Fair Division through Competitive Equilibrium

CS 598RM Aug 27 & Sept 1, 2020

Fair Division

Goal: allocate *fairly and efficiently*.

And do it quickly!

Example: Half moon cookie

ASSETS

0

LIABILITIES

UCLA Kidney Exchan

I plan to cover

Part 1: Divisible items

- Competitive equilibrium and Properties
- Computation: Fisher, Spending-restricted, Hylland-Zeckhauser

Part 2: Indivisible items

And lots of open questions!

Markets

One of the biggest real-life mechanism that enables (re)distribution of resources.

And they seem to work!

Q: What? Why? And How?

Markets

Competitive Equilibrium: Demand = Supply

Buy optimal bundle

Fisher's Model (1891)

- *A*: set of *n* agents
- *G*: set of *m* divisible goods
- Each agent *i* has
 - \Box budget of B_i dollars

□ valuation function $v_i : R^m_+ \to R_+$ over bundle of goods

(non-decreasing, non-negative)

Supply of every good is one

Competitive Equilibrium (CE)

Given prices $p = (p_1, ..., p_m)$ of goods

Agent *i* demands an *optimal bundle*, i.e., affordable bundle that maximizes her utility

$$x_i \in \max_{x \in R^m_+: (p \cdot x) \le B_i} v_i(x)$$

p is at competitive equilibrium (CE) if *market clears* Demand = Supply

CE: Linear Valuations

Optimal bundle: can spend at most B_i dollars.

Intuitition

spend wisely: on goods that gives max. utility-per-dollar $\frac{v_{ij}}{p_i}$

CE: Linear Valuations

Optimal bundle: can spend at most B_i dollars.

$$\sum_{j \in M} v_{ij} x_{ij} = \sum_{j} \frac{v_{ij}}{p_j} (p_j x_{ij}) \le \left(\max_{k \in G} \frac{v_{ik}}{p_k} \right) \sum_{j} p_j x_{ij} \le \left(\max_{k \in G} \frac{v_{ik}}{p_k} \right) B_i$$
utility per dollar
(bang-per-buck)
(\$ spent)
(\$ spent)

CE: Linear Valuations

Optimal bundle: can spend at most B_i dollars.

$$\sum_{j \in M} v_{ij} x_{ij} = \sum_{j \in D_{ij}} (p_j x_{ij}) \le \left(\max_{k \in G} \frac{v_{ik}}{p_k} \right) \sum_{j} p_j x_{ij} \le \left(\max_{k \in G} \frac{v_{ik}}{p_k} \right) B_i$$

attility per dollar
(bang-per-buck)
1. Spends all of B_i.
 $(p, x_i) = B_i$
2. Only on MBB goods
 $x_{ij} > 0 \Rightarrow \frac{v_{ij}}{p_j} = MBB$

CE Characterization

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (x_1, ..., x_n)$ are at equilibrium iff

Optimal bundle (OB): For each agent *i*

$$\Box p \cdot x_i = B_i$$

$$\Box x_{ij} > 0 \Rightarrow \frac{v_{ij}}{p_j} = \max_{k \in M} \frac{v_{ik}}{p_k}, \text{ for all good } j$$

Market clears: For each good *j*,

$$\sum_{i} x_{ij} = 1.$$

2 Buyers (2, 2), 2 Items (2, 2) with unit supply
Each buyer has budget of \$1 and a linear utility function

2 Buyers (2, 2), 2 Items (0, 0) with unit supply
Each buyer has budget of \$1 and a linear utility function

Demand \neq Supply

MBB

Not an Equilibrium!

2 Buyers (2, 2), 2 Items (2, 2) with unit supply
Each buyer has budget of \$1 and a linear utility function

2 Buyers (2, 2), 2 Items (2, 2) with unit supply
Each buyer has budget of \$1 and a linear utility function

Demand = Supply

Equilibrium!

Existence? Many ways to prove. We will see one later.

Properties

Efficiency: Pareto optimality

- An allocation $Y = (y_1, y_2, ..., y_n)$ Pareto dominates another allocation $X = (x_1, x_2, ..., x_n)$ if $\Box u_i(y_i) \ge u_i(x_i)$, for all buyers *i* and
 - \square $u_k(y_k) > u_k(x_k)$ for some buyer k

Efficiency: Pareto optimality

An allocation Y = (y₁, y₂, ..., y_n) Pareto dominates another allocation X = (x₁, x₂, ..., x_n) if
 □ u_i(y_i) ≥ u_i(x_i), for all buyers i and
 □ u_k(y_k) > u_k(x_k) for some buyer k

X is said to be Pareto optimal (PO) if there is no Y that Pareto dominates it

First Welfare Theorem

Theorem: Competitive equilibrium outputs a PO allocation **Proof:** (by contradiction)

- Let (*p*, *X*) be equilibrium prices and allocations
- Suppose *Y* Pareto dominates *X*. That is, $v_i(y_i) \ge v_i(x_i), \forall i \in N$, and $v_k(y_k) > v_k(x_k)$ for some *k*
- Total cost of *Y* is $\sum_{i} (p \cdot y_i) \le \sum_{j} p_j = \sum_{i} B_i$
- k demands x_k at prices p and not y_k , because?
- Money *agent i* needs to purchase y_i ?

CEEI [Foley 1967, Varian 1974] Competitive Equilibrium with Equal Income

Problem: Fairly allocate a set of goods among agents without involving money

Give every agent (*fake*) \$1 and compute competitive equilibrium!

Envy-Free (EF)

Allocation X is **envy-free** if every agent prefers her own bundle than anyone else's. That is, for each agent *i*,

 $v_i(x_i) \ge v_i(x_k), \forall k \in A$

Theorem: CEEI is envy-free

Proof: Let (p, X) be a CEEI.

- Since the budget of each agent *i* is \$1, $(p \cdot x_i) = 1$.
- Can agent *i* afford agent *k*'s bundle (x_k) ?

YES

But she demands x_i instead. Why? $v_i(x_i) \ge v_i(x_k)$

Proportionality

Allocation X is **proportional** if every agent gets at least the average of her total value of all goods. That is, for each agent *i*,

 $v_i(x_i) \ge \frac{v_i(G)}{n}$

Theorem: CEEI is envy-free

Proof: (EF \Rightarrow Proportional)

• Let (p, X) be a CEEI.

• X is EF. That is, $v_i(x_i) \ge v_i(x_k)$, $\forall k \in A$. Sum-up over all j $n * v_i(x_i) \ge \sum_{k \in A} v_i(x_k) = v_i\left(\sum_{k \in A} x_k\right) = v_i(G)$

CEEI Properties: Summary

CEEI Prices

CEEI allocation is

- Pareto optimal (PO)
- Envy-free
- Proportional

CEEI Properties: Summary

CEEI allocation is

- Pareto optimal (PO)
- Envy-free
- Proportional

Next...

 Nash welfare maximizing

CEEI Allocation: $x_1 = \left(\frac{1}{4}, 1\right), x_2 = \left(\frac{3}{4}, 0\right)$ $v_1(x_1) = \frac{3}{2}, v_2(x_2) = \frac{9}{4}$ $v_1(x_2) = \frac{3}{2}, v_2(x_1) = \frac{7}{4}$

Social Welfare

 $\sum v_i(x_i)$ $i \in A$

Utilitarian

Issues: May assign 0 value to some agents. Not scale invariant!

Nash Welfare

max:
$$\prod_{i \in A} v_i(x_i)$$

s.t.
$$\sum_{i \in A} x_{ij} \le 1, \forall j \in G$$
$$x_{ij} \ge 0, \quad \forall i, \forall j$$

Feasible allocations

Max Nash Welfare (MNW)

max:
$$\log\left(\prod_{i\in A} v_i(x_i)\right)$$

s.t.
$$\sum_{i \in A} x_{ij} \le 1, \forall j \in G$$
$$x_{ij} \ge 0, \qquad \forall i, \forall j$$

Feasible allocations

Max Nash Welfare (MNW)

max:
$$\sum_{i \in A} \log v_i(x_i)$$

s.t.
$$\sum_{i \in A} x_{ij} \leq 1, \ \forall j \in G$$
$$x_{ij} \geq 0, \qquad \forall i, \forall j$$

Feasible allocations

Eisenberg-Gale Convex Program '59

max:
$$\sum_{i \in A} \log v_i(x_i)$$

Dual var.

s.t. $\sum_{i \in A} x_{ij} \le 1, \forall j \in G \longrightarrow p_j$ $x_{ij} \ge 0, \quad \forall i, \forall j$

Theorem. Solutions of EG convex program are exactly the CEEI (p, X). *Proof.*

Consequences: CEEI

- Exists
- Forms a convex set
- Can be *computed* in polynomial time
- MNW allocations = CEEI allocations

Theorem. Solutions of EG convex program are exactly the CEEI (p, X). *Proof.* \Rightarrow (Using KKT)

Recall: CEEI Characterization

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (x_1, ..., x_n)$

- Optimal bundle: For each buyer *i* $\square p \cdot x_i = 1$ $\square x_{ij} > 0 \Rightarrow \frac{v_{ij}}{p_j} = \max_{k \in M} \frac{v_{ik}}{p_k}, \text{ for all good } j$
- Market clears: For each good *j*,

$$\sum_{i} x_{ij} = 1.$$

Generalizing to CE

Budget of each agent i is B_i (need not be 1)

 $\max : \sum_{i \in A} B_i \log v_i(x_i)$ s.t. $\sum_{i \in N} x_{ij} \le 1, \forall j \in G$ \longrightarrow Optimal solutions $x_{ij} \ge 0, \quad \forall i, \forall j$

 $B = \sum_{i} B_i$

CE Properties: Pareto-optimal

- Maximizes weighted NSW, $\left(\Pi_i v_i(x_i)^{B_i}\right)^{1/B}$
- Weighted envy-free: $\frac{v_i(x_i)}{B_i} \ge \frac{v_i(x_k)}{B_k}$, $\forall i, k$

• Weighted proportional: $v_i(x_i) \ge \frac{B_i}{B} v_i(G), \forall i$

Efficient (Combinatorial) Algorithms

Polynomial time

■ Flow based [DPSV'08]

□ General exchange model (barter system) [DM'16, DGM'17, CM'18]

Scaling + path following [GM.SV'13]

Strongly polynomial time

- Scaling + flow [0'10, V'12]
 - □ Exchange model (barter system) [GV'19]

We will discuss some in the next lecture

Generalizations

Spending Restricted [CG'18] (for MNW with indivisible goods.)

• CE where total money spent on good j is at most c_j

Hylland-Zeckhauser (for PO and strategy-proof matching)

- n agents and n goods
- Every agent has: (a) linear utilities, (b) unit budget,
 (c) wants at most one unit of total allocation
- HZ'79: Equilibrium exists, is PO, and is truthful at large.
 For indivisible goods, think of allocation as a probabilities/time-share.

 $v_i : \mathbb{R}^n \to \mathbb{R}$

Irrational Eq. FIXP-complete [GM.VY'17]

Irrational Eq. FIXP-complete [EY'09]

Tons of other works (we will not cover)

- More generalizations like utility-restriction [CDGJMVY'17, BGHM'17,...]
- Simplex-like path-following algorithms [E'76, GM.SV'12,GM.V'14]
- Auction based algorithms [GKV'04, GK'06, KMV'07 GHV'19]
- Dynamics [WZ'07, Z'11, BDX'11, CCT'18, CHN19, BNM.'19 ...]
- Hardness results [CT'09,VY'09, GM.VY'17,...]

. . .

Strategization and Price-of-Anarchy [ABGM.S'10,CDZ'11, CDZZ'12, BCDF-RFZ'14, M.TVV'14, BGM.'18,...]

Tons of other works (we will not cover)

Cake Cutting