Fair Division through Competitive Equilibrium

CS 598RM

Aug 27 \& Sept 1, 2020

Ruta Mehta
IILLINOIS

Fair Division

Scares resources

Goal: allocate fairly and efficiently.
And do it quickly!

Example: Half moon cookie

(ii)

(iii)

I plan to cover

Part 1: Divisible items

$\square \quad$ Competitive equilibrium and Properties
\square Computation: Fisher, Spending-restricted, HyllandZeckhauser

Part 2: Indivisible items

And lots of open questions!

Markets

One of the biggest real-life mechanism that enables (re)distribution of resources.

And they seem to work!

Q: What? Why? And How?

Markets

Competitive Equilibrium:
 Demand = Supply

Buy optimal bundle

Fisher's Model (1891)

- A : set of n agents
- G : set of m divisible goods
- Each agent i has
\square budget of B_{i} dollars
\square valuation function $v_{i}: R_{+}^{m} \rightarrow R_{+}$over bundle of goods (non-decreasing, non-negative)
- Supply of every good is one

Competitive Equilibrium (CE)

Given prices $p=\left(p_{1}, \ldots, p_{m}\right)$ of goods

- Agent i demands an optimal bundle, i.e., affordable bundle that maximizes her utility

$$
x_{i} \in \max _{x \in R_{+}^{m}:(p \cdot x) \leq B_{i}} v_{i}(x)
$$

- p is at competitive equilibrium (CE) if market clears

Demand = Supply

CE: Linear Valuations

$$
v_{i}\left(x_{i}\right)=\sum_{j \in M} v_{i j} x_{i j}
$$

Utility per unit

Optimal bundle: can spend at most B_{i} dollars.

Intuitition

spend wisely: on goods that gives max. utility-per-dollar $\frac{v_{i j}}{p_{j}}$

CE: Linear Valuations

$$
v_{i}\left(x_{i}\right)=\sum_{j \in M}^{\sum_{\text {Utility per unit }}} \underset{v_{i j} \chi_{i j}}{\vdots}
$$

Optimal bundle: can spend at most B_{i} dollars.

CE: Linear Valuations

$$
v_{i}\left(x_{i}\right)=\sum_{j \in M}^{v_{i j} x_{i j}} \underset{\text { Utility per unit }}{\underbrace{}_{i}}
$$

Optimal bundle: can spend at most B_{i} dollars.

$$
\begin{aligned}
& \sum_{j \in M} v_{i j} x_{i j}=\sum_{j} \frac{v_{i j}}{p_{j}}\left(\sum_{p} x_{i j}\right) \leq\left(\max _{k \in G} \frac{v_{i k}}{p_{k}}\right) \sum_{j} p_{j} x_{i j} \leq\left(\max _{k \in G} \frac{v_{i k}}{p_{k}}\right) B_{i} \\
&= \\
& \text { iff }
\end{aligned}
$$

1. Spends all of B_{i}.

$$
\left(p, x_{i}\right)=B_{i}
$$

2. Only on MBB goods

$$
x_{i j}>0 \Rightarrow \frac{v_{i j}}{p_{j}}=M B B
$$

CE Characterization

Pirces $p=\left(p_{1}, \ldots, p_{m}\right)$ and allocation $X=\left(x_{1}, \ldots, x_{n}\right)$ are at equilibrium iff

■ Optimal bundle (OB): For each agent i
$\square p \cdot x_{i}=B_{i}$
$\square x_{i j}>0 \Rightarrow \frac{v_{i j}}{p_{j}}=\max _{k \in M} \frac{v_{i k}}{p_{k}}$, for all good j

- Market clears: For each good j,

$$
\sum_{i} x_{i j}=1
$$

Example

- Each buyer has budget of $\$ 1$ and a linear utility function

Example

- Each buyer has budget of $\$ 1$ and a linear utility function

Not an Equilibrium!

Example

- Each buyer has budget of $\$ 1$ and a linear utility function

Prices

4

2

Example

- Each buyer has budget of $\$ 1$ and a linear utility function

Equilibrium!

Existence?

Many ways to prove. We will see one later.

Properties

Efficiency: Pareto optimality

- An allocation $Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ Pareto dominates another allocation $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ if
$\square u_{i}\left(y_{i}\right) \geq u_{i}\left(x_{i}\right)$, for all buyers i and
$\square u_{k}\left(y_{k}\right)>u_{k}\left(x_{k}\right)$ for some buyer k

Efficiency: Pareto optimality

- An allocation $Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ Pareto dominates another allocation $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ if
$\square u_{i}\left(y_{i}\right) \geq u_{i}\left(x_{i}\right)$, for all buyers i and
$\square u_{k}\left(y_{k}\right)>u_{k}\left(x_{k}\right)$ for some buyer k
- X is said to be Pareto optimal (PO) if there is no Y that Pareto dominates it

First Welfare Theorem

Theorem: Competitive equilibrium outputs a PO allocation
Proof: (by contradiction)

- Let (p, X) be equilibrium prices and allocations
- Suppose Y Pareto dominates X. That is,

$$
v_{i}\left(y_{i}\right) \geq v_{i}\left(x_{i}\right), \forall i \in N, \text { and } v_{k}\left(y_{k}\right)>v_{k}\left(x_{k}\right) \text { for some } k
$$

- Total cost of Y is $\sum_{i}\left(p \cdot y_{i}\right) \leq \sum_{j} p_{j}=\sum_{i} B_{i}$
- k demands x_{k} at prices p and not y_{k}, because?
- Money agent i needs to purchase y_{i} ?

 Competitive Equilibrium with Equal Income

Problem: Fairly allocate a set of goods among agents without involving money

- Give every agent (fake) \$1 and compute competitive equilibrium!

Envy-Free (EF)

Allocation X is envy-free if every agent prefers her own bundle than anyone else's. That is, for each agent i,

$$
v_{i}\left(x_{i}\right) \geq v_{i}\left(x_{k}\right), \forall k \in A
$$

Theorem: CEEI is envy-free
Proof: Let (p, X) be a CEEI.

- Since the budget of each agent i is $\$ 1,\left(p \cdot x_{i}\right)=1$.
- Can agent i afford agent k 's bundle $\left(x_{k}\right)$?

YES

- But she demands x_{i} instead. Why?

$$
v_{i}\left(x_{i}\right) \geq v_{i}\left(x_{k}\right)
$$

Proportionality

Allocation X is proportional if every agent gets at least the average of her total value of all goods. That is, for each agent i,

$$
v_{i}\left(x_{i}\right) \geq \frac{v_{i}(G)}{n}
$$

Theorem: CEEI is envy-free
Proof: (EF \Rightarrow Proportional)

- Let (p, X) be a CEEI.
- X is EF. That is, $v_{i}\left(x_{i}\right) \geq v_{i}\left(x_{k}\right), \forall k \in A$. Sum-up over all j

$$
n * v_{i}\left(x_{i}\right) \geq \sum_{k \in A} v_{i}\left(x_{k}\right)=v_{i}\left(\sum_{k \in A} x_{k}\right)=v_{i}(G)
$$

CEEI Properties: Summary

CEEI allocation is

- Pareto optimal (PO)
- Envy-free

- Proportional

CEEI Properties: Summary

CEEI
Prices
CEEI allocation is

- Pareto optimal (PO)
- Envy-free
- Proportional

CEEI Allocation:

$$
x_{1}=\left(\frac{1}{4}, 1\right), x_{2}=\left(\frac{3}{4}, 0\right)
$$

Next...
■ Nash welfare maximizing

$$
\begin{aligned}
& v_{1}\left(x_{1}\right)=\frac{3}{2}, \quad v_{2}\left(x_{2}\right)=\frac{9}{4} \\
& v_{1}\left(x_{2}\right)=\frac{3}{2}, \quad v_{2}\left(x_{1}\right)=\frac{7}{4}
\end{aligned}
$$

Social Welfare

$\sum_{i \in A} v_{i}\left(x_{i}\right)$

Utilitarian

Issues: May assign 0 value to some agents. Not scale invariant!

Nash Welfare

$$
\begin{array}{ll}
\max : & \prod_{i \in A} v_{i}\left(x_{i}\right) \\
\begin{array}{ll}
\text { s.t. } & \sum_{i \in A} x_{i j} \leq 1, \quad \forall j \in G \\
& x_{i j} \geq 0, \quad \forall i, \forall j
\end{array}
\end{array}
$$

Feasible allocations

Max Nash Welfare (MNW)

$$
\begin{array}{ll}
\max : & \log \left(\prod_{i \in A} v_{i}\left(x_{i}\right)\right) \\
\text { s.t. } \quad \sum_{i \in A} x_{i j} \leq 1, \quad \forall j \in G \\
& x_{i j} \geq 0, \quad \forall i, \forall j
\end{array}
$$

Feasible allocations

Max Nash Welfare (MNW)

max:
 $\sum_{i \in A} \log v_{i}\left(x_{i}\right)$

$$
\begin{array}{lll}
\text { s.t. } & \sum_{i \in A} x_{i j} \leq 1, & \forall j \in G \\
& x_{i j} \geq 0, & \forall i, \forall j
\end{array}
$$

Feasible allocations

Eisenberg-Gale Convex Program ‘59

max:

Dual var.
s.t. $\quad \sum_{i \in A} x_{i j} \leq 1, \forall j \in G \longrightarrow p_{j}$

$$
x_{i j} \geq 0, \quad \forall i, \forall j
$$

Theorem. Solutions of EG convex program are exactly the CEEI (p, X).
Proof.
Consequences: CEEI

- Exists
- Forms a convex set
- Can be computed in polynomial time
- MNW allocations = CEEI allocations

Theorem. Solutions of EG convex program are exactly the CEEI (p, X). Proof. \Rightarrow (Using KKT)

Recall: CEEI Characterization

Pirces $p=\left(p_{1}, \ldots, p_{m}\right)$ and allocation $X=\left(x_{1}, \ldots, x_{n}\right)$

- Optimal bundle: For each buyer i
$\square p \cdot x_{i}=1$
$\square x_{i j}>0 \Rightarrow \frac{v_{i j}}{p_{j}}=\max _{k \in M} \frac{v_{i k}}{p_{k}}$, for all good j
- Market clears: For each good j,

$$
\sum_{i} x_{i j}=1
$$

Theorem. Solutions of EG convex program are

 exactly the CEEI (p, X).Proof. \Rightarrow (Using KKT)

$$
\forall j, p_{j}>0 \Rightarrow \sum_{i} x_{i j}=1
$$

$$
\text { max: } \sum_{i \in A} \log \left(v_{i}\left(x_{i}\right)\right) \xrightarrow{\sum_{j} v_{i j} x_{i j}}
$$

$$
\text { s.t. } \quad \sum_{i \in A} x_{i j} \leq 1, \forall j \in G \longrightarrow p_{j} \geq 0
$$

$$
x_{i j} \geq 0, \quad \forall i, \forall j
$$

Dual condition to $x_{i j}$:

$$
\begin{aligned}
& \frac{v_{i j}}{v_{i}\left(x_{i}\right)} \leq p_{j} \Rightarrow \frac{v_{i j}}{p_{j}} \leq v_{i}\left(x_{i}\right) \Rightarrow p_{j}>0 \xlongequal{\Rightarrow} \text { market clears } \\
& \rightarrow \text { buy only MBB goods } \\
& x_{i j}>0 \Rightarrow \frac{v_{i j}}{p_{j}}=v_{i}\left(x_{i}\right) \\
& \sum_{j} v_{i j} x_{i j}=\left(\sum_{j} p_{j} x_{i j}\right) v_{i}\left(x_{i}\right) \\
& \Rightarrow \sum_{j} p_{j} x_{i j}=1
\end{aligned}
$$

Generalizing to CE

Budget of each agent i is B_{i} (need not be 1)

EG Formulation:

$$
\max : \sum_{i \in A} B_{i} \log v_{i}\left(x_{i}\right)
$$

s.t. $\quad \sum_{i \in N} x_{i j} \leq 1, \forall j \in G$

$$
x_{i j} \geq 0, \quad \forall i, \forall j
$$

CE Properties: Pareto-optimal

- Maximizes weighted NSW, $\left(\Pi_{i} v_{i}\left(x_{i}\right)^{B_{i}}\right)^{1 / B}$
- Weighted envy-free: $\frac{v_{i}\left(x_{i}\right)}{B_{i}} \geq \frac{v_{i}\left(x_{k}\right)}{B_{k}}, \forall i, k$

$$
B=\sum_{i} B_{i}
$$

- Weighted proportional: $v_{i}\left(x_{i}\right) \geq \frac{B i}{B} v_{i}(G), \forall i$

Efficient (Combinatorial) Algorithms

Polynomial time

- Flow based [DPSV'08]
\square General exchange model (barter system) [DM'16, DGM'17, CM'18]
- Scaling + path following [GM.SV'13]

Strongly polynomial time

- Scaling + flow [O' $\left.10, \mathrm{~V}^{\prime} 12\right]$
\square Exchange model (barter system) [GV'19]
We will discuss some in the next lecture

Generalizations

Spending Restricted [CG' $\left.{ }^{\prime} 18\right]$ (for MNW with indivisible goods.)

- CE where total money spent on good j is at most c_{j}

Hylland-Zeckhauser (for PO and strategy-proof matching)

- n agents and n goods
- Every agent has: (a) linear utilities, (b) unit budget,
(c) wants at most one unit of total allocation
- HZ'79: Equilibrium exists, is PO, and is truthful at large.
\square For indivisible goods, think of allocation as a probabilities/time-share.

Generalization: Valuation Functions

$$
v_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Linear

Generalization: Valuation Functions

EG program works!

$$
v_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

$v_{i}\left(x_{i}\right)=\left(\sum_{j} v_{i j} x_{i j}^{\rho}\right)^{1 / \rho}$
where $\rho \in(-\infty, 1]$

Generalization: Valuation Functions

PPAD-complete [CT’09, VY'09].
Path-following algorithm (empirically fast) [GM.SV'12]

$$
v_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Generalization: Valuation Functions

$$
v_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Irrational Eq.
FIXP-complete [GM.VY'17]

Generalization: Valuation Functions

$$
v_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Irrational Eq. FIXP-complete [EY'09]

Tons of other works (we will not cover)

■ More generalizations like utility-restriction [CDGJMVY' 17, BGHM' ${ }^{\prime} 17, \ldots$.]

- Simplex-like path-following algorithms [E’76, GM.SV' 12, GM.V'14]
- Auction based algorithms [GKV'04, GK'06, KMV'07 GHV' $\left.{ }^{\prime} 19\right]$

■ Dynamics [WZ'07, Z'11, BDX'11, CCT'18, CHN19, BNM.' $19 \ldots]$
■ Hardness results [CT'09,VY'09, GM.VY' $17, \ldots$]

- Strategization and Price-of-Anarchy [ABGM. S' $10, \mathrm{CDZ} Z^{\prime} 11$, CDZZ' 12, BCDF-RFZ' 14, M.TVV' 14, BGM.'18,...]

Tons of other works (we will not cover)

Cake Cutting

