Lecture 3: Computation of CE

CS 598RM

3rd September 2020

Instructor: Ruta Mehta

м

(Recall) Fisher's Model

- Set *A* of *n* agents. Set *G* of *m* divisible goods.
- Each agent *i* has
 - \square budget of B_i dollars
 - □ valuation function $v_i: R_+^m \to R_+$ over bundles of goods.

Linear: for bundle
$$x_i = (x_{i1}, ..., x_{im}),$$

 $v_i(x_i) = \sum_{j \in G} v_{ij} x_{ij}$

Supply of every good is one.

(Recall) Competitive Equilibrium

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (x_1, ..., x_n)$

- Optimal bundle: Agent i demands $x_i \in \operatorname{argmax} v_i(x)$ $x \in R_m^+: p \cdot x \leq B_i$
- Market clears: For each good j, demand = supply

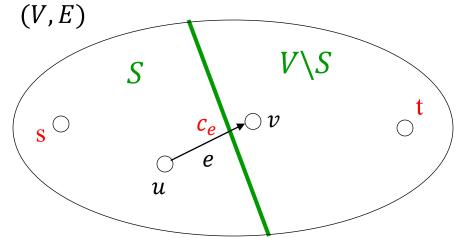
Fairness and efficiency guarantees:

Pareto optimal (PO)
Weighted Envy-free
Weighted Proportional
Maximizes W. NW.

Algorithm: Set up as a "flow problem"

Max Flow (One slide overview)

Directed Graph



Theorem: Max-flow = Min-cut s-t

s-t cut: $S \subset V$, $s \in S$, $t \notin S$

cut-value: $C(S) = \sum_{\substack{(u,v) \in E: \\ u \in S, v \notin S}} c_{(u,v)}$

Min s-t cut: $\min_{S \subset V: s \in S, t \notin S} C(S)$

Given $s, t \in V$. Capacity c_e for each edge $e \in E$. Find maximum flow from s to t, $(f_e)_{e \in E}$ s.t.

Capacity constraint

$$f_e \le c_e$$
, $\forall e \in E$

• Flow conservation: at every vertex $u \neq s$, t total in-flow = total out-flow

Can be solved in strongly polynomial-time

CE Characterization

Pirces $p = (p_1, ..., p_m)$ and allocation $X = (x_1, ..., x_n)$

■ Optimal bundle: Agent *i* demands $x_i \in \underset{x: p \cdot x \leq B_i}{\operatorname{argmax}} v_i(x)$

$$\Box p \cdot x_i = B_i$$

$$\square x_{ij} > 0 \Rightarrow \frac{v_{ij}}{p_j} = \max_{k \in G} \frac{v_{ik}}{p_k}$$
, for all good j

■ Market clears: For each good j, demand = supply

$$\sum_{i} x_{ij} = 1.$$

Competitive Equilibrium → Flow

Pirces
$$p = (p_1, ..., p_m)$$
 and allocation $F = (f_1, ..., f_n)$

$$f_{ij} = x_{ij}p_j$$
 (money spent)

- Optimal bundle: Agent *i* demands $x_i \in argmax_{x: p \cdot x \leq B_i} v_i(x)$
 - $\Box \sum_{j \in G} f_{ij} = B_i$

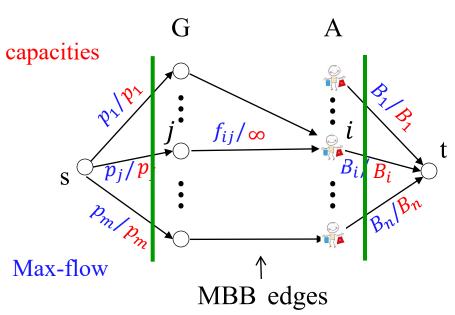
$$\Box f_{ij} > 0 \Rightarrow \frac{v_{ij}}{p_j} = \underbrace{\max_{k \in G} \frac{v_{ik}}{p_k}}_{\text{for all good } j}$$

→ Maximum bang-per-buck (*MBB*)

■ Market clears: For each good j, demand = supply

$$\sum_{i \in N} f_{ij} = p_j$$

Competitive Equilibrium → Flow



CE:
$$(p, F)$$
 s.t.

Opt.

Bundle
$$\begin{cases}
\sum_{j \in M} f_{ij} = B_i \\
f_{ij} > 0 \text{ on MBB edges}
\end{cases}$$
Market
$$\begin{cases}
\sum_{i \in N} f_{ij} = p_j
\end{cases}$$

Max-flow = min-cut
=
$$\sum_{j \in G} p_j = \sum_{i \in A} B_i$$

Issue: Eq. prices and hence also MBB edges not known!

Fix [DPSV'08]: Start with low prices, keep increasing.

Maintain:

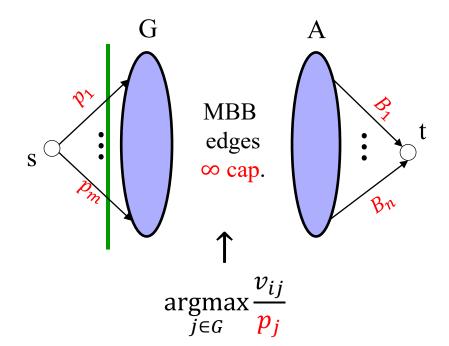
- 1. Flow only on MBB edges
- 2. $Min-cut = \{s\}$ (goods are fully sold)

G MBB edges cap.

Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in G$, $p_j < \min_i \frac{B_i}{m}$, and at least one MBB edge to j



Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in G$, $p_j < \min_i \frac{B_i}{m}$, and at least one MBB edge to j

Increase *p*:

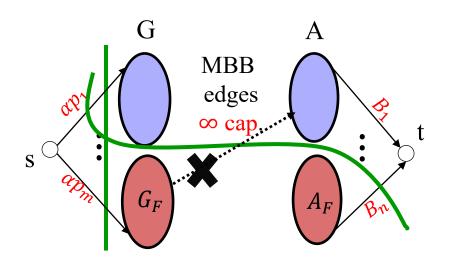
 $= \underset{j \in G}{\operatorname{argmax}}$

Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase $p: \uparrow \alpha$



Observation: If α is increased further, then G_F can not be fully sold. And $\{s\}$ will cease to be a min-cut.

Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

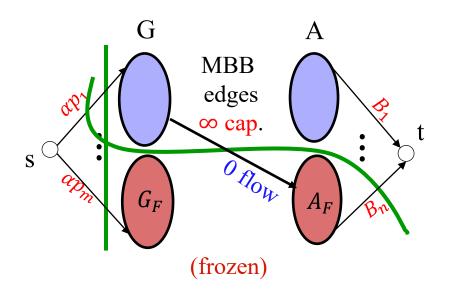
Increase p: $\uparrow \alpha$

Event 1: New cross-cutting min-cut

Agents in A_F exhaust all their money.

 G_F : Goods that have MBB edges only from A_F .

A tight-set.



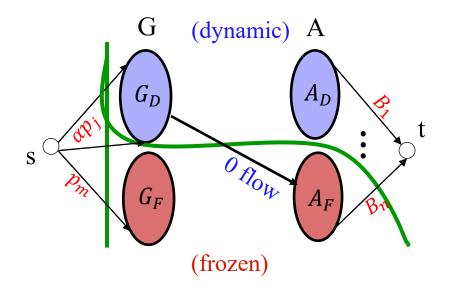
Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: A tight subset G_F Call it *frozen:* (G_F, A_F) .



Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

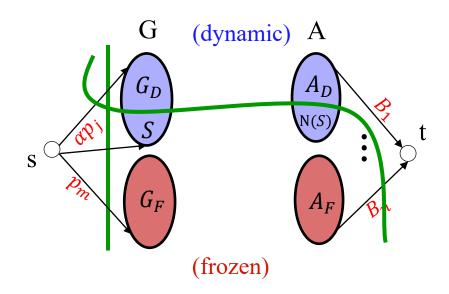
Increase p: $\uparrow \alpha$

Event 1: A tight subset G_F

Call it *frozen*: (G_F, A_F) .

Freeze prices in G_F .

Increase prices in G_D .



Observation: If α is increased further, then **S** can not be fully sold. And $\{s\}$ will cease to be a min-cut.

Invariants

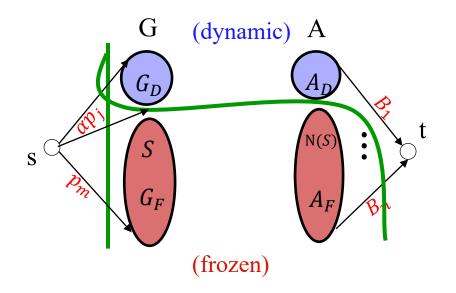
- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$

N(S): Neighbors of SMove (S, N(S)) from dynamic to frozen.



Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$ Move (S, N(S)) to frozen part *Freeze prices in* G_F , and increase in G_D .

G (dynamic) A A i t

(frozen)

Invariants

- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init:
$$\forall j \in M, \ p_j < \min_i \frac{B_i}{n}$$

And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$ Move (S, N(S)) from dynamic to frozen Freeze prices in G_F , and increase in G_D .

OR

Event 2: New MBB edge

Must be between $i \in A_D \& j \in G_F$. Recompute dynamic and frozen.

G (dynamic) A G_D i i G_F G_F

(frozen)

Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M$, $p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

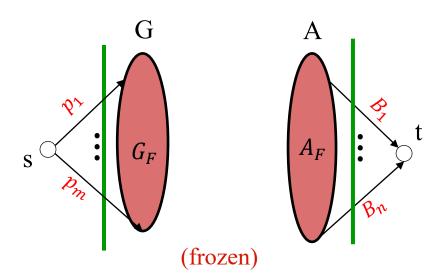
Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$ Move (S, N(S)) from dynamic to frozen Freeze prices in G_F , and increase in G_D .

OR

Event 2: New MBB edge

Has to be from $i \in A_D$ to $j \in G_F$. Recompute dynamic and frozen: Move the component containing good j from frozen to dynamic.



Observations: Prices only increase.

Each increase can be lower bounded.

Both the events can be computed efficiently.

Converges to CE in finite time.

Invariants

- . Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

Init: $\forall j \in M$, $p_j < \min_i \frac{B_i}{n}$ And at least one MBB edge to j

Increase p: $\uparrow \alpha$

Event 1: A tight subset $S \subseteq G_D$ Move (S, N(S)) from dynamic to frozen Freeze prices in G_F , and increase in G_D .

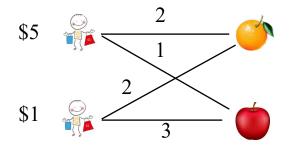
OR

Event 2: New MBB edge Must be from $i \in A_D$ to $j \in G_F$. Recompute dynamic and frozen.

Stop: all goods are frozen.

Example

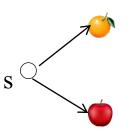
Input

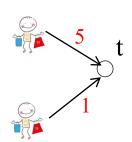


Invariants

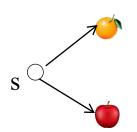
- 1. Flow only on MBB edges
- 2. Min-cut = $\{s\}$ (goods are sold)

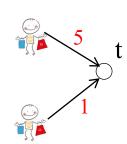
Init.

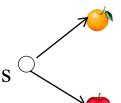




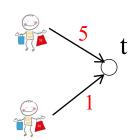
Event 1







Event 2



Formal Description

- Init: $p \leftarrow$ "low-values" s.t. $\{s\}$ is a min-cut. $(G_D, A_D) \leftarrow (G, A), (G_F, A_F) \leftarrow (\emptyset, \emptyset)$
- While($G_D \neq \emptyset$)
 - \square $\alpha \leftarrow 1$, $p_j \leftarrow \alpha p_j \ \forall j \in G_D$. Increase α until

Event 1: Set $S \subseteq G_D$ becomes tight.

 $N(S) \leftarrow \text{agents w/ MBB edges to } S \text{ (neighbors of } S).$

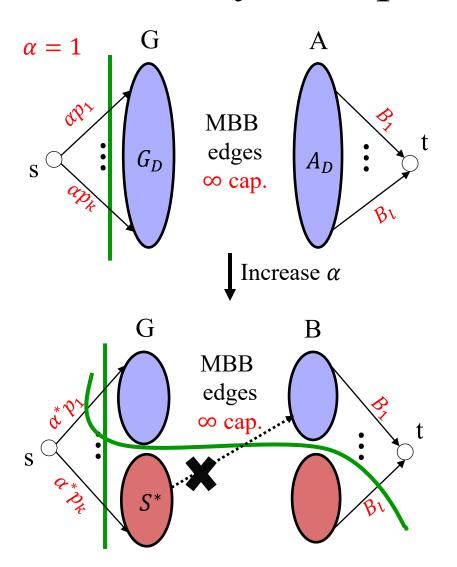
Move (S, N(S)) from (G_D, A_D) to (G_F, A_F) .

Event 2: New MBB edge appears between $i \in A_D$ and $j \in G_F$ Add $(j \to i)$ edge to graph. Move component of j from (G_F, A_F) to (G_D, A_D) .

• Output (p, F)

Event 2: New MBB edge appears between $i \in A_D$ and $j \in G_F$

Exercise ©

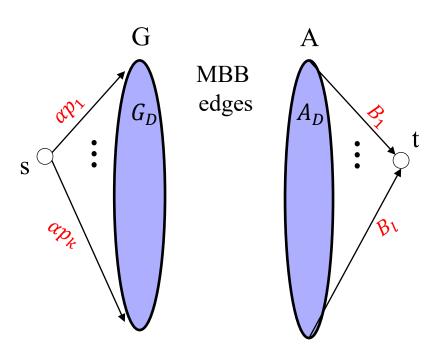


Event 1: Set $S^* \subseteq G_D$ becomes tight.

$$\alpha^* = \frac{\sum_{i \in N(S^*)} B_i}{\sum_{j \in S^*} p_j}$$

$$= \min_{S \subseteq G_D} \frac{\sum_{i \in N(S)} B_i}{\sum_{j \in S} p_j} > \alpha(S)$$

• Find $S^* = \underset{S \subseteq G_D}{\operatorname{argmin}} \alpha(S)$

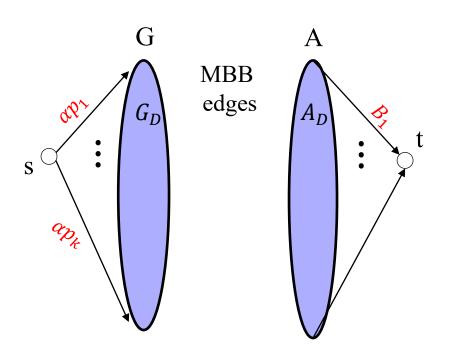


Event 1: Set $S^* \subseteq G_D$ becomes tight.

$$\alpha^* = \frac{\sum_{i \in N(S^*)} B_i}{\sum_{j \in S^*} p_j}$$

$$= \min_{S \subseteq G_D} \frac{\sum_{i \in N(S)} B_i}{\sum_{j \in S} p_j} > \alpha(S)$$

Find
$$S^* = \underset{S \subseteq G_D}{\operatorname{argmin}} \alpha(S)$$



Event 1: Set $S^* \subseteq G_D$ becomes tight.

$$\alpha(S) = \frac{\sum_{i \in N(S)} B_i}{\sum_{j \in S} p_j}$$
Find $S^* = \underset{S \subseteq G_D}{\operatorname{argmin}} \alpha(S)$

Claim. Can be done in O(n) min-cut computations

$$(G', A') \leftarrow (G_D, A_D)$$

Repeat {
 $\alpha \leftarrow \alpha(G')$. Set $c_{(s,j)} \leftarrow \alpha p_j, \forall j \in G'$
 $(s \cup \{S\} \cup N(S)) \leftarrow \text{min-cut in } (G', A')$
 $(G', A') \leftarrow (S, N(S))$
} Until($\{s\}$ not a min-cut)
Return α

Efficient Flow-based Algorithms

- Polynomial running-time
 - □ Compute *balanced-flow*: minimizing l_2 norm of agents' surplus [DPSV'08]
- Strongly polynomial: Flow + scaling [Orlin'10]

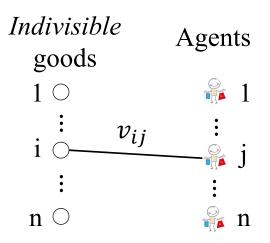
Exchange model (barter):

- Polynomial time [DM'16, DGM'17, CM'18]
- Strongly polynomial for exchange
 - ☐ Flow + scaling + approximate LP [GV'19]

Hylland-Zeckhauser

(an extension)

Motivation: Matching



Goal: Design a method to match goods to agents so that

- The outcome is Pareto-optimal and envy-free
- Strategy-proof: Agents have no incentive to lie about their $v_{ij}s$.

Hylland-Zeckhauzer'79: Compute CEEI where every agent wants total amount of at most one unit.

But the outcome is a fractional allocation!

Think of it as probabilities/time-shares/...[]

HZ Equilibrium

Given:

- Agents $A = \{1, ..., n\}$, indivisible goods $G = \{1, ..., n\}$
- v_{ij} : value of agent i for good j.
 - \square If *i* gets *j* w/ prob. x_{ij} , then the expected value is: $\sum_{j \in G} v_{ij} x_{ij}$

Want: prices $p = (p_1, ..., p_n)$, allocation $X = (x_1, ..., x_n)$

- Each good *j* is allocated: $\sum_{i \in A} x_{ij} = 1$
- Each agent *i* gets an optimal bundle subject to
 - □ \$1 budget, and unit allocation.

$$x_i \in \underset{x \in R_+^m}{\operatorname{argmax}} \left\{ \sum_j v_{ij} x_j \ \middle| \ \sum_j x_j = 1, \sum_j p_j x_j \le 1 \right\}$$

HZ Equilibrium

Hyllander-Zeckhauzer'79

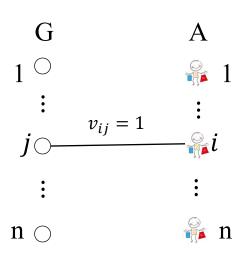
Exists. Pareto optimal, Strategy proof in large markets.

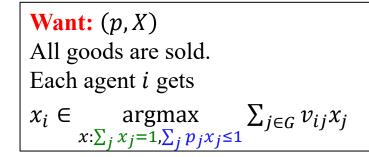
Vazirani-Yannakakis'20

- Irrational equilibrium prices ⇒ not in PPAD
- In FIXP
- Algorithm for bi-valued preferences:

$$v_{ij} \in \{a_i, b_i\}$$
 where $a_i, b_i \ge 0$

$$(v_{ij} \in \{0,1\})$$



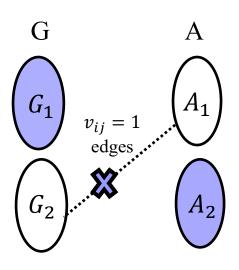


At equilibrium, an agent's utility is at most 1.

Perfect matching \Rightarrow An equilibrium is,

- Allocation on the matching edges
- Zero prices

 $(v_{ij} \in \{0,1\})$



Want:
$$(p, X)$$

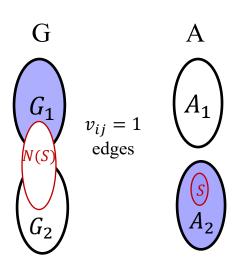
Each good *j* is sold (1 unit) Each agent *i* gets

$$x_i \in \underset{x:\sum_j x_j=1,\sum_j p_j x_j \leq 1}{\operatorname{argmax}} \sum_{j \in G} v_{ij} x_j$$

No perfect matching

- Min vertex cover: $(G_1 \cup A_2)$
 - \square No $A_1 G_2$ edge

$$(v_{ij} \in \{0,1\})$$



Want: (p, X)

Each good *j* is sold (1 unit) Each agent *i* gets

$$x_i \in \underset{x:\sum_j x_j=1,\sum_j p_j x_j \leq 1}{\operatorname{argmax}} \sum_{j \in G} v_{ij} x_j$$

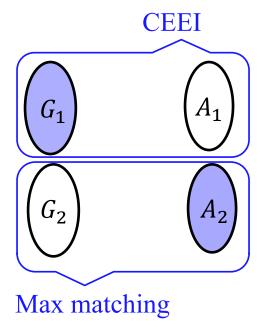
No perfect matching

- Min vertex cover: $(G_1 \cup A_2)$
 - \square No $A_1 G_2$ edge
 - \square For each $S \subseteq A_2$, $|N(S) \cap G_2| \ge |S|$
 - Else get smaller VC by replacing S with $N(S) \cap G_2$

Max matching in (G_2, A_2) matches all of A_2 .

Subgraph (G_2, A_2) satisfies hall's condition for A_2 .

 $(v_{ij} \in \{0,1\})$



Want: (p, X)

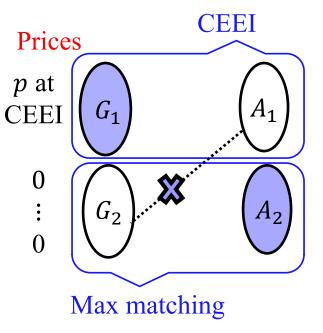
Each good *j* is sold (1 unit) Each agent *i* gets

$$x_i \in \underset{x:\sum_j x_j=1,\sum_j p_j x_j \leq 1}{\operatorname{argmax}} \sum_{j \in G} v_{ij} x_j$$

No perfect matching

- Min vertex cover: $(G_1 \cup A_2)$
 - \square No $A_1 G_2$ edge
 - \square For each $S \subseteq A_2$, $|N(S) \cap G_2| \ge |S|$
 - Max matching in (G_2, A_2) matches all of A_2 .

VY'20 Algorithm $(v_{ij} \in \{0,1\})$



Running-time:

Strongly polynomial

Want: (p, X)

Each good *j* is sold (1 unit) Each agent *i* gets

$$x_i \in \underset{x:\sum_j x_j=1,\sum_j p_j x_j \leq 1}{\operatorname{argmax}} \sum_{j \in G} v_{ij} x_j$$

No perfect matching

- Min vertex cover: $(G_1 \cup A_2)$
- **Eq. Prices:** CEEI prices for G_1 , and 0 prices for G_2
- Eq. Allocation
 - $\Box i \in A_2$ gets her matched good

□ $i \in A_1$ gets CEEI allocation + unmatched goods from G_2

bi-values: $v_{ij} \in \{a_i, b_i\}$, $0 \le a_i < b_i$

Reduces to $v_{ij} \in \{0,1\}$

Exercise.

HZ Equilibrium

Computation for the general case.

Is it hard? OR is it (approximation) polynomial-time?

- Efficient algorithm when #goods or #agents is a constant [DK'08, AKT'17]
 - ☐ Cell-decomposition and enumeration

What about chores?

■ CEEI exists but may form a non-convex set [BMSY'17]

- Efficient Computation?
 - □ Open: Fisher as well as for CEEI
 - ☐ For constantly many agents (or chores) [BS'19, GM'20]
 - \square Fast path-following algorithm [CGMM.'20]
- Hardness result for an exchange model [CGMM.'20]

References.

[AKT17] Alaei, Saeed, Pooya Jalaly Khalilabadi, and Eva Tardos. "Computing equilibrium in matching markets." *Proceedings of the 2017 ACM Conference on Economics and Computation*. 2017.

[BMSY17] Anna Bogomolnaia, Herv´e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Competitive division of a mixed manna. Econometrica, 85(6):1847–1871, 2017.

[BMSY19] Anna Bogomolnaia, Herv'e Moulin, Fedor Sandomirskiy, and Elena Yanovskaia. Dividing bads under additive utilities. Social Choice and Welfare, 52(3):395–417, 2019.

[BS19] Brânzei, Simina, and Fedor Sandomirskiy. "Algorithms for Competitive Division of Chores." *arXiv preprint arXiv:1907.01766* (2019).

[GM20] Garg, Jugal, and Peter McGlaughlin. "Computing Competitive Equilibria with Mixed Manna." *Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems*. 2020.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Competitive Allocation of a Mixed Manna. *arXiv* preprint arXiv:2008.02753.

[CGMM20] Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2020). Dividing Bads is Harder than Dividing Goods: On the Complexity of Fair and Efficient Division of Chores. *arXiv preprint arXiv:2008.00285*.

[DK08] Devanur, Nikhil R., and Ravi Kannan. "Market equilibria in polynomial time for fixed number of goods or agents." 2008 49th Annual IEEE Symposium on Foundations of Computer Science. IEEE, 2008.

[DPSV08] Devanur, Nikhil R., et al. "Market equilibrium via a primal--dual algorithm for a convex program." *Journal of the ACM (JACM)* 55.5 (2008): 1-18.

[HZ79] Aanund Hylland and Richard Zeckhauser. The efficient allocation of individuals to positions. Journal of Political economy, 87(2):293–314, 1979.

[VY20] Vazirani, Vijay V., and Mihalis Yannakakis. "Computational Complexity of the Hylland-Zeckhauser Scheme for One-Sided Matching Markets." *arXiv preprint arXiv:2004.01348* (2020).

THANK YOU