i} \sim \Theta_{i}$. Utilily when $\theta_{i}$ type and $s$ play is $u_{i}\left(\theta_{i}, s\right)$
$\square$ Each player knows/learns its own type, but only distribution of others (before choosing action)
- Pure strategy $s_{i}: \Theta_{i} \rightarrow S_{i}$ (where $\mathrm{S}_{\mathrm{i}}$ is i's set of actions)
(In general players can also receive signals about other players' utilities; we will not go into this)

| row player (Alice) U <br> type 1 (prob. 0.5) D | L | R | column player (Bob)U type 1 (prob. 0.5) |  | L | R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | 6 |  |  | 4 | 6 |
|  | 2 | 4 |  |  | 4 | 6 |
|  | L | R | column player type 2 (prob. 0.5) |  | L | R |
| row player U | 2 | 4 |  | U | 2 | 2 |
| type 2 (prob. 0.5) D | 4 | 2 |  | D | 4 | 2 |

## Car Selling Game

- A seller wants to sell a car
- A buyer has private value ' $v$ ' for the car w.p. $P(v)$
- Sellers knows P, but not v
- Seller sets a price ' $p$ ', and buyer decides to buy or not buy.
- If sell happens then the seller gets $p$, and buyer gets $(v-p)$.

$$
\begin{aligned}
& S_{1}=\text { All possible prices, } \Theta_{1}=\{1\} \\
& S_{2}=\{\text { buy, not buy }\}, \quad \Theta_{2}=\text { All possible ' } \mathrm{v} \text { ' } \\
& U_{1}(1,(p, \text { buy }))=p, \quad \mathrm{U}_{1}(1,(p, \text { not buy }))=0 \\
& U_{2}(v,(p, \text { buy }))=v-p, \quad U_{2}(v,(p, \text { not buy }))=0
\end{aligned}
$$

## Converting Bayesian games to normal form

| $\begin{array}{ll} \text { row player } \\ \text { type } 1(\text { prob. } 0.5)_{\mathrm{D}} & \mathrm{U} \end{array}$ | L | R | $\begin{aligned} & \text { column player } \mathrm{U} \\ & \text { type } 1(\text { prob. } 0.5) \end{aligned}$ | L R |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 | 6 |  | 4 | 6 |
|  | 2 | 4 |  | 4 | 6 |
|  | L | R |  | L | R |
| row player U | 2 | 4 | column player U | 2 | 2 |
| type 2 (prob. 0.5 ) D | 4 | 2 | type 2 (prob. 0.5) D | 4 | 2 |


|  | type 1 : L type 2: L | $\begin{aligned} & \text { type } 1: L \\ & \text { type } 2: R \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { type } 1: \mathrm{R} \\ & \text { type } 2: \mathrm{L} \end{aligned}$ | $\begin{aligned} & \text { type } 1: R \\ & \text { type } 2: R \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| type 1: U type 2: U | 3, 3 | 4, 3 | 4, 4 | 5, 4 |
| type 1: U type 2: D | 4, 3.5 | 4, 3 | 4, 4.5 | 4, 4 |
| type 1: D <br> type 2: U | 2, 3.5 | 3, 3 | 3, 4.5 | 4, 4 |
| type 1: D <br> type 2: D | 3, 4 | 3, 3 | 3, 5 | 3, 4 |

## Bayes-Nash equilibrium

- A profile of strategies is a Bayes-Nash equilibrium if it is a Nash equilibrium for the normal form of the game
$\square$ Minor caveat: each type should have $>0$ probability
- Alternative definition:
$\square$ Mixed strategy of player i, $\sigma_{i}: \Theta_{i} \rightarrow \Delta\left(S_{i}\right)$
$\square$ for every i , for every type $\theta_{\mathrm{i}}$, for every alternative action $\mathrm{s}_{\mathrm{i}}$, we must have:

$$
\begin{aligned}
& \Sigma_{\theta_{-i} \mathrm{i}} \underbrace{}_{\underset{\mathrm{P}}{\mathrm{P}}\left(\theta_{-\mathrm{i}}\right)})_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\left(\theta_{\mathrm{i}}, \sigma_{\mathrm{i}}\left(\theta_{\mathrm{i}}\right), \sigma_{-\mathrm{i}}\left(\theta_{-\mathrm{i}}\right)\right) \geq \Sigma_{\theta_{-\mathrm{i}}} \mathrm{P}\left(\theta_{-\mathrm{i}}\right) \mathrm{u}_{\mathrm{i}}\left(\theta_{\mathrm{i}}, \mathrm{~s}_{\mathrm{i}}, \sigma_{-\mathrm{i}}\left(\theta_{-\mathrm{i}}\right)\right) \\
& \Pi_{p \neq i} P\left(\theta_{p}\right)
\end{aligned}
$$

# Again what about corr. eq. in Bayesian 

 games?Notion of signaling.

Look up the literature.

